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1. Introduction

In this paper, we classify the products of Schur functions that are multiplicity-free; i.e.,
products for which every coefficient in the resulting Schur function expansion is 0 or 1.
We also solve the slightly more general classification problem for Schur functions in any
finite number of variables. The latter is equivalent to a classification of all multiplicity-
free tensor products of irreducible representations of GL(n) or SL(n).

Multiplicity-free representations have many applications, typically based on the fact
that their centralizer algebras are commutative, or that their irreducible decompositions
are canonical; see the survey article by Howe [1]. We find it surprising that such a
natural classification problem seems not to have been considered before.

Two well-known examples of multiplicity-free products are the Pieri rules (which
correspond to a tensor product in which one of the factors is a symmetric or exte-
rior power of the defining representation), and the rule for multiplying Schur functions
of rectangular shape. The fact that the latter is multiplicity-free was first noticed by
Kostant, and has played an important role in several applications. For example, Stan-
ley used the rule to count self-complementary plane partitions [11]. More recently, the
fact that these products are multiplicity-free has been a key property needed for ex-
plicit bijections constructed by Schilling-Warnaar [8], Shimozono [9], and Shimozono-
White [10] related to q-analogues of Littlewood-Richardson coefficients. Further iden-
tities involving classical group characters of rectangular and near-rectangular shape (the
latter also appear in the classification) have been investigated by Okada [6] and Krat-
tenthaler [2].

A related problem that has been considered recently by Roger Howe [private com-
munication] and Magyar-Weyman-Zelevinsky [5] is the classification of products of
flag varieties with finitely many GL(V )-orbits (or more generally, for any reductive
group). Via coordinate rings, these yield multiplicity-free products of GL(V )-represen-
tations. Moreover, a comparison of our classification with that of [5] shows that every
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multiplicity-free product of GL(n)-characters arises either in this fashion, or else as the
conjugate of such a product. For example, the product of two Grassmannians and a full
flag variety has finitely many orbits, and this is equivalent to the fact that the product of
any two rectangular Schur functions is multiplicity-free.

2. Symmetries of Littlewood-Richardson Coefficients

We (mostly) follow the standard notation for tableaux and Schur functions in [4]. In
particular, a partition λ = (λ1, λ2, . . .) denotes a non-increasing sequence of finitely
many positive integers; we write |λ| for the sum and `(λ) for the length. The diagram
of λ is

Dλ := {(i, j) ∈ Z2 : 1 6 j 6 λi, 1 6 i 6 `(λ)},

a set of points in the plane with matrix-style coordinates. It is a convenient abuse of
notation to identify λ with Dλ.

The conjugate of λ, denoted λ′, is the partition whose diagram is the transpose of λ.
Given partitions µ and ν, we write µ∪ν for the partition obtained by sorting the multiset
union of the parts of µ and ν, and µ+ν for the partition (µ1 +ν1, µ2 +ν2, . . .) (pad µ or
ν with trailing 0’s, if necessary). Note that (µ+ν)′ = µ′∪ν′.

If Dµ ⊆Dλ, the difference Dλ−Dµ is called a skew diagram, and abbreviated λ/µ. A
semistandard tableau of shape λ/µ is an array of positive integers T (i, j) : (i, j) ∈ Dλ−
Dµ such that T (i, j) 6 T (i, j + 1) and T (i, j) < T (i + 1, j) for all i, j for which these
expressions are defined. The content of T defined to be η(T ) = (η1(T ), η2(T ), . . .),
where

ηk(T ) := |{(i, j) ∈ Dλ −Dµ : T (i, j) = k}|,

and the (skew) Schur function of shape λ/µ is the generating function

sλ/µ = ∑
T

xη1(T)
1 xη2(T )

2 · · · ,

summed over all semistandard tableaux of shape λ/µ. Since these generating functions
are invariant under translation of the corresponding diagrams, it is convenient to identify
any two skew diagrams that differ only by a translation.

The skew Schur functions are easily shown to be symmetric in the variables xi, and
the ordinary Schur functions sλ (i.e., sλ/µ with µ = ∅) form a Z-basis for the ring of
symmetric functions. (Proofs of this and all other facts mentioned in this section can
be found in Chapter I of [4].) The Littlewood-Richardson coefficients c(λ; µ, ν) are the
structure constants for the multiplication of Schur functions; i.e.,

sµsν = ∑
λ

c(λ; µ, ν)sλ,

and the same coefficients also appear in the decomposition of skew Schur functions:

sλ/µ = ∑
ν

c(λ; µ, ν)sν,

interpreting sλ/µ as 0 when Dµ * Dλ. This coincidence can also be expressed as

〈sµsν, sλ〉 = c(λ; µ, ν) = 〈sν, sλ/µ〉,
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where 〈· , ·〉 denotes the inner product relative to which the ordinary Schur functions are
orthonormal.

There are a number of symmetries involving Littlewood-Richardson coefficients.
The most obvious one arises from the commutativity of multiplication: c(λ; µ, ν) =
c(λ; ν, µ). Less obvious is conjugation symmetry:

c(λ; µ, ν) = c(λ′; µ′, ν′),

which is equivalent to the existence of an automorphism of the ring of symmetric func-
tions in which sλ 7→ sλ′ .

Given a skew diagram λ/µ, let (λ/µ)◦ denote the skew diagram obtained by a
180◦ rotation of λ/µ, an operation that is well-defined up to translation. There is an
easy content-reversing bijection between the semistandard tableaux of shapes λ/µ and
(λ/µ)◦. Since the Schur functions are symmetric, this implies

sλ/µ = s(λ/µ)◦ ,

and this yields a further symmetry of Littlewood-Richardson coefficients.
If the skew diagram λ/µ can be partitioned into two subsets θ(1) and θ(2) with dis-

joint rows and columns then both subsets must themselves be skew diagrams, and the
set of semistandard tableaux of shape λ/µ is effectively the Cartesian product of the
semistandard tableaux of shapes θ(1) and θ(2). It follows that

sλ/µ = sθ(1) sθ(2) , (2.1)

and this implies a cubic relation involving Littlewood-Richardson coefficients. If θ(1)

and θ(2) happen to be translations of partition (i.e., non-skew) diagrams, the relation is
linear.

Finally, let us mention the explicit description of c(λ; µ, ν) known as the Littlewood-
Richardson rule. Totally order Z2 so that (i, j) precedes (i′, j′) if and only if i < i′, or
i = i′ and j > j′. A tableau T yields a word w(T ) when the entries T (i, j) are read in
this order. This word is said to be a lattice permutation if for all n, k > 1, the number
of occurrences of k among the first n terms is a non-increasing function of k. In these
terms, c(λ; µ, ν) can be described as the number of semistandard tableaux T of shape
λ/µ and content ν such that w(T ) is a lattice permutation. We call these LR fillings.

3. Products of Schur Functions

A partition µ with at most one part size (i.e., empty, or of the form (cr) for suitable
c, r > 0) is said to be a rectangle. If it has either k rows or columns (i.e., k = r or k = c),
then we say that µ is a k-line rectangle.

A partition µ with exactly two part sizes (i.e., µ = (brcs) for suitable b > c > 0 and
r, s > 0) is said to be a fat hook. If it is possible to obtain a rectangle by deleting a single
row or column from the fat hook µ, then we say that µ is a near-rectangle. For example,
(442),(533),(3311) and (4433) are all near-rectangles.

Theorem 3.1. The product sµsν is multiplicity-free if and only if

(i) µ or ν is a one-line rectangle, or
(ii) µ is a two-line rectangle and ν is a fat hook (or vice-versa), or

(iii) µ is a rectangle and ν is a near-rectangle (or vice-versa), or
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(iv) µ and ν are rectangles.

The main fact about Littlewood-Richardson coefficients that we need in order to
prove this result is the following.

Lemma 3.2. For all triples of partitions λ,µ,ν and all integers r > 0, we have

c(λ+1r; µ+1r, ν) > c(λ;µ, ν), (3.1)

c(λ∪ (r); µ∪ (r), ν) > c(λ; µ, ν). (3.2)

Proof. Given one of the c(λ; µ, ν) LR fillings of λ/µ having content ν, one may shift
the first r rows to the right one column without violating the lattice permutation and
semistandard conditions, thereby creating an LR filling of shape (λ+1r)/(µ+1r). This
proves the first inequality; the second is equivalent to the first by conjugation symmetry.

Corollary 3.3. If sµsν is not multiplicity-free, then sµ+1r sν and sµ∪(r)sν are not multipli-
city-free.

Define a partial order on partitions by taking the transitive closure of the relations

λ ≺ λ+1r, λ ≺ λ∪ (r)

for all partitions λ and all integers r > 0. It follows from Corollary 3.3 that the non-
multiplicity-free pairs of partitions form an order filter relative to the product order
induced by ≺ on pairs of partitions. However, it is a surprisingly delicate problem to
determine in general when two pairs of partitions are related under this order. (If only
part-unions are allowed, or dually, only column-additions, the relation is very simple.)

Perhaps even more surprising is the fact that the order filter of non-multiplicity-free
pairs of partitions has only the following three generators, as will become evident in the
proof of Theorem 3.1.

Lemma 3.4. The following are not multiplicity-free: (a) s21s21; (b) s22s321; (c) s333s4422.

Proof. To prove that sµsν is not multiplicity-free, it suffices to exhibit a pair of LR
fillings of content µ and some common shape of the form λ/ν. In the cases at hand, the
following are suitable:

∗ ∗ 1
∗ 1
2

∗ ∗ 1
∗ 2
1

,

∗ ∗ ∗ 1
∗ ∗ 1
∗ 2
2

∗ ∗ ∗ 1
∗ ∗ 2
∗ 1
2

∗ ∗ ∗ ∗ 1 1
∗ ∗ ∗ ∗ 2
∗ ∗ 1 2
∗ ∗ 3
2 3
3

∗ ∗ ∗ ∗ 1 1
∗ ∗ ∗ ∗ 2
∗ ∗ 1 3
∗ ∗ 2
2 3
3

.
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Proof of Theorem 3.1. If neither µ nor ν is a rectangle, then both have at least two part
sizes and µ,ν < (21), whence Lemma 3.4(a) and Corollary 3.3 imply that sµsν cannot
be multiplicity-free. Thus we may assume that µ (say) is a rectangle.

If µ has more than one row and column and ν has at least three part sizes, then
µ < (22) and ν < (321), whence Lemma 3.4(b) and Corollary 3.3 imply that sµsν cannot
be multiplicity-free. Thus if µ is not a one-line rectangle, then ν must be a fat hook or a
rectangle.

Assuming that ν = (brcs) is a fat hook, the lengths of the horizontal and vertical
segments that comprise the boundary of Dν are b−c, c, r, s. Any fat hook whose corre-
sponding dimensions are greater than these is � ν. In particular, the only fat hooks not
greater than (4422) are near-rectangles. It follows that if µ has more than two rows and
columns, and ν is a fat hook but not a near-rectangle, then µ < (333) and ν < (4422),
whence Lemma 3.4(c) and Corollary 3.3 imply that sµsν cannot be multiplicity-free.

The above reasoning eliminates all products except for those explicitly listed in
(i)–(iv) of the statement of Theorem 3.1. To finish the proof, we need to establish
that each of these products are indeed multiplicity-free. Interestingly, it turns out that
Corollary 3.3 (via its contrapositive) is crucial for this part of the argument as well: if
sµsν is multiplicity-free, then the same is true for any product corresponding to a pair of
partitions below µ and ν relative to ≺. The advantage is that it is possible to find higher
multiplicity-free products with simpler combinatorial structure.

(i) It is well-known that sµsν is multiplicity-free whenever µ is a one-line rectangle.
For example, if µ = (r), then the corresponding Littlewood-Richardson coefficients all
involve tableaux filled with r identical entries, so there is obviously at most one LR
filling of a given shape. Conjugation symmetry yields the analogous result for the
case when µ = (1r). (There are also much simpler proofs, independent of the LR rule,
starting from the bi-alternant or tableau definitions of Schur functions.)

(iv) If µ and ν are both rectangles, we may replace ν with a new rectangle < ν with
more than |µ| rows and columns. In that case, every skew shape λ/ν of size |µ| is a
disconnected union of two partition diagrams θ(1) and θ(2). In particular, (2.1) implies

c(λ; µ, ν) = 〈sλ/ν, sµ〉 = 〈sθ(1)sθ(2) , sµ〉 = 〈sθ(1) , sµ/θ(2)〉.

However since µ is a rectangle, µ/θ(2) is rotationally equivalent to the diagram of some
partition φ; i.e., sµ/θ(2) = sφ, whence c(λ; µ, ν) = 1 or 0, the former occurring if and

only if φ = θ(1); i.e., (µ/θ(2))
◦
= θ(1).

(ii) If µ = (n,n) is a two-rowed rectangle and ν = (brcs) is a fat hook, we may
replace ν with a new fat hook < ν whose dimensions (i.e., b− c, c, r, s) are all greater
than 2n. In that case, every skew shape λ/ν of size 2n is a disconnected union of three
partition diagrams θ(i) (1 6 i 6 3). By a calculation similar to the previous case, it
follows that

c(λ; µ, ν) = 〈sθ(1)sθ(2) , sµ/θ(3)〉 = 〈sθ(1) sθ(2) , sφ〉 = c(φ; θ(1), θ(2)),

where φ denotes the partition for which (µ/θ(3))
◦
= φ. However µ has two rows, so φ

and each θ(i) must each have at most two rows (otherwise c(λ; µ, ν) = 0). Thus any LR
filling of shape φ/θ(2) and content θ(1) is a skew tableaux with a fixed number of 1’s
and 2’s and at most two rows. However, there is at most one such filling: the first row
must consist entirely of 1’s, and the second row must have the 1’s and 2’s in increasing
order. Hence c(φ; θ(1), θ(2)) 6 1 and sµsν is multiplicity-free.
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(iii) If µ is a rectangle and ν = (brcs) is a near-rectangle, then at least one of the four
dimensions b−c, c, r, s is equal to 1. Thus we may replace ν with a new near-rectangle
< ν for which three of these dimensions are all greater than |µ| (the fourth must remain
fixed at 1). In that case, every skew shape λ/ν of size |µ| is a disconnected union of
three partition diagrams θ(i) (1 6 i 6 3), one of which is a one-line rectangle. Since
c(λ; µ, ν) = 〈sθ(1)sθ(2)sθ(3) , sµ〉 is symmetric in the θ(i)’s we may assume that θ(1) is a
one-line rectangle. By the reasoning of the previous case, it follows that

c(λ; µ, ν) = c(φ; θ(1), θ(2)), (µ/θ(3))
◦
= φ.

However since θ(1) is a row or column, this multiplicity is at most 1 by (i).

Remark 3.5. (a) Corollary 3.3 and the fact that s3
1 = s3 +2s21 + s111 is not multiplicity-

free together imply that no product of three nontrivial Schur functions is multiplicity-
free.

(b) If the proof of Theorem 3.1 is examined carefully, it can be seen as constructive.
More precisely, given a pair (µ, ν) such that sµsν is not multiplicity-free, it provides an
algorithm for constructing a partition λ such that c(λ; µ, ν) > 2.

4. Products of GL(n) or SL(n) Characters

Let Λn denote the ring of symmetric polynomials in the variables x1, . . . ,xn. By special-
izing the ordinary Schur functions sλ to these variables (i.e., set xm = 0 for m > n), one
obtains a Z-basis for Λn by taking only those λ with `(λ) 6 n, whereas sλ specializes
to 0 if `(λ) > n. It follows that the Littlewood-Richardson coefficients, restricted to
partitions of length at most n, are structure constants for Λn; i.e.,

sµ(x1, . . . ,xn)sν(x1, . . . ,xn) = ∑
`(λ)6n

c(λ; µ, ν)sλ(x1, . . . ,xn).

In particular, if sµsν is multiplicity-free, then the same is true in Λn, but not conversely,
since it might be the case that there are partitions λ of length > n such that c(λ; µ, ν) > 1,
but none of length 6 n.

In this section, we classify the products of Schur functions that are multiplicity-free
in Λn. In view of the well-known relationship between Schur functions and irreducible
representations of SL(n, C) (or polynomial representations of GL(n, C); e.g., see Ap-
pendix A of Chapter I in [4]), this amounts to a classification of the multiplicity-free
tensor products of irreducible representations of SL(n, C).

One immediate simplification can be deduced from the fact that

sλ+1n(x1, . . . ,xn) = (x1 · · ·xn)sλ(x1, . . . ,xn) (`(λ) 6 n),

which is easy to see from any definition of the Schur functions. This reduces the classi-
fication of multiplicity-free products in Λn to the cases sµsν with `(µ), `(ν) < n. At the
level of representations, this corresponds to the fact that the partitions λ with `(λ) 6 n
index the irreducible polynomial GL(n, C)-modules Vλ, but Vλ ∼= Vλ+1n as SL(n, C)-
modules.

It will also be useful to exploit a symmetry of Littlewood-Richardson coefficients
that is valid only in the n-variate context. This additional symmetry derives from the
identity

sλ(x
−1
1 , . . . ,x−1

n ) = (x1 · · ·xn)
−λ1sλ∗(x1, . . . ,xn),
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where (assuming `(λ) 6 n)

λ∗ := (λ1 −λn, λ1 −λn−1, . . . ,λ1 −λ1).

Again, this is easy to see from any definition of the Schur function, but is perhaps
best understood in terms of the corresponding modules: the dual of Vλ is isomorphic
to Vλ∗ (as an SL(n, C)-module). From either point of view, it follows that the same
multiplicities occur in sµsν and sµ∗sν∗ . In particular, sµsν is multiplicity-free in Λn if
and only if the same is true of sµ∗sν∗ .

Note that for the set of partitions λ with `(λ) < n, the operation λ 7→ λ∗ is an invo-
lution, and that it preserves the number of columns of λ (i.e., λ1). Furthermore, if λ is a
rectangle or fat hook, then the same is true of λ∗.

Theorem 4.1. If `(µ), `(ν) < n, then sµsν is multiplicity-free in Λn if and only if

(i) µ or ν or µ∗ or ν∗ is a one-line rectangle, or
(ii) µ or µ∗ is a two-line rectangle and ν is a fat hook (or vice-versa), or

(iii) µ is a rectangle and ν or ν∗ is a near-rectangle (or vice-versa), or
(iv) µ and ν are rectangles.

Lemma 4.2. If n > 3 and µ = (21n−2), then s2
µ is not multiplicity-free in Λn.

Proof. As in Lemma 3.4, it suffices to exhibit a pair of LR fillings of content µ and some
common shape of the form λ/µ with at most n rows. For simplicity, we illustrate this
only for the case n = 5:

∗ ∗ 1
∗ 2
∗ 3
∗ 4
1

∗ ∗ 1
∗ 1
∗ 2
∗ 3
4

.

Proof of Theorem 4.1. Duality and Theorem 3.1 show that each of the products listed is
multiplicity-free in Λn, so it suffices merely to show that there are no others.

First we argue that if µ and ν are not rectangles, then there is a partition λ such that
c(λ; µ, ν) > 2 and `(λ) 6 n. By repeated application of (3.1) one sees that it suffices
to prove this assertion when µ and ν both have exactly two columns. Of course to be
non-rectangular, the columns must also have unequal lengths.

Now proceed by induction on n. If both `(µ), `(ν) < n−1, then replace n by n−1
and continue the induction; otherwise, `(µ) = n− 1 or `(ν) = n− 1. If (say) the latter
occurs, but `(µ) < n− 1, then ν must have at least two repeated parts.1 Letting ν−
denote the partition obtained from ν by deleting one of the repeated parts, say k (k = 1
or 2), it follows by induction and (3.2) that there is a partition λ with `(λ) 6 n−1 and

c(λ∪ (k); µ, ν) > c(λ; µ, ν−) > 2. (4.1)

Thus we may assume `(µ) = `(ν) = n−1. Replacing (µ, ν) with (µ∗, ν∗) if necessary,
we may also assume `(µ∗) = `(ν∗) = n− 1; this amounts to having 2 occur without
multiplicity in both µ and ν, whence µ = ν = (21n−2) and n > 3. However in that case,
Lemma 4.2 proves the existence of a suitable λ, so the induction is complete.

1 As a non-rectangle, µ has at least two rows, so n > 4. On the other hand, if ν were a non-rectangle with two
columns and no repeated parts, then n−1 = `(ν) = 2.
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Henceforth, we may assume that µ is a rectangle; say µ = (al); note that µ∗ is the
rectangle (an−l). We may further assume that a, l, n− l > 2; otherwise, (i) applies.

We claim that if ν (and therefore also ν∗) has three or more distinct column lengths,
then sµsν cannot be multiplicity-free in Λn. As in the previous argument, repeated
application of (3.1) shows that it suffices to prove this assertion when a = 2 and ν
consists of exactly three columns, all having different lengths. If ν has any pair of rows
of the same length, possibly including rows of length 0 (i.e., `(ν) < n−1), then n > 5
and therefore l > 3 or n− l > 3. Replacing (µ, ν) → (µ∗, ν∗) if necessary, we may
assume n− l > 3; i.e., `(µ) < n−2. Proceeding by induction with respect to n, let ν−

denote the partition obtained by deleting some repeated part k from ν (possibly k = 0).
Since the dual of µ relative to Λn−1 has more than one row (recall that `(µ) < n− 2),
the induction hypothesis and (3.2) imply the existence of a partition λ of length at most
n−1 as in (4.1). Since `(λ∪ (k)) 6 n, this shows that sµsν cannot be multiplicity-free
in Λn. The remaining possibility is that ν has three distinct column lengths, and no
repeated row lengths (including 0). In that case, ν = (321), n = 4, µ = (22), and the
calculation used to prove Lemma 3.4(b) shows that sµsν is not multiplicity-free in Λ4.

Henceforth, we may assume that ν = (brcs) is a fat hook and a, l, n− l > 3; oth-
erwise (ii) or (iv) applies. We claim that if each of b− c, c, r, s, and n− r − s are at
least 2, then sµsν cannot be multiplicity-free in Λn. As in the previous cases, repeated
application of (3.1) shows that it suffices to prove this assertion when a = 3, b = 4,
and c = 2. Regarding 0 as a part of ν having multiplicity n− r − s, note that if any
part of ν is repeated more than twice, then n > 7 and l > 4 or n− l > 4. Replacing
(µ, ν) → (µ∗, ν∗) if necessary, we may assume n− l > 4; i.e., `(µ) < n− 3. The latter
condition guarantees that µ satisfies the induction hypothesis when we pass from Λn to
Λn−1. Letting ν− denote the partition obtained by deleting some part k repeated more
than twice from ν (k = 4,2 or 0), we obtain by induction and (3.2) the existence of a
partition λ of length at most n−1 satisfying (4.1), whence sµsν cannot be multiplicity-
free in Λn. The remaining possibility is that each part of ν occurs exactly twice; i.e.,
ν = (4422), n = 6, and µ = (333). In that case, the calculation in Lemma 3.4(c) shows
that sµsν is not multiplicity-free in Λ6.

The above argument eliminates all fat hooks ν except for those for which b−c, c, r, s
or n− r− s = 1. In the first four of these cases, ν is a near-rectangle; in the fifth case,
ν∗ is a near-rectangle. Either way, (iii) applies.

5. Final Remarks

It would be interesting to generalize Theorem 4.1 to cover products of Weyl characters,
or equivalently, tensor products of irreducible characters of semisimple complex Lie
groups. There is an obvious analogue of (3.1) in this setting; namely,

c(λ+ω; µ+ω, ν) > c(λ; µ, ν), (5.1)

where λ, ω, µ, ν range over dominant integral weights, and c(· ; · , ·) denotes tensor
product multiplicity. (Without loss of generality, one may take ω to be a fundamental
weight.) This inequality follows easily from Littelmann’s path model [3]. Alternatively,
A. Zelevinsky has pointed out to us that the inequality is also an immediate consequence
of the PRV Theorem (see Theorem 2.1 of [7]), which says

c(λ; µ, ν) = dim
({

u ∈Vν(λ−µ) : eµ(hi)+1
i (u) = 0, i = 1, 2, . . .

})

,
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where Vν is an irreducible representation of highest weight ν, Vν(γ) is its γ-weight space,
and e1, e2, . . . ,h1, h2, . . . denote standard generators for a corresponding Borel subalge-
bra of the Lie algebra in question.

On the other hand, we know of no analogue for (3.2), even in the other classical
cases. Having both (3.1) and (3.2) available greatly reduced the number of cases that we
needed to check in type A. In any case, for a fixed Lie group G of rank n, (5.1) implies
that the set of non-multiplicity-free products forms an order filter in a product of 2n
chains, and a simple combinatorial argument shows that it must be finitely generated.
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