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Dynamic Stress Drop of Recent Earthquakes: Variations within
Subduction Zones

LARRY J. RUFF1

Abstract—Stress drop is a fundamental parameter of earthquakes, but it is difficult to obtain
reliable stress drop estimates for most earthquakes. Static stress drop estimates require knowledge of the
seismic moment and fault area. Dynamic stress drop estimates are based entirely upon the observed
source time functions. Based on analytical formulas that I derive for the crack and slip-pulse rupture
models, the amplitude and time of the initial peak in source time functions can be inverted for dynamic
stress drop. For multiple event earthquakes, this method only gives the dynamic stress drop of the first
event. The Michigan STF catalog provides a uniform data base for all large earthquakes that have
occurred in the past four years. Dynamic stress drops are calculated for the nearly 200 events in this
catalog, and the resultant estimates scatter between 0.1 and 100 MPa. There is some coherent tectonic
signal within this scatter. In the Sanriku (Japan) and Mexico subduction zones, underthrusting
earthquakes that occur at the up-dip and down-dip edges of the seismogenic zone have correspondingly
low and high values of stress drop. A speculative picture of the stress state of subduction zones emerges
from these results. A previous study found that the absolute value of shear stress linearly increases down
the seismogenic interface to a value of about 50 MPa at the down-dip edge. In this study, the dynamic
stress drop of earthquakes at the up-dip edge is about 0.2 MPa, while large earthquakes at the down-dip
edge of the seismogenic plate interface have dynamic stress drops of up to 5 MPa. These results imply
that: (1) large earthquakes only reduce the shear stress on the plate interface by a small fraction of the
absolute level; and thus (2) most of the earthquake energy is partitioned into friction at the plate
interface.
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1. Introduction

Earthquakes reduce stress over most of the fault area, hence stress drop is a
fundamental parameter of earthquakes. Unfortunately, it is difficult to reliably
estimate stress drop; thus it is determined only in special studies of particular
earthquakes. This lack of uniform treatment of earthquakes can be excused because
one of the key tenets of seismology is that stress drop is ‘‘approximately constant’’
for earthquakes of all types and sizes (KANAMORI and ANDERSON, 1975; SCHOLZ,
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1990). In detail, ‘‘approximately constant’’ means that stress drop estimates typi-
cally fall in the range of 1 to 100 bars (0.1 to 10 MPa), with an occasional report
of much higher values. Given the fundamental importance of stress drop to
earthquake physics, seismologists must make progress on two fronts: (1) systemati-
cally estimate stress drop for all seismicity above some magnitude threshold; and (2)
provide more reliable and consistent stress drop estimates such that we can extract
information from within the factor of one hundred variation in current estimates.
In this paper, I show that the dynamic stress drop for the initial rupture process can
be reliably determined from source time functions, and I show results for large
earthquakes that occurred in the past four years. These preliminary results do not
reduce the scatter in stress drop estimates, but we do see some structure within the
‘‘approximately constant’’ stress drop. In particular, I focus on underthrusting
earthquakes in subduction zones and find some evidence for systematic variation in
the dynamic stress drop between events at the down-dip and up-dip edges of the
seismogenic zone.

2. Static Stress Drop

Static stress drop is the simplest measure of the overall reduction in shear stress
due to slip on the fault zone. It is the difference between the average shear stress on
the fault zone before and after the earthquake (Fig. 1). Since the stress drop of real
earthquakes varies across the fault area, the overall static stress drop is a slip-
weighted average of the spatially variable stress drop. Seismologists typically use
simple constant stress drop models to estimate earthquake stress drops. Regardless
of the details of fault geometry and slip distribution, the basic formula for stress
drop is:

Dsst=cm
D
L

where D is the average slip over the faulted area (A), L is the characteristic length
of the fault area, m is the elastic shear modulus, and c is a geometric constant that
is close to one if L is properly chosen. Since seismic moment (M0) for most large
earthquakes can be reliably determined from seismic waves, rewrite the above
equation as:

Dsst=cm
DA
LA

=c
M0

LA
. (1)

This formula shows that we need three quantities to calculate stress drop: a
measurement of the seismic moment, some estimate of the fault area (A), and then
some appropriate choice for the characteristic fault dimension. While the choice of
L presents an interpretational problem, it is the estimation of A that presents
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practical difficulties and introduces large errors into stress drop estimates. Most
estimates of A are based on drawing a rectangle or ellipse around the aftershock
area. This technique is trustworthy for great earthquakes with fault zones more
than 100 km across, but its reliability decreases as fault dimensions decrease toward
the epicenter location accuracy and as the number of aftershocks decreases. Since
we expect the fault area of magnitude 7 earthquakes to have a characteristic
dimension of about 10 km, this aftershock technique is limited to just great
earthquakes if we desire a uniform global study.

Figure 1
Basic definition and estimation of static stress drop. Upper part shows that estimates of static stress drop
depend on seismic moment and fault area. It is common to use source time function duration to estimate
L, the longest fault dimension. Lower part shows two possible choices for the scaling law, TANIOKA and

RUFF (1997) find an empirical scaling relation that is an average of the two shown here.
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From a theoretical perspective, the best way to determine fault area is to use
geodetic studies of the direct static deformations around the source area. In detail,
there are interpretational difficulties due to the non-uniqueness of geodetic inver-
sions, but the larger problem has been lack of geodetic monitoring of all the seismic
regions of the world. As more GPS surveys are performed around the world, the
number of earthquakes with geodetic control will increase in the future. The advent
of tsunami seismology opens a new avenue for geodetic control of large earth-
quakes that occur beneath the ocean (SATAKE, 1995).

It is possible to extract the fault length from source time functions. If a large
earthquake ruptures a long fault zone in a unilateral fashion, the directivity seen in
the source time functions from azimuthally-distributed stations can be quantita-
tively exploited to determine the longer fault dimension. We usually use other
means to estimate the shorter fault dimension. This rupture process method is
time-consuming and difficult, and produces reliable results for just a few
earthquakes.

We now turn to the most imprecise indicator of fault area, yet has proven to be
the most useful method: some measure of rupture duration combined with assump-
tions of rupture velocity and fault geometry (lower part of Fig. 1). In the simplest
case, we assume a circular fault geometry with radius R, and fixed rupture velocity,
Vr, with some typical value, say 2 or 3 km/s. Then, if we can extract the source time
function from seismograms, we can interpret the duration, d, to be the rupture time:
d=R/Vr. Since the characteristic fault dimension for circular faults is R, and c is
(7p/16), Equation (1) becomes:

Dsst=
7
16

M0

(dVr)3 . (2)

Estimates of Dsst can be quite uncertain due to either interpretational problems—
i.e., the rupture time may actually be d/2, which would introduce a factor of 8 error
in Equation (2); or the assumed value of Vr may be wrong. Also, perhaps the
geometry of rupture is better approximated by a semi-circle, or quarter-circle,
which would introduce a factor of 4 error. Finally, as depicted in Figure 1, a
different assumption for fault geometry can change the functional dependence from
d−3 to d−2.

3. Dynamic Stress Drop

There is no one universal definition of the dynamic stress drop because the
space-time history of stress drop that is radiating waves can be quite variable.
Indeed, any single portion of the fault plane probably has variable stress drop
during the time that it is slipping. Since it is impossible to reliably invert waves to
determine the complete space-time history of dynamic stress drop, we must be
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satisfied with various space-time averages of the dynamic stress drop. The simplest
view is that dynamic stress drop is constant over the space-time window that the
fault is slipping. Since the final stress can change after a particular fault portion
stops slipping, the static stress drop of that portion could be quite different than the
time-averaged dynamic stress drop. This potential mismatch between dynamic and
static stress drop addresses one of the key questions of earthquake rupture physics,
as detailed below.

There is a simple connection between an idealized form of the dynamic stress
drop and an observable kinematic parameter, the slip velocity (see, e.g., BRUNE,
1970; or discussions in AKI and RICHARDS, 1980; and KASAHARA, 1981). If the
rupture front could propagate at infinite velocity to unzip the entire fault plane,
then the slip fault velocity is:

dD
dt

=D: =cb
Dsdy

m
,

where b is the source region shear velocity and Dsdy is the dynamic stress drop. We
must construct some model for rupture front behavior to estimate Dsdy based on
the above equation. The simplest model is to assume that a circular fault grows
over duration d with constant rupture velocity Vr, and that all parts of the fault
have a slip velocity history that is zero before arrival of the rupture front, then D:
jumps to the above value and remains at that slip velocity. For this case—or any
case in which the slip history of every place on the fault has the same time history
that is shifted in time due to the rupture front—we can write the overall moment
rate history as the convolution of the slip velocity function with the area growth
rate function:

M: (t)=mD: (t) * A: (t)=cmb
Dsdy

m

& t

0

2pVr2t % dt %,

=cmb
Dsdy

m
pVr2t2,

for 05 t5d

for 05 t5d.

The shape of this M: (t) function (the source time function) is a growing quadratic
function until a time of d. Of course, a complete rupture model must also specify
when and how the fault stops slipping, but we ignore that aspect now. If we look
at the value of M: (t) at t=d, we have:

M: (t=d)=cmb
Dsdy

m
pVr2 d2,

and we then solve for Dsdy in terms of the observed quantities of M: (d) and d :

Dsdy=
1

cpbVr2

M: (t=d)
d2 .
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Rewrite Vr in terms of b as Vr= fb. Then the above equation is:

Dsdy=
1

cpb3f2

M: (t=d)
d2 . (3)

Equation (3) shows that estimates of the dynamic stress drop are based on values
taken from source time functions. Equation (3) displays some of the basic features
that we will see in dynamic stress drop formulas for the more complicated rupture
models considered in the next section. In particular, Equation (3) shows that
dynamic stress drop depends on the observed quantity of the peak moment rate
divided by the square of the time that this peak value is obtained. Also, the only
dependence on source region parameters is (1/b3), and the unknown rupture
velocity enters as the dimensionless ratio f.

The above ‘‘Brune-type’’ dynamic stress drop model offers an excellent intro-
duction to the topic, but now we must specify more complete rupture models such
that the fault ‘‘heals’’ and fault slip eventually stops. In addition, we should try to
find a dynamic rupture model that produces a final slip distribution compatible
with some static stress drop.

4. Cracks that Start and Stop

Basic crack mechanics show that a propagating crack tip with a constant
rupture velocity and stress drop produces a slip velocity function with a square-root
singularity at the crack tip (see, e.g., AKI and RICHARDS, 1980). Thus, a more
realistic description of fault slip velocity must use the t−1/2 function, as inset at top
left of Figure 2, rather than the step function of the basic ‘‘Brune-type’’ model. The
dynamic stress drop appears in the scaling of the (t−1/2) function. In detail, there is
a complementary square-root singularity in the stress just ahead of the crack tip,
hence there must be a small break-down zone around the crack tip where both the
stress and slip velocity remain finite (AKI and RICHARDS, 1980). Since source time
functions are integrals of the slip velocity function, these alterations at the crack tip
have no discernible effect. The rupture models discussed below use the (t−1/2)
functional dependence of slip velocity, and the rupture starts at a point and
expands with a circular rupture front. As seen in the above section, use of an
expanding rupture front ensures a source time function that begins at zero and
increases with time.

The other critical aspect of a dynamic rupture model is how the crack heals.
Basic crack mechanics does not give us a simple universal behavior; we must invent
different scenarios on how we think earthquake rupture fronts and fault slip stop.
While it may be reasonable to suppose that most earthquakes start with a circular
or elliptical rupture front, it is clear that rupture front geometry changes—at least
for large earthquakes. Since fault areas for the largest strike-slip and underthrusting
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Figure 2
Graphical definition of the two dynamic rupture models derived in this paper. Any dynamic model must
specify the slip velocity function and the behavior of the rupture and healing fronts. Both models use a
t−1/2 slip velocity function and a circular rupture front that expands with constant velocity out to R
(upper part). The models differ in the behavior of the healing front. For the crack model, the healing
front propagates back across the fault after rupture termination at R, while for the slip-pulse model, a
healing front initiates at r=0 and spreads out to eventually catch and stop the rupture front. The
equations in lower part show that the dynamic stress drop for both models has a similar dependence on
the parameters extracted from source time functions (see text), but that the c % and s % factors are different.

events tend to be elongated in the horizontal direction, the expanding circular 2-D
rupture front must switch to a bilateral or unilateral 1-D rupture front when it
reaches the fault width. Simple kinematic rupture models show that this switch
from 2-D to 1-D rupture geometry is reflected in the source time functions
(hereafter: STFs) by a drop in the moment rate (e.g., RUFF and KANAMORI, 1983).
Thus, the relevance of an expanding circular rupture front to earthquakes is in
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doubt after the time of the initial peak value of the STF. For those STFs that have
a multiple-event character, we can only estimate the dynamic stress drop for the
first subevent.

Finally, we must consider how the fault slip stops. This healing process is one
of the great mysteries about earthquakes. The two end-member views have been
referred to as the ‘‘crack’’ and the ‘‘slip-pulse’’ models. In the crack model, once a
point on the fault begins to slip, it continues to follow the t−1/2 slip velocity
function until the rupture front stops and the rupture termination front then
propagates back from the fault edge (MADARIAGA, 1976). In this case, the healing
front coincides with the rupture termination front, and is due to some dynamic
wave effect. An attractive feature of this model is that the final static fault slip is a
direct function of the dynamic stress drop and fault size, thus the static stress drop
is proportional to the dynamic stress drop. On the other hand, the traditional
seismological view, i.e., the Haskell rupture model, is that the fault heals before the
rupture termination front propagates back from the furthest fault edge. HEATON

(1990) discusses some of the attractive features of this type of model, which he
termed the ‘‘slip-pulse’’ model. This model implies that there is some friction
constitutive law that causes the fault to heal when the slip velocity falls to some
value (ZHENG and RICE, 1998). Friction physics studies do find this type of friction
constitutive law (see discussion in SCHOLZ, 1990). Unfortunately, inclusion of these
complicated friction laws require a full dynamic numerical calculation just to
produce a single STF. These full-dynamic stress drop models do not produce useful
analytical solutions that can be used to interpret observations.

4.1. Dynamic Rupture Models

Dynamic rupture models specify the history of both rupture and healing fronts,
and use some analytical description of the space-time slip velocity function. This a
priori description circumvents the calculation of a full-dynamic wave solution for
every case. With the simple but reasonable choices of constant velocity rupture and
healing fronts, it is possible to complete the integrals and produce analytical
formulas for the observed STFs. The key advantage is for the inverse problem
whereby the observed STFs immediately constrain some combination of model
parameters. Some examples of dynamic rupture models are reviewed in AKI and
RICHARDS (1980), with the circular model of SATO and HIRASAWA (1973) of
particular interest. This model uses a clever space-time dependence for the slip
function such that at any particular time during rupture, the cumulative fault slip
across the current fault size is exactly compatible with a constant static stress drop
on a circular fault; and this static stress drop equals the dynamic stress drop across
the fault edge. The only negative aspect of this model is that fault slip stops at
exactly the same time over the entire fault. In other words, the healing front has an
infinite velocity. BOATWRIGHT (1980) extended this model by including a more
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realistic crack healing front that propagates back from the edge; hence slip
continues in the fault center until the healing front arrives. One consequence is that
the static stress drop is now greater than the dynamic stress drop due to ‘‘extra’’
slip in the fault center. Since all crack models with healing fronts that propagate
back from the fault edge share this same consequence, there is no need to retain the
special space-time slip history of SATO and HIRASAWA (1973). In the crack and
slip-pulse models that follow, I use the basic (t−1/2) slip velocity function.

4.2. Crack and Slip-pulse Dynamic Models

The crack model is depicted in the left side of Figure 2, while the slip-pulse
model is shown at right. Both models use the same basic (t−1/2) slip velocity
function, and they also share the same rupture front description which arbitrarily
stops when it expands to radius, R. The key difference is the healing front. In the
crack model, the healing front propagates back from the circular fault edge with the
same velocity as the rupture front. In the slip-pulse model, the healing front starts
at the fault center, then propagates out at the shear wave velocity; the duration of
slip at r=0 is chosen such that the healing front catches the rupture front at r=R.
With these simple prescriptions for the healing fronts, there are no new parameters
introduced. That is, Vr, R, and Dsdy are the only earthquake parameters. For both
the crack and slip-pulse models, the slip velocity function has the same functional
form and starts at the same time:

D: (t, r)=D: (t, t %)=
c6
t

(t− t %)1/2 [H(t− t %)−H(t−X)]

where t % is the rupture delay time, t %=r/Vr, H(t) is the step function, 6 is a
characteristic slip velocity, e.g., the Brune value, c
t is a scaling constant, and
H(t−X) refers to the healing front, where X is clearly different for the crack or
slip-pulse model. From Figure 2, it is easily seen that for the crack model, H(t−X)
becomes: H(t− (2R−r)/Vr), and for the slip pulse model, H(t−X) becomes:
H(t− (R(1/Vr−1/b)+r/b)). We first need to connect the rupture models to the
static stress drop. Integrate the crack model description to obtain the final static slip
over the final circular fault:

Dcrack(r)=c62
2tt1/2
R 
1−r/R

where tR=R/Vr is the fault rupture time. Set the scaling product as follows:

c6
t=
24


27p

Dsdy

m
Vr
tR

to yield the desired ‘‘overshoot’’ scaling between the static and dynamic stress drop:
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Dsst=
8
5

Dsdy (Crack).

The final static slip for the slip-pulse model is:

Dslip-pulse(r)=c6
t2
(1− f)t1/2
R 
1−r/R

where f=Vr/b, as before. The final static displacements have the same functional
form for the crack and slip-pulse models, but the amount of slip for the crack
model will be greater by a factor of [2/(1− f)]1/2. Use the same setting for the
[c6
t ] factor to obtain:

Dsst=
4
5


2
(1− f) Dsdy (Slip-pulse).

The slip-pulse static stress drop depends explicitly upon the rupture velocity, but is
less than the dynamic stress drop for typical rupture velocities. For a fast rupture
velocity, say f=0.9, then the connection is:

Dsst= (0.36) Dsdy (Slip-pulse, f=0.9).

The source time function is given by the slip velocity integrated over the fault
area:

Ṁ(t)=m
& &

D: (t, A) dA=2pm
& R

0

D: (t, r)r dr

where m is the shear modulus, the directivity time shifts have been ignored, and the
right-most formula takes advantage of the symmetric circular rupture geometry.
After solving the integrals and some algebraic manipulation, we can write the
source time functions for the crack dynamic rupture model as a function of
non-dimensionalized time, (t/tR ):

M: (t)crack=M: f
!(4/3)(t/tR )3/2

(4/3)(t/tR )3/2−
2(t/tR )−2(2(t/tR )− (2/3)(2(t/tR )−1))

for 05 (t/tR )51

for 1B t/tRB2)

(4)

where M: is given by:

M: =m(pR2)
24
2

7p
b

Dsdy

m
.

The STF continues to increase until the rupture expansion stops at time tR, while
total STF duration is (2tR ). Note that M: gives the basic amplitude scaling for the
STF, and it can be viewed as the product of three factors: shear modulus, fault
area, and a ‘‘Brune-type’’ slip velocity.

Following the same procedure for the slip-pulse model, the final formula for the
STF is:
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M: (t)slip-pulse=M: f
!(4/3)(t/tR )3/2

2

1− f


f

1− t/tR

�
(t− tR )−

1− f
3f

(1− (t/tR ))
�for 05 (t/tR )5 (1− f)

for (1− f)5 (t/tR )51

where M: is the same as above. Note that the total duration is just tR since all slip
ends as soon as the rupture front reaches R. Thus, the peak value of the slip-pulse
STF occurs before tR, albeit with a smaller amplitude than for the crack STF. To
visualize the differences in the STFs, they are plotted in Figure 3. The shapes of the
STFs are quite different between the crack and slip-pulse models, thus there is some
hope that observations can discriminate between these classes of rupture models.

(5)

Figure 3
Theoretical source time functions for the crack (a) and slip-pulse (b) models, plotted as a function of
non-dimensionalized time (t/tR ). The amplitude scales are in the same units for (a) and (b). Several
functions for different values of the non-dimensionalized rupture velocity (f) are shown. The different

shapes offer the possibility of finding which model better describes real earthquake rupture.
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For the crack model, the basic STF shape is the same for all values of rupture
velocity when plotted as a function of non-dimensionalized time. The normalized
amplitude does change with rupture velocity, STFs for two different f values are
shown. For the slip-pulse model, the basic shape of the STF changes for different
rupture velocities, though the effect is somewhat subtle. Also note the difference in
amplitude scale between the two cases. For the same fault area, dynamic stress
drop, and rupture velocity, the peak amplitude of the STF will be larger for the
crack model. The slip-pulse STFs reach their peak value at a time of (t/tR )=0.7 or
so. In detail, the slip-pulse STFs are the same as the crack STFs until (t/tR ) reaches
(1− f). For a slow rupture velocity, such as f=0.5, you can see that the STF
amplitude until (t/tR )=0.5 is the same for both cases. For the slip-pulse model, the
healing front begins its propagation out from the center when (t/tR ) equals (1− f),
and then the slip-pulse STF falls below the still-growing crack STF.

4.3. The In6erse Problem

To achieve the most reliable results, I will only use the STF until the time of the
initial peak value. Thus the drastic differences between the crack and slip-pulse
cases after the peak are lost to us. To focus on just this initial ramp-up in the STF,
there is still a different functional character between the two cases. Draw a straight
line from the origin to the peak value in the STF (Fig. 3); the crack STF is always
below this line while the slip-pulse STF oscillates about this straight line. In the
analysis section, we will look at a few STFs with a long duration to see if it is
possible to ‘‘invert’’ the initial shape for the rupture model.

There are two parameters that we can extract from most of the observed STFs:
the peak value of moment rate, M:. , and time at which this peak value is obtained,
t. . Although many of the largest earthquakes have a multiple-event STF, we can still
extract these two parameters from the initial event. For the crack model case, the
peak moment rate always occurs at a time of (t/tR)=1, and its value is:

M:. (t/tR=1)=M: f(4/3).

We now rearrange the expression to solve for the dynamic stress drop:

Dsdy crack
=

CcrackM:.
b3f3t. 2 (6)

where Ccrack= (7/(21/232))=0.155. Note that this expression shares the same funda-

mental M:. /t. 2 dependence as Equation (3), though the pre-factor is different.
More work is required in the slip-pulse case to solve for the moment rate peak

value and time, but the final result is similar to above:

Dsdy slip-pulse
=

S(f)
b3f3

M:.
t. 2 , (7)



Dynamic Stress Drop of Recent Earthquakes 421Vol. 154, 1999

where S(f) is given by:

S(f)= (7/40)U(f)= (0.175){[(1+2f)/(1− f)]1/2[(1+ f)/(1+2f)]2}.

The geometric scaling function U(f) is of order 1 as it only varies from 1.125 for
f=0.5 to 2.44 for f=0.9, whereas the (1/f3) factor in Equations (6) and (7) varies
quite strongly with f.

The above results show that the dynamic stress drop estimate depends quite
strongly on the assumed value for the rupture velocity, but there is surprisingly little
difference between the estimates for the crack or slip-pulse model. This latter result
is a consequence of the fact that—compared to the crack model—both the peak
moment rate and time to peak value decrease for the slip-pulse model such as to
keep the M:. /t. 2 ratio approximately constant.

The practical consequence of this result is that our estimates of the dynamic
stress drop are not critically dependent on whether we assume a crack or slip-pulse
model. On the other hand, any attempt to infer a static stress drop would then
require knowledge of the correct rupture model. Dynamic stress drop does have a
strong dependence on f, but we can compare between earthquakes by assuming that
f is the same for all events. The value for f that I have used in 0.7; for shallow
earthquakes, this translates into a rupture velocity of about 2.7 km/s, in the middle
of the observed range of rupture velocities. For this choice of f, Equations (6) and
(7) become:

Dsdy crack
(f=0.7)=

0.452
b3

M:.
t. 2 ,

and

Dsdy slip-pulse
(f=0.7)=

0.725
b3

M:.
t. 2 . (8)

Both model estimates are within a factor of two of each other, thus we can just
calculate one model-independent estimate that is close to the average of the above:

Dsdy (f=0.7)=
0.575

b3

M:.
t. 2 . (9)

In preparation for our analysis of observations, assign SI units to the above
quantities. Since our STF inversions for the shallow subduction earthquakes use
3.86 km/s for b, (1/b3) has a value of (5.75×1010 m3/s3)−1. Thus we have:

Dsdy (f=0.7)=
Ṁ.
t. 2 ×109 Pa, (10)

where the units of M:. are 1020 Nm/s and t. is in seconds. We are now ready to
analyze the observed STFs.
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5. Analysis of Source Time Functions

The Michigan STF project has systematically determined the source time
functions on a near-real-time basis for global seismicity since June, 1994. TANIOKA

and RUFF (1997) describe the source time function catalog and they analyze this
catalog for some source time function systematics. The current catalog now
includes four years of seismicity from June 1, 1994 to June 1, 1998, with a total of
190 earthquakes in the STF catalog. This catalog is globally complete for earth-
quakes with Mw]7 (M0]0.3×1020 Nm) over this four-year period, and the range
of earthquake size is from Mw=5.6 to 8.3. The STFs are available on the web
(start at: ‘‘http://www.geo.lsa.umich.edu/SeismoObs/’’), and an on-line data base
will be available in 1999. To focus on the large events, the four-year catalog has 62
earthquakes with Mw]7, and about 30 of these events are subduction underthrust-
ing earthquakes. I have screened the entire STF catalog for this stress drop analysis;
earthquakes are not used if the initial ramp-up in the STF is indistinct due to
precursors or multiple-events. The procedure is to find the amplitude and time of
the initial peak in the STFs, then use Equation (10) to calculate the dynamic stress
drop. Figure 4 plots the results, where earthquakes are plotted as stress drop versus
their overall seismic moment; different symbols are used for different tectonic
settings. The scatter in the stress drop estimates is almost a factor of one thousand!
Most studies of static stress drop systematics find a scatter of a factor of ten to one
hundred (SCHOLZ, 1990), so it is a surprising result that the more reliable (see
Section 4) dynamic stress drop shows even more scatter. One interpretation is that
the true dynamic stress drop of earthquakes is as variable as the estimates in Figure
4, but first lets consider other explanations. We expect that the deep slab events will
be shifted to larger stress drop values because we use a crustal value for b.
Substitution of the correct value for b shifts the stress drop for deep slab events
down by a factor of 3. By comparison, any variation in b for shallow events is
minor—with the possible exception of ‘‘tsunamigenic’’ events that occur in the
accretionary prism (SATAKE, 1995). Although b may be much smaller within a fault
zone, it is the value of b in the volume of rock surrounding the fault that is
relevant. If the rupture front geometry is a quarter-circle rather than a circle, the
stress drop estimate in Figure 4 would increase by about a factor of 4. If we look
back at Equations (6) and (7), the only other source of potential scatter is f, the
rupture velocity. Figure 4 assumes that f is 0.7 for all events. If f were 1 or 0.5, then
the shift in stress drop estimates would be about a factor of 3 down or up. The only
way to significantly reduce the scatter would be to assign very slow rupture
velocities to those events with low stress drops. In particular, to increase the stress
drop from 5 to 100 bars, we need to assume that f=0.25, which means that
Vr=1.0 km/s. For some of the larger earthquakes with low stress drop estimates,
we know that their rupture velocity is not as slow as 1 km/s. For the small
earthquakes, some of the scatter can be explained by resolution difficulties in the
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Figure 4
Dynamic stress drop for all suitable earthquakes in the Michigan STF catalog. Each point plots the
dynamic stress drop estimate (MPa on left axis, bars on right axis) as a function of the total seismic
moment for that event. Different symbols are used for the tectonic settings listed in legend. Note the
factor of one thousand scatter. The larger subduction thrust events have stress drops between 2 and

50 bars.

temporal sampling of the STF, but this type of error is not important for the larger
earthquakes. Thus, it appears that the dynamic stress drop is in fact quite variable
between earthquakes, even between earthquakes of the same size that occur in the
same plate boundary. This conclusion becomes even more obvious when we plot
the STFs—there is no question that the earthquake parameter of M:. /t. 2 is resolvably
different.

Figure 5 plots the initial part of the STFs for several of the largest shallow
earthquakes; all are subduction underthrust events except for the great
941004 6 Kuriles event (Note: Earthquakes are identified by their occurrence data,
YrMnDy, and a regional name. Hypocentral parameters can be found in the
on-line STF catalog, or from many other sources.) After seeing the STF variation
in Figure 5, it is not surprising that the rapid increase in moment rate for the
941004 6 Kuriles event translates into a dynamic stress drop estimate of 43 bars,
while the slow increase in the STF for the 951009 6 Mexico event translates into a
stress drop estimate of just 3 bars. Some large events, including the largest deep and
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shallow events in the past four years, are not plotted in Figure 4 due to some
complication in the initial ramp of their STF. Figure 6 shows the STFs for the
largest multiple-event subduction earthquakes, including the 960217 6 Irian 6 Jaya
event which is the largest earthquake in this catalog. For these multiple-event
earthquakes, it is possible to calculate a dynamic stress drop for the first subevent.
These first-event stress drop estimates fall within the range of values defined by the
other subduction earthquakes in Figure 4.

5.1. Test of Rupture Model

The STF for the great 941004 6 Kuriles event presents some striking evidence for
the slip-pulse model as the STF oscillates about a straight line connecting the origin
to the peak value. Several other large events share this qualitative feature, including
the 960101 6 Sulawesi and 960225 6 Mexico events. On the other hand, there does not
seem to be any large subduction earthquake with a STF that argues strongly for the
crack model. Overall, most of the STFs are well-characterized by just a straight line
ramp-up to the initial peak, with some minor deviations. Recall from Section 4 that
the ratio of static to dynamic stress is another indicator of rupture model.
Independent determinations of the static stress drop are available for several of the
larger earthquakes (TANIOKA and RUFF, 1997). For the 941004 6 Kuriles event, the
static stress drop is 70 bars, while the dynamic stress drop from Figure 4 is 43 bars.
For the 951009 6 Mexico event, the static stress drop is 4 bars, while the dynamic
stress drop is 3 bars. For the 941228 6 Sanriku event, the static and initial dynamic

Figure 5
Source time functions (STFs) for seven of the largest earthquakes where the initial peak in the STF is
the largest peak for the entire STF. All STFs use the same amplitude scale (units are ×1020 Nm/s). The
STFs are plotted only up until the time of their peak value. Earthquakes are identified by date and
region, i.e., 941004 6 Kurile is the October 4, 1994 great event in the Kuriles subduction zone. STFs that

reach a higher peak amplitude at a shorter time will have larger dynamic stress drops.
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Figure 6
Complete STFs for six of the largest multiple-event earthquakes of the past four years. The baselines are
shifted for each event for plotting clarity, but they all use the same amplitude scale. The total moment
release in the first event is a small fraction of the final seismic moment for these events. The dynamic
rupture models are only reliable up until the time of the initial peak in the first events. Stress drop

estimates based on the initial peak values are shown for each earthquake.

stress drops are 6 and 5 bars, respectively. From this limited comparison, it seems
that the ratio of static to dynamic stress drop is about �1, and hence we cannot
discriminate between the crack or slip-pulse models. To conclude, this brief look at
the STFs does not indicate a compelling preference for either the crack or slip-pulse
model, though there are a few clear examples of the STF shape expected from the
slip-pulse model.

5.2. The Seismogenic Interface in Subduction Zones

Underthrusting earthquakes in subduction zones occur on the rather narrow
seismogenic portion of the plate interface. The down-dip edge of the seismogenic
zone occurs at a depth of about 40 km for many of the world’s subduction zones,
though it does show some variation that appears to be correlated with the thermal
state of the subduction zone (see TICHELAAR and RUFF, 1993). As part of their
thermal modeling, TICHELAAR and RUFF (1993) found the best overall global
description of frictional shear stress through the seismogenic zone. Their estimates
are quite uncertain due to sparse heat flow observations and model uncertainties.
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TICHELAAR and RUFF (1993) tested two shear stress distributions: constant stress;
and constant friction coefficient which yields a linear increase in stress through the
seismogenic zone. For the constant shear stress experiment, they find a range in
values from 14 to 43 MPa for the individual subduction zones. For the constant
friction coefficient experiment, they find a range in values from 0.047 to 0.127. The
global median value is 0.059, with a 90% confidence interval from 0.044 to 0.065.
TICHELAAR and RUFF (1993) preferred the constant friction coefficient case due to
characteristics of the resultant geotherms. Regardless of exactly which model is
used, we see that the absolute shear stresses are likely to be more than 10 MPa at
the down-dip edge of the seismogenic zone. I use the preferred model of
TICHELAAR and RUFF (1993) that has the shear stress increasing linearly from zero
at the trench to a value that ranges from 46 to 68 MPa at a depth of 40 km.

The up-dip edge of the seismogenic zone is not as well-constrained from
seismological observations. In some places, there is a distinct up-dip edge, while in
other places it seems that the seismogenic zone extends up to the trench. While the
up-dip edge may be sharply defined in some places by small earthquakes, it is
possible that the rupture front from a great earthquake may propagate up beyond
this edge. The study of the northern Honshu subduction zone by TANIOKA et al.
(1997) show that there might be two different environments for the plate interface
near the trench and that unusual tsunamigenic earthquakes can occur in the
uppermost plate interface zone that is usually thought to be aseismic. Thus, there
are many puzzles related to the up-dip portion of the seismogenic interface. Here,
I will focus on just one aspect of the seismogenic zone: is there a variation in stress
drop for earthquakes that initiate at the up-dip edge 6ersus those that initiate at the
down-dip edge? This question is prompted by some of the unusual characteristics of
the 941228 6 Sanriku earthquake. In particular, its epicenter is at the up-dip of the
seismogenic zone, and its initial dynamic stress estimate is low, about 5 bars (see
Fig. 7). Smaller events that have occurred at the down-dip edge in Sanriku have
larger values for stress drop (e.g., the 950106 6 Sanriku aftershock, Mw=6.7, has a
dynamic stress drop of about 100 bars). Earlier studies have also suggested that
underthrusting events located closer to the trench may have lower stress drops
(FUKAO, 1979; SCHWARTZ and RUFF, 1987).

There is one subduction zone segment that is particularly well-sampled by the
STF catalog: the Oaxaca segment of the Mexico subduction zone. Figure 8 shows
the STFs of six Mexico underthrusting events together with a schematic epicenter
map for the four events along the Oaxaca coast. Four Mexico earthquakes have
STFs and stress drops that fall in the typical middle range for Mexico, e.g., the
960225 event has a dynamic stress drop of 5 bars. However, the 950914 event has
a higher value of 36 bars, while the 970719 event has a lower value of 1 bar. Figure
8 shows that these STFs are resolvably different from the others. Notice that the
epicenter of the 950914 event places it at the down-dip edge of the seismogenic
zone, while the 970719 event is at or near the up-dip edge. To make the stress drop
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estimate of the 970719 event as large as the 950914 event, we would have to say that
its rupture velocity was only 0.8 km/s. Although we cannot uniquely unravel the
contributions of dynamic stress drop and rupture velocity, there is a clear system-
atic gradient in the earthquake rupture process across the seismogenic interface.
The stress drop and/or rupture velocity systematically increase from the up-dip to
down-dip edges in the Oaxaca segment of this subduction zone.

6. Conclusions

The crack and slip-pulse dynamic rupture models differ only in the behavior of
the healing front, yet they produce source time functions that look quite different.
However, the inverse problem for an estimate of the dynamic stress drop based on
the initial ramp-up of source time functions is NOT sensitive to the choice of
rupture model as long as the rupture velocity is a typical value. The Michigan STF
catalog is processed to obtain dynamic stress drops for global seismicity of the past

Figure 7
Initial part of STFs for two Sanriku subduction events (upper), and a schematic epicenter map that
shows the relative positions of the two events and the 941228 rupture zone along the Sanriku subduction
segment (lower). The variation in the initial ‘‘up’’ of the STFs translates into significant variation in the
stress drop estimates (also shown). The 941228 epicenter is quite close to the trench, and it has a very
small value for stress drop of the initial rupture. The small event at the down-dip edge of the seismogenic

zone has a high value for dynamic stress drop.
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Figure 8
Initial part of STFs for Mexico subduction events (upper), and a schematic epicenter map that shows the
relative positions of four events that occur close together along the Oaxaca segment (lower). The
variations in the STFs translate into significant variations in the stress drop estimates. The event closest
to the trench (970719) has a very small value for stress drop, while the event at the down-dip edge of
the seismogenic zone (950914) has a high value for stress drop. The other events have intermediate stress

drop values.

four years, and the first conclusion is that the scatter in dynamic stress drop is
almost a factor of one thousand. There may be some coherent structure in this
scatter. In particular, a profile of events that span the seismogenic interface in the
Mexico subduction zone show a systematic increase in stress drop from the up-dip
to down-dip edges of the seismogenic zone. At this time, there is no other
subduction zone segment as well sampled as Mexico.

These preliminary results permit some speculation about the stress state of the
seismogenic zone. Figure 9 sketches the scenario that emerges from the study of
TICHELAAR and RUFF (1993) on the absolute level of shear stress and from the
results presented here. Stress drops for some of the smaller underthrust events are
10 MPa (e.g., the 950106 Sanriku event), but values for the larger underthrust
events (M0\1019 Nm) at the down-dip edge of the seismogenic zone do not exceed
a value of 5 MPa. Thus, I propose that the ‘‘typical’’ dynamic stress drops at the
up-dip and down-dip edges of the seismogenic zone are 0.2 and 5 MPa, respectively.
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If we make the rash assumption that we can combine these dynamic stress drops
with the frictional shear stress result of TICHELAAR and RUFF (1993), then we must
conclude that the stress drop of large subduction earthquakes at the down-dip edge
is just a partial stress drop. Based on the earlier discussion of the absolute shear
stress estimates, I show a shear stress of about 50 MPa in Figure 9 the down-dip
edge of the seismogenic zone; a mid-range value from the TICHELAAR and RUFF

(1993) results. The low dynamic stress drops for events at the up-dip edge would
explain the occasional occurrence of so-called ‘‘slow earthquakes’’ near the trench;
the low value of dynamic stress drop causes a slow increase in the first event of the
source time function. It is curious that the increase in dynamic stress drop from the

Figure 9
Speculations on the stress state within the seismogenic zone of a ‘‘typical’’ subduction zone that
generates large underthrusting earthquakes. The linearly increasing friction shear stress is based on the
modeling of TICHELAAR and RUFF (1993), and reaches a peak value of 50 MPa at the down-dip edge.
Based on the results of this paper—which are broadly compatible with some previous results—earth-
quake stress drops also increase with depth along the seismogenic zone. The analysis of the large
underthrusting events in the past four years suggests that dynamic stress drops are about 0.2 MPa at the
up-dip edge and 5 MPa at the down-dip edge of the seismogenic zone. If this speculative scenario is
correct, then the earthquake rupture process of large earthquakes only lowers the shear stress by about

10% of its absolute value.
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up-dip to the down-dip portions of the seismogenic zone mimics the gradient in
friction shear stress. One implication of the stress state shown in Figure 9 is that
most of the earthquake energy release goes into friction.

Do all subduction zones show the same systematic variation in earthquake
rupture as seen in Sanriku and Mexico? Is it possible that this pattern might change
within the same subduction zone segment over the seismic cycle? The current STF
catalog cannot answer these questions at this time, but perhaps future studies can
add more examples to this intriguing picture of the stress variations within the
seismogenic zone.
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