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Abstract. Accurate query cost estimation is crucial to query optimization in a multi-
database system. Several estimation techniques for a static environment have been sug-
gested in the literature. To develop a cost model for a dynamic environment, we recently
introduced a multistate query-sampling method. It has been shown that this technique is
promising in estimating the cost of a query run in any given contention state for a dynamic
environment. In this paper, we study a new problem on how to estimate the cost of a
large query that may experience multiple contention states. Following the discussion of
limitations for two simple approaches, i.e., single state analysis and average cost analysis,
we propose two novel techniques to tackle this challenge. The first one, called fractional
analysis, is suitable for a gradually and smoothly changing environment, while the second
one, called the probabilistic approach, is developed for a rapidly and randomly changing
environment. The former estimates a query cost by analyzing its fractions, and the latter
estimates a query cost based on Markov chain theory. The related issues including cost
formula development, error analysis, and comparison among different approaches are
discussed. Experiments demonstrate that the proposed techniques are quite promising in
solving the new problem.
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1. Introduction

To meet users’ increasing needs to access data from multiple pre-existing data-
bases managed by heterogeneous database management systems (DBMS), multi-
database systems (MDBS) have been studied by many database researchers in
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recent years (Litwin et al,, 1990; Sheth and Larson, 1990; Lu et al.,, 1992; Lee
and Chen, 1997). An MDBS is a global system built on top of multiple local
(component) DBMSs and provides users with a uniform interface to access local
databases. A key feature of an MDBS is local autonomy that each local database
system retains to serve existing local applications. The global system can only
interact with local DBMSs at their external user interfaces.

A global query issued on an MDBS is decomposed into a set of local queries
executed at local database systems during query processing. The results from local
queries are integrated into the final query result returned to its user. However, the
way to decompose a global query is not unique. Different decomposition strategies
may yield significantly different performance in the distributed environment.
Choosing a good decomposition and integration strategy for a given global query
is the task of global query optimization. To perform global query optimization,
cost information for local queries to be performed on local database systems is
required. However, such information is unavailable to the global query optimizer
since the internal implementation details of a local DBMS is unknown to the
MDBS. Estimating the costs of local queries at the global level in an MDBS is a
major challenge for global query optimization in the system.

To tackle this challenge, a number of techniques have been proposed in
the literature. Du et al. (1992) proposed a calibration method that makes use
of the observed costs of some special queries run against a special synthetic
calibrating database to deduce necessary local cost parameters. Gardarin et al.
(1996) extended Du et al’s method so as to calibrate cost models for object-
oriented local database systems in an MDBS. Zhu and Larson (1998, 1996, 1994)
proposed a query-sampling method that develops regression cost models for local
query classes based on observed costs of sample queries run against actual user
databases. Zhu and Larson (1997) also introduced a fuzzy method based on fuzzy
set theory to derive fuzzy cost models in an MDBS. Naacke et al. (1998) suggested
an approach to combining a generic cost model with specific cost information
exported by wrappers for local database systems. Adali et al. (1996) suggested
maintaining a cost vector database to record cost information for every query
issued to a local database system. Roth et al. (1999) introduced a framework for
costing in the Garlic federated system.

All the above techniques considered only a static environment, i.., assuming
that the environment does not change significantly over time. However, such an
assumption may not be true in reality since many factors such as the number
of concurrent processes in a multidatabase system environment may change
significantly. The cost of a query can be dramatically different at different times
in a dynamic system environment. For example, in one of our experiments, the
cost of a sample query! performed on Oracle 8 in a dynamical environment varied
from 2.58 s to 127.05 s (49 times!) when we had 1-30 concurrent user processes
in the environment. Hence query cost estimates obtained for a static environment
cannot be used in a dynamic environment.

In fact, the environmental factors in a local database system in an MDBS can
be classified into three types based on their changing frequencies: (1) frequently
changing factors, such as CPU load, number of I/Os per second, and size of
memory space being used; (2) occasionally changing factors, such as local DBMS

I The query was SELECT al, a5, a7 FROM R WHERE a3 > 300 and a8 < 2000 on table R(al,a2, ...,a9)
with 50,000 tuples of random data.
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configuration parameters, local database physical schemas, and local database
conceptual schemas; and (3) steady factors, such as local DBMS type, local
database location, and local CPU speed.

Clearly, the steady factors usually do not cause a problem for a query cost
model. For the occasionally changing factors, a simple and effective approach
to capture them in a cost model is to rebuild the cost model periodically or
whenever a significant change for the factors occurs by, for example, invoking
the query-sampling method (Zhu and Larson, 1998). Since such factors do not
change very often, rebuilding cost models from time to time to capture them is
acceptable. However, this approach cannot be used for the frequently changing
factors because rebuilding cost models frequently would significantly increase the
system load and maintenance overhead for cost models.

To capture the frequently changing factors in a cost model, we recently
proposed a qualitative approach (Zhu et al., 2000). This approach extends our
previous query sampling method (Zhu and Larson, 1998) and develops regression
cost models using qualitative variables to indicate system contention states. Each
contention state reflects a combined effect of dynamic factors on the system.
Although such a cost model can be used to estimate the costs of queries for any
contention state in the dynamic environment, each query is assumed to be run
in a single contention state. The qualitative approach cannot directly solve the
problem of estimating the cost of a large query run in multiple contention states.

To estimate the costs of large queries experiencing multiple contention states
in a dynamic multidatabase environment, we develop two new techniques in this
paper. The first technique, called fractional analysis approach, is to estimate query
costs in a dynamic environment in which the system contention states change
gradually and smoothly. The idea is to analyze and integrate the fractions of a
query cost for multiple experienced contention states. The second technique, called
the probabilistic approach, is to estimate query costs in a dynamic environment
in which the system contention states change rapidly and randomly. The idea is
to make use of the theory of Markov chains to derive a cost formula to estimate
the query costs in such an environment. These two techniques together with our
qualitative approach provide a suite of techniques to estimate the costs of queries
for different cases in a dynamic multidatabase environment.

The rest of this paper is organized as follows. Section 2 outlines our qualita-
tive approach to developing cost models with qualitative variables for dynamic
multidatabase environments. Section 3 presents the fractional analysis approach
to estimating query costs. Section 4 discusses the probabilistic approach to esti-
mating query costs. Section 5 shows some experimental results. The last section
summarizes the conclusions.

2. Dynamic Cost Models with Qualitative Variables

To incorporate the dynamic factors in a multidatabase system into a cost model,
we proposed an effective qualitative approach (Zhu et al., 2000). In this approach,
we consider the combined effect of all the factors on a query cost together rather
than individually. Although the dynamic factors change differently in terms of
changing frequency and level, they all contribute to the contention level of the
underlying system environment, which represents their net effect. Notice that the
cost of a query increases as the contention level. The system contention level can
be divided into a number of discrete states (categories) such as ‘High Contention’
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(Sy), ‘Medium Contention’(S,), ‘Low Contention’ (S,), and ‘No Contention’ (Sy).
A qualitative variable is used to indicate the contention states. This qualitative
variable, therefore, reflects the combined effect of the dynamic environmental
factors. A cost model including such a qualitative variable can capture the
dynamic factors to a certain degree.

Since, for a given query, its cost increases with the system contention level,
we can use the cost of a probing query to gauge the contention level and
classify the contention states for the dynamic system environment. To obtain
an appropriate classification of system contention states, we first partition the
range of a probing query cost in the given dynamic environment into subranges
(intervals) with an equal size. Each subrange represents a contention state. If
some neighbor contention states are found to have a similar effect on the derived
cost model, they are merged into one state. Such a uniform partition with merging
adjustment procedure for a classification of contention states has been proven to
be very effective in practice (Zhu et al., 2000).

A qualitative variable X with M possible system contention states Sy, Sy, ..., Sy,
can be represented by a set of M — 1 indicator (binary) variables Z, Z», ..., Z,_1.
Thatis, X = S§; (1 <i< M —1) is represented by Z; = 1 and Z; = 0 (for any
j#i);and X =S, is represented by Z; = 0 (for any 1 <k < M — 1). Including
qualitative variable X in a cost model is equivalent to including indicator variables
Z1,2Z>,....Z,_1 in the cost model.

To develop a cost model including the indicator variables, we extend our
previous query sampling method (Zhu and Larson, 1998). In other words, we use
observed costs of sample queries to build a regression cost model with indicator
variables as follows:

Y = (B + X15'B{Z) + Z(B°+Z” 'BiZ) X (1)

intercepts slopes

where Y is the query cost, X;’s are explanatory variables, Z;’s are indicator

variables, and B’s are the regression coefficients. The intercepts and slopes of
equation (1) change from one contention state to another, indicated by the values
of Z;’s. Since the above qualitative approach is obtained by introducing multiple
contention states into our previous query sampling method, it is also called the
multistate query sampling method. For more details of this method, please refer
to Zhu et al. (2000).

3. Fractional Analysis Approach

One assumption made by the qualitative approach discussed in the last section
is that the contention state does not change during the execution of a query
although different executions of queries can be run in different contention states.
This assumption is usually valid for small (cost) queries. For large (cost) queries,
they may experience multiple contention states during their executions. How
to estimate the cost of a query when it experiences multiple states during its
execution is the issue to be discussed in this and the following sections.
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3.1. Single-State Analysis

There are two simple approaches to estimating the cost of a query experiencing
multiple states. One is called single-state analysis. The idea is to ignore the
changes in contention states during the execution of a query and use the dynamic
cost model with a qualitative variable discussed in Section 2 together with one
prevailing contention state to estimate the query cost. The prevailing contention
state can be (1) the initial state in which the query is to start; (2) the median state
among all states; or (3) a random state from all states. Unlike the initial state,
the median and random states may not actually be experienced by the query
at all. Hence the initial state may be superior in most cases for the single-state
analysis approach. The advantage of this approach is that one step application
of the dynamic cost model is sufficient to give a cost estimate. However, the
resulting estimate may be inaccurate since not all experienced contention states
are considered.

3.2. Average Cost Analysis

Another simple approach is called the average cost analysis. The idea is to use
the average of costs for all the states in the environment as an estimate for the
cost C(Q) of query Q; that is, using

) =Y c.s)/M )

i=1

to estimate C(Q), where C(Q, S;) denotes the cost for Q in state S; and Sy, S», ...,
S,, are all possible states in the given environment. However, C(Q, S;) typically
cannot be known exactly. Its estimate C,(Q, S;) has to be used in (2) in place of
C(Q, S)), resulting in an estimated average cost C,(Q). Thus C,.(Q) is actually used
to estimate C(Q) in the average cost analysis.

Although the average cost estimate is usually better than the single-state cost
estimates, it may still be quite rough due to the fact that some contention states
may never be experienced, while other contention states may be experienced with
various durations for the given query. One might suggest considering only those
contention states that the given query experiences in the average cost analysis.
However, the difficulty is that which contention states are to be experienced by a
query are unknown in advance.

3.3. Fractional Analysis

In the following discussion, we are going to introduce a better cost estimation via
a finer analysis, called fractional analysis. The key idea is to analyze a query cost
by fractionalizing it according to the contention states to be experienced.

We notice that the system load in a particular application environment often
demonstrates a certain pattern. Figure 1 shows the load for a system environment
observed in a real-world company on different days. Clearly, the loads follow
a similar pattern during every observed day in the company. The loads are
minimum off working hours. The loads start to grow in the morning when the
working hours begin and decline when the working hours are close to the end
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Fig. 2. A typical load curve.

of the day. A curve depicting such a pattern in which the system load changes
over time in an application environment is called a load curve.” Such a load curve
can be obtained via calibrating the application environment under consideration.
One assumption made in the following discussion is that the load curve for the
given application environment is known in advance.

As suggested in Section 2, the load (contention) level is divided into a number
of discrete contention states (see Fig. 2), where the load level is measured by a
probing query cost. Let A = { 51, S,..,Sy } be the set of all possible contention
states; { SU, i = 1,2,.. } be the sequence of contention states occurring along
the load curve in the given application environment, where S® € A; =1 and ¢?
be the starting and ending times for state S (i = 1,2,...).

Consider query Q starting its execution at time ¢, ({*" < 5 < %)) in state
S®_ Let C(Q) be the cost of query Q, which may experience multiple states. Let
C(Q,8%) (i = k,k + 1,...) be the cost of query Q if the query is executed entirely

2 Without loss of generality, we assume that the load curve is periodic. The period can be a day, a
week, a month, a year, or any other reasonable duration.
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in state SO, Let T® = min{ C(Q,S®), (t* —¢) } and TW = (¢V — =) for
i=k+1

If C(Q,8W) < (1M — 1), query Q is to experience only one contention state
S®. Hence C(Q,S%) is the cost for query Q, ie., C(Q) = C(Q,S®).

If C(Q,8®) > (1 — tg), query Q is to experience more than one contention
state. Then T® / C(Q, 5% (clearly, < 1 in this case) is the fraction of work done
for Q in state S®. The remaining fraction [1 — T®/C(Q, S®)] of work for Q is to
be done in the subsequent contention states. If [1 — T“‘ /C(Q, 8% = C(Q, Sk+D)
< (t‘k“) ), all remaining work of Q can be done in state S**1. Thus the cost
of Q is: C(Q) TO + 1 —TH/C(Q,5M)] = C(Q,S**D).

If [1—T®/C(0Q, S )] * C(Q, 8% 1) > (¢t%+1) — ) query Q is to experience
more than two contention states. Then T**+D/C(Q,S**V) is the fraction of
work done for Q in state S®*1, and T®/C(Q,S™) + T*k+D/C(Q,S**D) is the
fraction of work done so far (in both states S® and S**1). The remaining
fraction [1 — T®/C(Q,S®) — T*k+1) /C(Q, S**+D)] of work for Q is to be done in
the subsequent contention states. If [1 — T® /C(Q,S%®)) — T*+D/C(Q, S*+D)] =
C(Q,8%*2) < (t*k+? — (1) " 3]l remaining work of Q can be done in state

§*+2) Hence the cost of Q is: C(Q) = T® 4+ T*k+D) 4 11 — TR /C(Q,5®) —
T /C(0, SN * C(0, S+,
In general,
=Y T+ 1= TV/C(Q,5")] = C(Q,5") (3)
i=k i=k

where m is the minimum integer such that m >k and [1 — Y ", T?W/C(Q,S")] *
C(Q,8™+Dy < T+ Since, as mentioned before, C(Q,SY) (k < j < m+ 1)
cannot be known exactly, its estimate C.(Q,S")) has to be used in the above
procedure and formula (3), resulting in a cost estimate C.(Q) for query Q.

Note that m cannot be determined in advance. It has to be determined during
the fractional analysis. The following algorithm describes the fractional analysis
procedure.

Algorithm 3.1. Fractional Analysis (FA)
Input: The load curve including the contentlon states changing sequence { SV, i =
1,2,.. } and the starting time t*" and ending time t? for each state S
(i = 1,2, ...); the starting time t; of query Q; the cost (estimation) model C.(Q,S)
for estimating the cost of query Q in any contention state S.
Output: Cost estimate C,(Q) for query Q from the fractional analysis.
Method:

1. begin

2. Find the initial state S® for Q such that (&= < < ®);

3 Let F:=0;C:=0; T =tV —tS;m:=k—1;
4 while (1—F)*C,(Q,8"D) > T do
5. C.=C+T,;

6. F :=F + T/C,(Q,S");

7 m:=m++1;

8 T = t(m+1) t(m);

9. end;

10. C :=C+ (1 =F)*C,(Q,Sm);
11. return C;

12. end.
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3.4. Properties and Error Analysis

The estimation error of C.(Q) from the fractional analysis is mainly caused by the
errors of parameter estimates C,(Q,SY))s (k < j < m+ 1) used in the analysis.?
By the total differential of C(Q) from (3):*

m+1 0 C(Q)
-7 C(Q.5)

m

=Y {[C(Q.8™ D)« TM/C(0,57)} d €(Q.57)

i=k

Q) = C(0.8")

+[1 — Z T(i)/C(Q, S(i))] d C(0, S(;n+1))
i=k
we have the (absolute) estimation error of C.(Q) as follows:

m

§(C(0) = Y _{C(Q.5" 1) = T}/C(0, 5V} e(C(0.S")

i=k

+1 =Y TO/C(0.8)] «(C(Q, 5" ) )

i=k

where £(C(Q)) = C(Q) — C.(Q) and &(C(Q,SV)) = C(Q,SV) — Ce(Q,8V)) (k < j <
m+1).

From (4), we can see that the estimation error &(C(Q)) of cost estimate C,(Q)
for query Q from the fractional analysis is proportional to the estimation error
e(C(Q,8Y)) of cost estimate C,(Q,SY) for Q in each state SU) and the fraction
of work done in each contention state (ie., TW/C(Q,S") for SV (k < i < m)
and [1 =", TW/C(Q,S")] for S"*V). In other words, the more accurate cost
estimates C,(Q,S"Y)’s we use in the fractional analysis and the more fraction of
work for query Q is done in those states S®’s with better estimates C.(Q,S®)’s
(t € {k,k +1,..,m+ 1}), the better cost estimate for Q we can get from the
fractional analysis.

Comparing fractional analysis with single-state analysis, we notice that, when
query Q is expected to complete its execution entirely in its initial contention state
(ie., Co(Q,8®) < (1™ —13)), the cost estimates for Q from the fractional analysis
and the initial smgle-state analysis are identical. If such an initial contention
state also happens to be the median (or randomly selected) contention state, the
query cost estimates from the fractional analysis and the median (or random)
single-state analysis are identical. However, in general, the execution of a large
query may experience more than one contention state. Single-state analysis does
not adopt a correct cost model in such a case. Thus a model error is added
into its estimation error. On the other hand, fractional analysis typically utilizes
the correct cost model by considering multiple contention states that the query
experiences. Hence it usually gives a better cost estimate than a single-state
analysis.

3 Assume that the load curve including its associated contention states changing sequence is correct.
Otherwise some error may also be caused by an incorrect load curve.
4 Assume that T®) < C(Q,S®). Otherwise it is trivial to get d C(Q) = d C(Q,S®).
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Comparing fractional analysis with average cost analysis, we notice that
average cost analysis does not adopt the correct cost model in most cases,
although it may be better than single-state analysis. To demonstrate this claim, let
us consider the sequence of contention states S, S&+1) _§tm §tm+1) experienced
by query Q. Let I, be the set of all indexes u’s such that S™ is in the sequence
and SW =S, € Aforne {1,2,.,M}. Let T, =3, T" (ie. the accumulated
duration for Q in state S,). Assume that T, = 0 if I, = 0 (empty set). Then
formula (3) becomes:’

C(Q):T1+T2++Tw, (5)

where

Sty T./C(Q.5,) = 1
Geometrically, domain (6) for valid query costs can be represented by a bounded
(M — 1)-dimensional linear surface® (ie., plane) I',,_; in the M-dimensional space
with T,’s as axes. Figure 3 shows such a I',,_; for M = 3 (i.e., the shadowed plane
region).

For each point (T}, T3, ..., Ty) on I',,_, formula (5) gives a valid query cost.

However, not every valid query cost C(Q) equals the average cost C(Q) from
(2). C(Q) = C(Q) only for the set of points on I',_; satisfying:

0<T,<CQS) (I<n<M),
M T,/C0,8,) =1, )
S T = [0, C(0.8)1/M

Unless M = 1, condition (7) specifies a limited subset of points on I'),_;. Geo-
metrically, this subset can be represented by a bounded (M — 2)-dimensional

5 Note that formula (5) cannot directly be used to estimate C(Q) since T,’s have to be determined
via fractional analysis. It is only used to study the properties of the cost formula.
® When M =2 or 1, I'y,_; is degraded to a line segment or a point, respectively.
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linear surface’ I'),_, in the M-dimensional space. The line segment lying in the
shadowed plane region in Fig. 3 shows such a I'y,_, for M = 3.

Clearly, C(Q) # C(Q) in most cases. In other words, average cost analysis
often adds a model error (ie., C(Q) — C(Q)) into its estimation error. Thus
cost estimate C,(Q) obtained from average cost analysis often suffers both the
model error and the parameter estimation errors (i.e., C(Q,S,) — C.(Q,S,) for
1 < n < M). On the other hand, fractional analysis typically does not introduce a
model error. Therefore, fractional analysis can usually give better cost estimates.
This observation is demonstrated by a comparison of cost estimates obtained
from the two approaches via simulation in Fig. 4. In the simulation, a set of given
C(0Q,S,)’s (1 < n < 5) were considered. T,,’s were randomly generated within the
domain, and C.(Q, S,)’s were randomly generated with relative errors within 30%
with respect to their corresponding C(Q, S,)’s.

Although condition (7) gives a necessary and sufficient condition for C(Q) =
C(Q), it is very general and not intuitive. The following propositions consider the
relationships between C(Q) and C(Q) in two interesting special cases.

Proposition 3.1. Assume that C(Q,S;) # C(Q,Sj) forsome j #ilf T =T, = .. =
T, then C(Q) < C(Q), where C(Q) and C(Q) are from (3) and (2), respectively.

Proof. Let T = T; (1 < j < M). Since Y}, T;/C(Q.5)) = 1, we have T =
1/[2_?11 1/C(Q, S;)]. From (5), we have

M

C(Q) =M/[>_1/C(Q.S))] ®)

j=1

7 When M =2, T'y,_ is degraded to a point.
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On the other hand, we have

M M M M
D 1/C@.8)1* ) C@. 801 =YD C(Q.5)/C(Q.S))

j=1 i=1 j=1 i=1
-1 M
J

S

=M+ [C(Q,5)/C(Q.5)) + C(0.5,)/C(Q, 5] )

—_

j=1 i=j+

Notice that 7 + % 2 for a,b > 0 and the equality is true only if a = b.
Since C(Q,S;) # C(Q S) for some j # i is assumed, ie., C(Q,S;)/C(Q,S;) +
C(0,8;)/C(Q,S;) > 2 for some j # i. Hence, from (9)

M
> 1/€(0.8)) ZC(Q S)>M+ZZ2—M2 (10)
j=1 j=1 i=j+1
From (8), (10) and (2), we have
Q) _ . o M
0 - [;I/CQS g (Q.8))/M> > - =1

Therefore, C(Q) < C(Q). O

One might think that a query cost would equal to the average cost for all
contention states if the query spends the same amount of time in every contention
state. However, Proposition 3.1 states that the average cost is larger than the actual
cost when query Q spends an equal amount of time in every contention state.
The reason for this phenomenon is that Q runs in different contention states with
different working rates. The higher the contention level is, the slower the working
rate. Therefore, with the same amount of time, the query will complete less work
in a contention state for higher contention level. If all contention states spend the
same amount of time on Q, most work of Q will be done in the contention states
for lower contention level. The actual cost of Q will be smaller than the average
cost in such a case.

Proposition 3.2. If T;/C(Q,S) = T»/C(Q,S,) = ... = T,,/C(Q,S,) = 1/M (ie.,
T, = C(Q,S,)/M for 1 <n < M), then C(Q) = C(Q), where C(Q) and C(Q) are
from (3) and (2), respectively.

Proof. Without loss of generality, we assume S"*+!) = S, . From (3), we have
M-l M—1
0-Y T Y men-Y Y mces)
j=1 u€l; u€ly A u#m+1 j=1 uel;

— Y TY/C(0.5.]* C(Q.5,)

u€ly A u#Fm+1

M-1 M-1
=Y T+ Ty —T"V + 1= T;/C(Q.5)) — T/C(Q.5y)
j=1 j=1

T(n1+1)/C(Q; SM)] * C(Qa SM)
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M—-1
= CQ.5)/M +C(Q.8,)/M — TV + [1 — (M — 1)/ M
j=1

—1/M + T"/C(Q,S,)] * C(Q,Sy)

I
M=

C(0.5)/M = C(Q)

1

~.
I

O

Note that T;/C(Q,S;) is the fraction of work done for Q in contention state S;
(during its total stay in the contention state if there are several visits). Proposition
3.2 states that the average cost for all contention states equals the actual cost
when query Q experiences every possible contention state in A at least once and
completes an equal fraction (1/M) of work in each contention state.

In the above discussion, accurate costs C(Q,S,)’s are used. However, the
conclusions are still valid for estimated costs. For example, if each C(Q,S,) is
replaced by its estimate C.(Q,S,) in (7), the condition becomes a necessary and
sufficient condition for cost estimate C.(Q) from fractional analysis to equal
cost estimate C,(Q) from average cost analysis. Similarly, if each C(Q,S,) is
replaced by C,(Q,S,) in Propositions 3.1 and 3.2, similar relationships between
C.(Q) and C,(Q) are obtained. More specifically, Proposition 3.1 would state that
C.(Q) < C.(Q) when query Q spends an equal amount of time in each contention
state, and Proposition 3.2 would state that C.(Q) = C,(Q) if the estimated fraction
of work (i.e., T,,/C.(Q,S,)) in each contention state is the same.

4. Probabilistic Approach

Although the fractional analysis approach in the last section can estimate costs
for queries experiencing multiple contention states during their executions, one
assumption made is that the load curve in the given dynamic environment is
known in advance and the load changes gradually. To deal with cases with
rapidly and randomly changing loads in a dynamic environment, we develop a
probabilistic approach in this section.

4.1. Cost Formula Development

Note that a rapidly and randomly changing load in a dynamic environment
causes frequent changes in its contention states. The occurrence of a contention
state is a random phenomenon and governed by laws of probability.

Let A = { S1,$5,..,Sy } be the set of all possible contention states in a
dynamic environment. We consider a sequence of occurrences of contention
states {X M pn=0,1,2, ...} in the given environment as a stochastic process, where
X™ is a random variable taking values from A. X = S; indicates that the
environment is in contention state S; at time t, = ty + n * §, where 0 is the
observing time interval. We notice that the probability for the next contention
state X"tV taking a particular value usually depends only on the value of the
present contention state X and is independent of values of past contention
states X© XM X=D_ For example, if the present contention state is ‘very
busy’, the next contention state is most likely to be ‘quite busy’ or ‘extremely busy’
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regardless of past contention states. In other words, the conditional distribution
of any future state X"*1 satisfies

PX"V =5, | X" =5,X""=5 .. X0 =5
= PX"V=g5,1x"=5) = P

for any n >0, and S;, S;, Sk Sk, € A

Pi; (1 <i,j < M) denotes the (one- step) transition probability for the system
contention state changing from §; to S; in the next time interval. Clearly, P;; > 0
and )77, P;j = 1 since the system has to be in one of the contention states in A
in the next time interval. Such a stochastic process is known as a (finite) Markov
chain (Parzen, 1962).

The next issue is how to establish the transition probabilities in the Markov
chain for a dynamic environment. Note that the contention state in a dynamic
environment after each time interval can either remain in the same state or change
to other states. However, the probability for the contention state changing to a
far-away state is less than that for it changing to a neighbor state.

Let the system contention state at time ty be S;, and the system contention
state at next time t; be S;. Recall that a contention state reflects a set of close
contention levels which are measured by probing query costs. Let Ly (1 <k < M)
be the center of gravity of the contention levels for contention state Sy € A. Let
d;; be the distance between L; and L;.

If the probability for the system contention state remaining in the same state
Si is g;, the probability for the system contention state changing to other states
from S; will be (1 — ¢;). Among other states, a reasonable assumption is that the
probabilities are inversely proportional to their distances to S;. Hence,

15 >

M
Pi=qi; Py =1[(1—q)/dy]/[Y_1/dij], for | <i,j<M

Parameter g; can be calibrated via experiments. Matrix (P;;).x lists all one-step
transition probabilities for the Markov chain.

The probability P;;(n) for a contention state S; changing to another contention
state S; after n time intervals is called an n-step transition probability for the
Markov chain. For a finite Markov chain, the limit r; =lm ij(n) exists (Parzen,
1962) and is called the limit probability of state S;. Two interesting properties
(Parzen, 1962) of a limit probability are: (1) it is independent of the initial state
(ie., S;), and (2) it not only represents the probability of a contention state in a
Markov chain after a sufficiently large number of transitions but also represents
the long-run portion of time for the Markov chain being in the state.

The limit probabilities for a finite Markov chain satisfy the following system
of linear equations (Parzen, 1962):

M M
T = ZniPl—j, for j=1,2,.., M, subject to an =1
, P
which can be used to determine 7; (1 < j < M). All limit probabilities {n; | j=
1,2,..M} comprise a so-called long-run distribution for the Markov chain.
Since we consider, in this section, the situation in which Q is a large (cost)
query and the contention states in the dynamic environment change frequently,
it is expected that there are many transitions during the execution of Q. Since 7;
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represents the long-run portion of time for the Markov chain being in S;, 7; * C(Q)
is the amount of cost incurred in state S;. Hence (7; * C(Q))/C(Q, S;) is the portion
of work done for Q in S;. Clearly, the portions of work done for Q in all states

should add to 1, ie., i, %(SQ)) = 1. Solving this equation, we have

Q) = 115 =T (11)
; C(Q,S,)

Similar to fractional analysis, parameters C(Q,S;)’s have to be estimated (i.e.,
using C,(Q, S;)) by applying the dynamic cost models with qualitative variables
discussed in Section 2, resulting in an estimated cost C,(Q) for query Q.

4.2. Properties and Error Analysis

Similar to fractional analysis, the estimation error of cost estimate C,(Q) for query
Q from the probabilistic approach is mainly caused by the errors of parameter
estimates C,(Q, S;)’s used in the approach.® By the total differential of C(Q) from
(11), we get the estimation error for C.(Q) as follows:

M

M
{C(Q) ~ (1/[>_ m/CQ.S)) * (D [m/CQ.8) *(C(Q.5))  (12)

i=1 i=1

From (12), we can see that the estimation error &(C(Q)) of cost estimate C,(Q)
for query Q is proportional to the estimation error &(C(Q,S;)) of cost estimate
C.(Q,S;) of Q in each contention state S; and the long-run portion (i.e., 7;) of time
for the Markov chain being in each contention state. In other words, the more
accurate the cost estimates C.(Q, S;)’s we use in the probabilistic approach and
the longer the query Q stays in those contention states S,’s with better estimates
C.(Q,S,)’s (t € {1,2,.., M}), the better cost estimate C.(Q) for Q we can get from
the probabilistic approach.

Comparing the above probabilistic approach with the single-state analysis
approach, we notice that the cost estimate for a query from the single-state
analysis approach is identical to that from the probabilistic approach when the
limit probability for the selected contention state is 1 (i.e., the limit probabilities
for other contention states are 0). However, in general, more than one contention
state has a non-zero limit probability. Hence single-state analysis may not adopt a
correct model for query cost estimation in such a rapidly changing environment.

Comparing the probabilistic approach with the average cost analysis approach,
similar to the situation with fractional analysis, we find that average cost analysis
does not adopt the correct cost model in most cases. The domain for valid query
costs for formula (11) is

{0<m<1 (I<igs M),

13
Zf\ilnizl )

8 Assume that limit probabilities m;’s are accurate. Otherwise some error may also be caused by
inaccurate 7;’s.
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while the subset of points in the domain for which C(Q) = C(Q) is

S m=1, (14)
(o2, C0.801/M} = {30 mi/C(Q,8)) =1

Clearly, similar to a gradually changing environment, average cost analysis suffers
both model error and parameter estimation errors in most cases for a rapidly
changing dynamic environment. Hence the probabilistic approach, which suffers
only parameter estimation errors, can usually give better query cost estimates in
such a dynamic environment.

The following propositions consider the two interesting special cases corre-
sponding to those for Propositions 3.1 and 3.2.

Proposition 4.1. Assume that C(Q,S;) # C(Q,S;) for some j # i. If ;y =y =
.. =y = 1/M, then C(Q) < C(Q), where C(Q) and C(Q) are from (11) and (2),
respectively.

Proof. This is similar to the proof of Proposition 3.1. [

Proposition 4.1 states that the average cost for all contention states is larger than
the actual cost when the limit probabilities for all states are the same in a rapidly
changing dynamic environment. This phenomenon can also be explained by the
different working rates in the contention states, like the explanation given for
Proposition 3.1.

Proposition 4.2. If 7;/C(Q,S)) = m,/C(Q,$2) = ... = m,,/C(Q,Sy), then C(Q) =
C(Q), where C(Q) and C(Q) are from (11) and (2), respectively.

Proof. Since n;/C(Q,S;) = n;/C(Q,S;), we have m; = n; * C(Q,S;)/C(Q,S;). From
(11) and (2), we have

M
Z (0. S)Zn,/c 0.5))

('}|
E\
|1

M
> > C0.5)*m/CQ.8))

Jj

§\~
M=

ETH
M=
Mz

I

_
~.

Il

M
= ZM*nl Zn,—zl
1 i=1

Therefore, C(Q) = C(Q). O

Although 7;/C(Q, S;) does not have any physical meaning, 7;* C(Q)/C(Q, S;) is the
portion of work done for Q in state S;. Therefore, the assumption in Proposition
4.2 implies that each state completes an equal portion of work for Q. In such a
case, the average cost for all contention states equals the actual cost in the rapidly
changing dynamic environment.

Similar to fractional analysis, if each accurate C(Q,S;) is replaced by its
estimate C,(Q,S;) in the above discussion, the conclusions including condition
(14) and Propositions 4.1 and 4.2 are also valid for estimated cost C,(Q) from the
probabilistic approach and estimated cost C,(Q) from the average cost analysis.
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Fig. 5. Experimental environment.

5. Experimental Results

To validate the cost estimation techniques proposed in the previous sections,
experiments were conducted using a multidatabase system prototype, named
CORDS-MDBS (Attaluri et al., 1995). Two commercial DBMSs, i.e., Oracle 8.0
and DB2 5.0, were used as component database systems running under Solaris
5.1 on two SUN UltraSparc 2 workstations. Figure 5 shows the experimental
environment. To evaluate the techniques in various dynamic environments, we
developed a load builder which can generate dynamic system loads to simulate
various dynamic environments following different load curves (for the fractional
analysis approach) or retention probability distributions (for the probabilistic
approach) for contention states.

The table schemas in the component databases used in the experiments were
the same as those’ in Zhu and Larson (1998). More specifically, each component
database contains 12 tables Ri(aj,daz,...a,) (1 <i < 12;1 < n < 13) with all
integer columns. The data in the tables are randomly generated using different
ranges for different columns to achieve various selectivities. The table cardinalities
range from 3000 to 250,000. Each table has some indexed columns. For more
details of the test database, please refer to Zhu and Larson (1998).

Since the costs of unary queries are usually not large and the techniques
in this paper are for large-cost queries, we chose a join query class for our
experiments. Following the multistate query sampling method in Section 2, we
drew a sample of queries from the query class and executed them in a dynamic
multidatabase environment. Based on the observed costs of sample queries, our
cost model building tool automatically selects significant variables and uses them
together with a qualitative variable (represented by a set of indicator variables)
indicating system contention states to develop a cost model for the query class.
Our tool also applies some statistical measures to validate the significance of
the cost model. Table 1 shows the cost models developed for the query class
on the two component DBMSs, i.e., Oracle and DB2. The coefficient of total

9 The size of each table is 10 times larger than that in Zhu and Larson (1998).
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determination indicates that both cost models can capture over 99% variations in
the query costs. The F-test also shows that both cost models are useful. Between
the two models, the one for Oracle is even better. One reason for this may be
that many dynamic query-processing strategies are adopted within DB2, while
the query-processing strategies within Oracle are relatively static.
To further validate the cost models, test queries were used in our experiments.
They were randomly generated from the following forms:
m,(Ri

> .
1 qualification J )
where:

qualification ::= [ (simple_left | disjunct_left) N ] key_join
[ A (simple_right | disjunct_right) ] [ N additional_join ]
key_join ::= Rj.a, = R;.a,
simple_left ::= Ry.a, w1 C
simple_right ::== Rj.a; w> Cy
disjunct_left ::= Ri.a, w3 C3 V Ri.a, wgq Cy
disjunct_right ::= Rj.a; ws Cs V Rj.a; we Cs
additional _join ::= R;.ax = Rj.a,

where w; ~ wg € {=,#,<,<,>,>}; the other parameters such as the project list
(), referenced columns (R;.an, R;j.ay, ...) and constants (C, C», ..., Cs) are randomly
selected from their domains.

We first ran some test queries in the dynamic environment under the restriction
that each query only experiences a (random) single contention state. We applied
the dynamic cost models in Table 1 to estimate the costs of the test queries and
compared the estimated costs with their observed costs as well as the estimated
costs using a static cost model.!® The comparison results are shown in Figs 6 and
7. From the figures we can see that the estimated costs given by the dynamic cost
model are much better than those given by the static cost model.

However, assuming a query to experience one state may only be valid for small
(cost) queries. For large (cost) queries, the execution of a query may experience
more than one contention state. The techniques presented in Sections 3 and 4
should be applied to estimate the cost of such a query.

Notice that a proper classification of system contention states is determined
during the development of a cost model with a qualitative variable. For example,
the cost model for Oracle in Table 1 uses five states, while the one for DB2
uses four states. To evaluate the effectiveness of the fractional analysis technique,
the ‘shape’ of the load curve in Fig. 1 is assumed. However: (1) the ‘noon’
contention state S; is split into two state occurrences to simplify the experimen-
tal program, i.e., contention state sequences Ss,S4,S3,S2,S1,31,32,33,34, S5 and
S4, 83,82, S1, 51, 82, S3,S4 were used for experiments on Oracle and DB2, respec-
tively; and (2) the load curve repeats its pattern periodically so that the queries
that cannot be finished within the current cycle can be completed within the
following cycle(s). The initial starting state for each test query was randomly

10" The static cost model was developed by using our static sampling query method in Zhu and Larson
(1998), i.e., assuming that the environment has only one (static) state.
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Table 1. Cost models for a join query class in a dynamic multidatabase environment

(Dynamic) cost model with qualitative variable

(0.7419¢+1 — 0.1169¢+3 * Z4 + 0.2748e+2 * Z3 — 0.3963¢+-2 * Z,
+0.3626e+2 * Z1) + (0.1131e-2 + 0.2212¢-2 * Z4 4 0.4383¢-2 * Z3
+0.5517¢-2 = Z» + 0.6588¢-2 * Z1) * RN, + (0.4952¢-3 —0.5211e-3 * Z4
—0.2522¢-3 * Z3 + 0.3308¢-3 = Zy + 0.2617¢-2 * Z1) * TN, +

Component (—0.4691e-3 + 0.6974¢-3 * Z4 + 0.9641e-3 * Z3 + 0.1900e-2 * Z»

DBMS 1 +0.3194¢-2 « Z1)* TN;, + (—0.1121e+1 4 0.548%¢+1 = Z4

(Oracle) +0.1419¢+2 = Z3 + 0.7953e+1 * Z5 4+ 0.1452¢+2 =« Z) = RL; +
(—0.1995e+42 + 0.3754e+2 * Z4 4+ 0.2510e+2 * Z3 + 0.3139¢+2 = Z»
+0.8524e+1* Z1) * Ly, + (0.1647¢+2 — 0.2275¢+2 * Z4
—0.3715¢+2 = Z3 — 0.2881e+2 * Zy — 0.2503e+2 * Z1) * Ly,

Coeff. of multi. Std. error Avg. sample F-statistics
determination  of estimation cost (sec.) (critical value at oo = 0.01)
0.9992 0.1708e+3 0.1178e+4  16166.13 (> 1.25)

(Dynamic) cost model with qualitative variable

(—0.1529e+2 — 0.1923e+1 * Z3 + 0.1178e+2 * Z5 4 0.3510e+1 * Z)
+ (0.4171e-7 — 0.1697e-7 * Z3 4 0.6500e-7 * Z5 + 0.9597e-6 * Z1) * T N 15
Component + (0.8934e-3 + 0.1697e-2 * Z3 + 0.2478e-2 * Z» + 0.3554e-2 * Z;) * RN,
DBMS 2 + (0.2763e-3 — 0.1106e-2 * Z3 — 0.4020e-3 * Z + 0.7719e-2 * Z1) * TN,
)
)

(DB2) + (0.1234¢-4 4 0.4639¢-4 *+ Z3 + 0.2241e-4 * Z» + 0.3693e-3 % Z1) * TZ
+ (0.3684¢-4 + 0.6292¢-4 * Z3 4 0.1345¢-4 + Zy —0.1768e-3 * Z1) * TZ ),

Coeff. of multi. Std. error Avg. sample F-statistics
determination  of estimation cost (sec.) (critical value at o = 0.01)
0.9963 0.2436e+3 0.7860e+3  5108.04 (> 1.41)

RN, result table size; TNy, TNj,, 1st and 2nd intermediate table sizes; T Nj,,
TNy, * TNyy; RLy, result table tuple length; L;;, Ly, Ist and 2nd operand table tuple
lengths; TZ;y, Ny * Ly1; TZjy, Njp * Lyy; Ny, Ny, 1st and 2nd operand table sizes.

selected from the contention states sequence. Different changing patterns (‘in-
crease’, ‘decrease’, ‘equal’, and ‘random’) of time durations for the contention state
occurrences along the curve were tested in our experiments. Figures 8 and 9 show
the experimental results for the ‘random’ case, which well represents all other
cases. The following observations can be obtained from our experiments:

The fractional analysis technique can give good cost estimates for the test
queries in a gradually and smoothly changing environment. Most cost estimates
in the experiments have relative errors within 30%.

The cost estimates given by the fractional analysis are clearly better than those
given by the average cost analysis or the initial single-state analysis for most
cases.

There are some cases (i.., queries completed entirely within one state) in
which the cost estimates from the fractional analysis and the initial single-state
analysis are the same, which is consistent with our theoretical analysis.

The average costs are larger than the estimated costs given by fractional
analysis when a query spent an equal (accumulated) amount of time in every
state, which is consistent with Proposition 3.1, which we showed in Section 3.
The accuracy of the cost model with a qualitative variable used to estimate
C(Q,S;) of query Q for state S; is important to the fractional analysis, as
indicated in the error analysis. Since we obtained a better cost model for
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Fig. 6. Estimated costs for test queries via qualitative approach on Oracle 8.0.

Oracle, its fractional analysis results are overall more accurate than those for
DB2.

In the experiments to evaluate the effectiveness of the probabilistic approach,

we tested various dynamic environments with different retention probability
changing patterns (‘increase’, ‘decrease’, ‘equal’, and ‘random’). Since an envi-
ronment with an equal retention probability for all contention states may not
yield an equal limit probability for every contention state, we also tested the ‘equal’
limit probability case. The experimental results for the ‘random’ case, which well
represents other cases, are shown in Figs 10 and 11. From the experimental
results, we have the following observations:

The probabilistic approach gives good cost estimates for a rapidly and randomly
changing environment. The majority of cost estimates in the experiments have
relative errors within 30%.

The cost estimates from the probabilistic approach are usually more accurate
than the average costs.

The average costs are larger than the cost estimates from the probabilistic
approach when the limit probabilities are the same for all states, as predicted
by Proposition 4.1.

The accuracy of the cost model with a qualitative variable used to estimate
C(Q,S;) of query Q for state S; is important to the probabilistic approach, as
indicated in the error analysis.

In summary, our experimental results demonstrate that the qualitative approach,
fractional analysis approach and probabilistic approach comprise a promising
suite of techniques in estimating local query costs for a dynamic multidatabase
environment.
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Fig. 7. Estimated costs for test queries via qualitative approach on DB2 5.0.

8000 T T
solid line — observed cost
dash line(0) - fractional analysis cost
7000 F dashdot line(x) — initial single state cost X i

dot line(+) — average cost Iy

6000

5000

4000

3000

Query Cost (Elapse Time in Sec.)

20007

1000

2 4 6 8 10 12 14 16
Query Number

Fig. 8. Estimated costs for test queries via fractional analysis on Oracle 8.0.

6. Conclusion

A major challenge for performing global query optimization in an MDBS is
that some local cost information may be unavailable at the global level. Most
techniques suggested so far in the literature considered only static system en-
vironments, namely, assuming the environment never changes. However, the cost
of a query changes dramatically in a realistic dynamic environment.
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Fig. 10. Estimated costs for test queries via probabilistic approach on Oracle 8.0.

To solve the problem, we have investigated several techniques. In our recent

work (Zhu et al, 2000), we employed a multistate query sampling method to
develop cost models with qualitative variables indicating the system contention
states. For queries experiencing a single state, such developed cost models can be
used to directly estimate their costs. To estimate the costs of (large) queries ex-
periencing multiple states, we propose two new techniques, i.e., fractional analysis
and probabilistic approach, to estimate their costs in this paper. The first is
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Fig. 11. Estimated costs for test queries via probabilistic approach on DB2 5.0.

suitable for a gradually and smoothly changing environment, while the latter is
suitable for a rapidly and randomly changing environment. The cost formulas in
both cases are derived. Their estimation errors and properties are analyzed. Note
that although the two new techniques make use of the cost models developed
by the multistate query sampling method, it is not required; in other words,
any method that can estimate the cost of a query in each contention state can
be used together with the two techniques proposed in this paper. To validate
the effectiveness of the new techniques, we conducted extensive experiments.
Our experimental results demonstrate that the presented techniques are quite
promising in estimating query costs in a dynamic multidatabase environment.
Their derived cost estimates for most queries have relative errors within 30%.

Dynamic environmental factors were ignored in existing cost models for
database systems owing to lack of appropriate techniques. The work reported in
this paper has shown some promise in solving the problem. However, our work is
just the beginning of work needed to be done in the future in order to completely
solve all related issues.
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