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A mutual energy formulation for optimal structural design

J.E. Taylor and M.P. Bendsøe

Abstract This paper presents a variational formulation
for the design of elastic structures where the function to
be minimized by the optimal design, i.e. the objective,
is expressed in abstract form. The resulting statement of
necessary conditions is uniformly applicable for all ad-
missible objectives. Both state and adjoint state variables
appear directly in the problem statement, and all objec-
tives and the arguments of constraints are scalars. The
adjoint pair of state variables appear in symmetric roles
via the expression termed “mutual energy”. Application
of the generalized formulation is demonstrated by treat-
ment of the following examples: design to minimize the
maximum value of displacement or to minimize a global
measure of stress, design for generalized compliance, de-
sign where self-weight is taken into account, and multicri-
terion design.

Key words structural optimization, variational for-
mulations, general objectives, continuum design, mutual
energy

1
Introduction

This paper reports results from an investigation of alter-
native variational forms for stating problems in structural
optimization. In particular, we present a formulation ex-
pressed in a form that is general with respect to design
objective, i.e. the design objective is stated in abstract
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form. This is in contrast to the practice that has the spe-
cific formulation for minimum compliance design serve
most often as the vehicle for presentations on variational
developments. With the problem expressed for abstract
objective , it becomes possible to consider aspects of an-
alysis, problem type, and method for solution in a general
setting, and accordingly to draw conclusions that are rela-
tively more broadly applicable. The work might best be
viewed as an experimental engagement in the subject . . .
judging from our experience, further useful developments
are likely forthcoming.
In formulations other than for the classical minimum

compliance case, analytical modelling for the coupled an-
alysis and design problem generally involves an associ-
ated or adjoint problem. In this case, the significantmeas-
ure appearing in the optimality condition is a measure
symmetric in the primary and associated state variables;
this measure has been termed specific mutual energy [ap-
plications are discussed by Prager (1974), Dems andMroz
(1995), Rozvany (1989), for example]. In the variational
formulation presented here, unit mutual energy appears
explicitly as the basis for this new model. The systems
governing both primary and adjoint state variables are
identified by conventional means, namely as part of the
set of necessary conditions for the generalized, coupled
analysis and design problem. At the same time, the sim-
plicity of form in the expression for the optimality condi-
tion carries over uniformly for the various objectives.
As already noted, for present purposes the objective

itself is stated in abstract form, as the integral over the
structure of an argument depending generally on struc-
tural response and possibly also on design. Necessary con-
ditions include a characterization of the equilibrium prob-
lem and an associated equilibrium problem, governing
respectively the primary and associated (adjoint) state
variables. In this way, the associated problem, which de-
pends on the specified objective, is generated as well in
abstract, i.e. general form. Expression of the coupled an-
alysis and design problem in terms of mutual energies has
these two boundary value problem statements generated
by symmetric operation with respect to each of the pri-
mary and associated variable. At the same time, the gen-
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eralized optimality condition has the form where “unit
mutual energy” replaces “unit strain energy” of the famil-
iar condition for standard minimum compliance design.
While the concepts which underlie the material of this

paper apply to optimal design of structures in general,
as it is reported here the development is written for con-
tinuum structures. The variational formulation is stated
and interpreted in general form, and the reciprocal of this
(isoperimetric) problem is presented as well. Application
of the generalized formulation is demonstrated by treat-
ment of the following examples: design to minimize the
maximum value of displacement or to minimize a global
measure of stress, design for generalized compliance, de-
sign where self-weight is taken into account, and multi-
criterion design. Additional details of interpretation, and
speculation about possible extensions along the line of
this work are considered in the discussion section.

2
The inner, analyses problem: the primary and adjoint
problems

The first development in this excursion into problem form
is to consider alternative, variational formulations of an-
alysis problems which as their result will give both re-
sponse and associated field, often referred to as the ad-
joint field. The format is thus an analysis setting prepared
for design or for design sensitivity analysis.
We consider the elastic deformation u of a continuum

structure occupying the domain Ω, and with mate-
rial properties given through the elasticity tensor Eijk�,
which is assumed positive definite throughout the do-
main. Without loss of generality we for simplicity suppose
that only (nonzero) body force f is present and that the
boundary is fixed, so that u ∈H10 . Moreover, we consider
a design independent objective function

∫
Ω

Φ(u) dΩ, i.e.

with no explicit dependence on the design variable (see
later for a discussion on design dependent objectives); for
the objective function we assume thatΦ(0) = 0, Φ> 0 and
Φ′(u) �= 0 for u �= 0. We now write a variational formula-
tion in terms of an auxiliary scalar variable Z and two
fields, the deformation u∈H10 and associated field û∈H

1
0

often referred to as the adjoint field,

max
Z,u,û

Z

subject to

Z−

∫

Ω

fûdΩ ≤ 0 , Z−

∫

Ω

Φ(u) dΩ ≤ 0 ,

∫

Ω

Eijk�εij(u)εk�(û) dΩ ≤ U . (1)

The load f , the form Φ, and U are data; U > 0 is
a bound on the total mutual energy

∫
Ω
Eijk�εij(u)εk�(û)

dΩ in Ω, with ε(•) denoting linearized strains. Note that
(Z, u, û) = (0, 0, 0) is a feasible point and that at a solu-
tion point, the value of Z must be positive. Note as well
that the problem (1) is not convex, due to the bilinear
form of the mutual energy constraint1. However, its con-
struction allows for deriving necessary conditions with
a unique solution.
In order to see the link between the formulation above

and the standard format of formulating equations for dis-
placements and the adjoint field (cf., e.g. Schechter 1967,
Haftka and Gürdal 1992) we derive here the necessary
conditions for optimality for the formulation above. From
the Lagrangian

L=−Z+λ1


Z−

∫

Ω

fûdΩ


+λ2


Z−

∫

Ω

Φ(u) dΩ


+

λ3



∫

Ω

Eijk�εij(u)εk�(û) dΩ−U


 , (2)

with Lagrange multiplier λ≥ 0, i= 1, 2, 3, the necessary
conditions are

∂L

∂Z
= 0 : λ1+λ2 = 1 , (3)

∂L

∂u
= 0 : λ3

∫

Ω

Eijk�εij(û)εk�(v) dΩ =

λ2

∫

Ω

Φ′(u)vdΩ for all v , (4)

∂L

∂û
= 0 : λ3

∫

Ω

Eijk�εij(u)εk�(w) dΩ =

λ1

∫

Ω

fwdΩ for allw . (5)

Under the condition that all multipliers are nonzero [i.e.
all bounds in (1) are active], (5) is, up to a scaling, the
equilibrium equation for the displacement, while equa-
tion (4) is the so-called adjoint equation for the associated
field û.
In order to see that all multipliers are nonzero, note

that also the switching conditions

λ1


Z−

∫

Ω

fûdΩ


= 0 , (6)

1 In general the objective function Φ can depend on u and its
gradient as well as higher order derivatives. In such a case the
symbol Φ′ requires suitable interpretaton. For simplicity here
we just write Φ generically as Φ(u)
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λ2


Z−

∫

Ω

Φ(u) dΩ


= 0 , (7)

λ3



∫

Ω

Eijk�εij(u)εk�(û) dΩ−U


= 0 (8)

are required to hold. First, we note that if λ3 = 0, then
(5) implies that λ1 = 0 (as f is nonzero), so from (3) we
have λ2 = 1. Finally, λ2 = 1, λ3 = 0 gives a contradiction,
as this will require that Φ′(u) = 0, i.e. either a contradic-
tion to our assumptions, or u= 0 and Z = 0, which is not
the maximum [in this case (Z, u, û) = (0, 0, û) with

∫
Ω
fũ

dΩ = 0 are stationary, nonoptimal points].
The above thus shows that at the optimum, λ3 > 0

and [via (8)] the constraint on mutual energy is ac-
tive. Moreover, we can from (4) and (5) then conclude
that also λ1, λ2 > 0, as a zero value would give a zero
displacement or associated field, in contradiction with∫
Ω
Eijk�εij(u)εk�(û) dΩ = U > 0. Thus the lower bounds

in (1) given by Z are also active at the optimum.
With λ1, λ2, λ3 > 0, (4) and (5) thus uniquely deter-

mines the fields u, û, and the remaining equations (3) and
(6)–(8) gives four equations to determine the values of
these multipliers and the optimal bound Z.
This analysis shows that we can give a variational

form covering at once the primary analysis and the asso-
ciated adjoint problems. From a computational point of
view one can take the necessary conditions as the basis
for such developments (these conditions are unique), in
which case one will in reality use the standard approach
of solving first for the displacements and then for the ad-
joint field, using the factorization of the stiffness matrix
used for the primal problem to simplify computations for
the associated problem (simple back-substitution). Alter-
natively, one can use iterative techniques to solve (1) as
stated, in which case the computational procedure can
be similar to iterative solvers for the equilibrium prob-
lem. The possibility that such an approach might lead
to new improved computational schemes is left open for
speculation.
For completeness let us here remind the reader that for

a design problem with respect to a scalar design variable
D, written in (abstract) form as

min
D

F (D) =

∫

Ω

Φ[u(D)] dΩ ,

where u(D) solves

∫

Ω

Eijk�(D)εij(u)εk�(v) dΩ =

∫

Ω

fv dΩ for all v ,

the derivative (the design sensitivity) of the functional
F can be found from the equations (see, e.g. Haftka and

Gürdal 1992),

F ′(D) =−

∫

Ω

E′ijk�(D)εij(u)εk�(û) dΩ ,

where û solves

∫

Ω

Eijk�(D)εij(û)εk�(v) dΩ =

∫

Ω

Φ′[u(D)]v dΩ ,

for all v .

The last equation is what is normally labelled as the ad-
joint equation for the adjoint field û (for a nonsymmetric
operator this would involve the adjoint operator).
Here we note that our analysis of problem (1) has

shown that at the solution point all constraints are active
and the variable u is the displacement (up to a scaling,
dependent on the choice of U). Thus the value of the
variable Z at the solution point is equal to the objective
function and the design problem written above can alter-
natively be stated as

min max Z
D Z,u,û

subject to:
Z−
∫
Ω
fûdΩ ≤ 0

Z−
∫
Ω
Φ(u) dΩ ≤ 0∫

Ω
Eijk�(D)εij(u)εk�(û) dΩ ≤ U

.

Below we will rewrite this in a somewhat more convenient
fashion, using an interchange of objective and the mutual
energy constraint.
Before proceeding to statements for more general

cases we close this introductory presentation by consid-
ering the very well-known case of minimum compliance.
Here problem (1) takes the form

max
Z,u,û

Z

subject to

Z−

∫

Ω

fûdΩ ≤ 0 , Z−

∫

Ω

fu dΩ ≤ 0 ,

∫

Ω

Eijk�εij(u)εk�(û),dΩ ≤ U , (9)

where we have symmetry with respect to the two fields
u, û (i.e. interchanging these variables results in the same
problem). The uniqueness indicated above for the gen-
eral case thus directly shows that these two fields must
be equal. The result is, of course, well-known (cf., e.g.
Prager and Taylor 1968, Taylor 1987). Still it is note-
worthy that the minimum compliance design problem is
identified as an example within the general development
directly from the structure of (9) and without need of fur-
ther analysis.
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For illustration of some possible generalizations of the
formulation presented above, we first treat a case where
we consider multiple objectives under one load and pro-
pose to employ a min-max format to cope with the mul-
tiple objectives. For the analysis (primary and associated
problems) we write:

max
Z,u,û

Z

subject to

Z−

∫

Ω

fûdΩ ≤ 0 , Z−

∫

Ω

Φ1(u) dΩ ≤ 0 ,

Z−

∫

Ω

Φ2(u) dΩ ≤ 0 ,

∫

Ω

Eijk�εij(u)εk�(û) dΩ ≤ U .

By an analysis similar to the one above, the adjoint
problem is expressed in weak form as

∫

Ω

Eijk�εij(û)εk�(v) dΩ = γ1

∫

Ω

Φ′1(u)v dΩ+

γ2

∫

Ω

Φ′2(u)v dΩ for all v ,

where the nonnegative parameters γ1, γ2 are nonzero only
if the corresponding objective bound is active. This cor-
responds to the spanning of the generalized gradient for a
nonsmooth design problem which seeks to minimize

F̃ (D) = max



∫

Ω

Φ1[u(D)] dΩ ,

∫

Ω

Φ2[u(D)] dΩ


 ,

where u(D) solves

∫

Ω

Eijk�(D)εij(u)εk�(v) dΩ =

∫

Ω

fv dΩ for all v .

3
A reciprocal form in mutual energy

The analysis problem (1) appears in a form where the de-
sign dependent mutual energy is part of the constraints.
For a number of cases it is convenient to use an equivalent
(reciprocal) form, where the mutual energy becomes the

objective function and where a positive lower bound on
the variable Z is imposed. The variable Z is replaced by
Ξ to make a distinction in the role of the variable. Then,
the equivalent form is stated as

min
Ξ,u,û

∫

Ω

Eijk�εij(u)εk�(û) dΩ

subject to

Ξ−

∫

Ω

fûdΩ ≤ 0 , Ξ−

∫

Ω

Φ(u) dΩ ≤ 0 ,

Ξ−Ξ ≤ 0 , (10)

with a lower bound Ξ > 0. It is here straightforward
to check that the necessary conditions for this problem
also results in the equilibrium problem and the adjoint
problem associated with the functional

∫
Ω
Φ(u) DΩ. The

uniqueness of the solutions to these equations imply the
complete equivalence, and one obtains that for any choice
of upper bound U for (1) and corresponding optimal value
Z∗, the solution to (10) with lower bound Ξ = Z∗ results
in an optimal value of the mutual energy equal to U , and
vice versa. Also the displacement field and the adjoint
field coincide.
Here the reciprocal form is used to consider the case

of a multiple purpose, multiple load design problem. For
this, we should formulate multiple equilibrium problems
and a number of associated adjoint problems arising from
a set of functionals. Thus with M loads and associated
functionals we can write the problem

max
Zm,um,ûm

M∑
m=1

Zm

subject to

Zm−

∫

Ω

fmûm dΩ ≤ 0 , Zm−

∫

Ω

Φm(um) dΩ ≤ 0 ,

∫

Ω

Eijk�εij(um)εk�(ûm) dΩ ≤ Um ,

m= 1, . . . ,M , (11)

where the optimal value will be equal to a sum of the func-
tionals

∫
Ω
Φm(um) dΩ at equilibrium. Note that each set

of constraints is mutually independent, so that (11) in
practise is just a collection of independent problems of the
form (1). This also means that the reciprocal form of (11)
has the form

min
Ξm,um,ûm

M∑
m=1

∫

Ω

Eijk�εij(um)εk�(ûm) dΩ

subject to
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Ξm−

∫

Ω

fmûm dΩ ≤ 0 , Ξm−

∫

Ω

Φm(um) dΩ ≤ 0 ,

Ξm−Ξm ≤ 0 , m= 1, . . . ,M .

4
The mutual energy formulation as a basis for design
problems

We continue here using the reciprocal forms of the an-
alysis problems above as the basis for formulating de-
sign problems which treat design objectives defined in
terms of functionals

∫
Ω
Φm(um). Thus according to the

mutual energy format above, the design problem seeks
the maximal mutual energy for a lower bound Ξ on per-
formance level. Taking in abstract terms the elasticity
tensor as the design variable we can write this problem
as

max
E

min
Ξ,u,û

∫

Ω

Eijk�εij(u)εk�(û) dΩ

subject to

Ξ−

∫

Ω

fûdΩ ≤ 0 , Ξ−

∫

Ω

Φ(u) dΩ ≤ 0 ,

Ξ−Ξ ≤ 0 , E ∈Ead ,

where Ead denotes the set of admissible tensors. As
an example we can consider the design problem with
an unrestricted material tensor, and use the Frobe-
nius norm as a cost measure (cf. Bendsøe et al. 1994,
1995)

max
E≥0

min
Ξ,u,û

∫

Ω

Eijk�εij(u)εk�(û) dΩ

subject to

Ξ−

∫

Ω

fûdΩ ≤ 0 , Ξ−

∫

Ω

Φ(u) dΩ ≤ 0 ,

Ξ−Ξ ≤ 0 ,

∫

Ω

Ψ(E) dΩ ≤ V , Ψ(E) = (Eijk�Eijk�)
1/2 ,

0≤ Ψmin ≤ Ψ(E)≤ Ψmax ,

where E ≥ 0 signifies that E is a positive semi-definite
tensor.
In this max-min problem, standard convexity based

saddle-point theorems cannot be applied. However, it is
still useful to consider an interchange of the maximization

andminimization which here with the design independent
functional

∫
Ω
Φ(u) dΩ will lead to an associated point-

wise problem of the form

max Eijk�εij(u)εk�(û)
E≥0

(Eijk�Eijk�)
1/2≤ρ

,

where ρ denotes the local assignment of resource, as meas-
ured by (c.f. Bendsøe et al. 1994). A solution to this asso-
ciated problem will constitute an expression of what local
material properties will be optimal for the problem at
hand. As studied in detail in the recent book by Cherkaev
(2000), a similar problem appears when studying struc-
tures made from mixtures of material and void, and we
refer to this reference for a broad treatment of this type of
problem format.

5
Examples

In the following we show the problem format for a
few example design settings, using for simplicity a 1-D
formulation.

5.1
Example 1. Generalized compliance

Assume that the goal of the design process is to limit a
global measure of displacement expressed as

∫
Ω
q|u| dx

with a given weighting function q that may vary over the
domain.
For the general format above to handle the numeri-

cal value of this functional, one can introduce an auxiliary
function β(x) in the problem statement and have a suit-
able formulation written as

max
D

min
Ξ,u,û

∫

Ω

Du′û′ dx

subject to

Ξ−

∫

Ω

fûdx≤ 0 , Ξ−

∫

Ω

qβ dx≤ 0 ,

u(x)−β(x)≤ 0 , −u(x)−β(x)≤ 0 ,

Ξ−Ξ ≤ 0 , D ∈∆ad .

Here the design variable D represents structural stiffness
EA, f symbolizes applied load, and as above, the dis-
placement and adjoint fields are denoted by u and û, re-
spectively. The load f , the weighting function q, and the
lower bound Ξ are given data for the problem.
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5.2
Example 2. Global measure of streses

Here we treat a stress measure written as
∫
Ω
w|Eu′|2 dx

with a given weighting function w that may vary over the
domain. This is now a design dependent objective. In this
case the analysis and associated problem for the adjoint
can still be handled via the general format of (1), but care
has to be taken when considering necessary condition and
gradient information for a design problem involving such
a design dependent functional. Here we write an example
design problem as

max
E

min
Ξ,u,û

∫

Ω

EAu′û′ dx

subject to

Ξ−

∫

Ω

fûdx≤ 0 , Ξ−

∫

Ω

w(Eu′)2 dx≤ 0 ,

Ξ−Ξ ≤ 0 , E ∈Ead .

To obtain necessary conditions for optimality with re-
spect to the design variable E one can consider the prob-
lem written as

max
E∈Ead

min
Ξ,u,û



∫

Ω

EAu′û′ dx

∣∣∣∣∣Ξ−
∫

Ω

fûdx≤ 0 ,

Ξ−

∫

Ω

w(Eu′)2 dx≤ 0 , Ξ−Ξ ≤ 0


 ,

where the derivative of the inner functional F (E) can be
expressed as

F ′ = u′û′−2λ2wE|u
′| .

Here λ2 is the Lagrange multiplier for the stress con-
straint in the inner problem, evaluated at the solution
point.

6
Variations of the theme

This last section will describe two situations where some
slight variation of the general format is required to han-
dle the type of criterion. First we consider a case where
the objective is to minimize the maximum displacement
under a given load, i.e. the functional under study is
maxx∈Ω |u(x)|. In this case we can use a bound formu-
lation (cf. Taylor 1987), so that the objective function is
actually a scalar parameter, here named β, which controls
the values of the displacement throughout the structure.
A suitable formulation is then

max
D

min
Ξ,u,û

∫

Ω

Du′û′ dx

subject to

Ξ−

∫

Ω

fûdx≤ 0 , Ξ−β ≤ 0 ,

u(x)−β(x)≤ 0 , −u(x)−β ≤ 0 ,

Ξ−Ξ ≤ 0 , D ∈∆ad .

The last example is concerned with treating problems
with self-weight, i.e. a problem where a design dependent
load affects the design. Here we take the objective to be
the work done by the dead-load, for a displacement given
by the live load only, giving a formulation

max
D

min
Ξ,u,û

∫

Ω

Du′û′ dx

subject to

Ξ−

∫

Ω

fûdx≤ 0 , Ξ− r

∫

Ω

Dγu dx≤ 0 ,

Ξ−Ξ ≤ 0 , D ∈∆ad .

The self-weight term corresponds to the case where
“weight” is given by γ, i.e. unit weight is proportional
(by γ) to the design D. The coeffcient r is used to enter
the importance of “dead load” relative to live load. In this
form of problem statement total displacement is given by
u+ û.

7
Discussion

As was pointed out in Sect. 2, a minmax formulation
for the usual minimum compliance problem is imbedded
within the present mutual energy formulation, and this
is easily recognized through the symmetry in the prob-
lem statement. Mutual strain energy reduces to strain
energy for the latter problem, and the two performance
constraints of the general problem collapse to one. Also,
considering the modification to cover multipurpose de-
sign, this extension is achieved as simply for the present
generalized objective formulation as it is for the classical
minimum compliance case.
We note that our concern in this investigation centers

on the handling of the analysis problem for general objec-
tive functions in a formulation that is compact and con-
venient for design optimization. The important consider-
ations related to design for arbitrary material properties
and generalizations of the cost constraints are beyond the
scope of this paper; we refer the reader to the discussions
on these aspects of problem formulation in for example
Bendsøe (1995), Rodrigues et al. (1999), Taylor (1998,
2000), and in references quoted in these publications.
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Along a different line, it might be argued that the
trend in our subject over the recent decade has relatively
more attention paid to development of numerical analysis
and means for computational treatment than to funda-
mental modelling. Considering the significance overall of
having established models available – their use as a basis
to devise and confirm schemes for computational solu-
tion, their usefulness toward gaining general insight and
understanding about the effects on behaviour of efforts to
improve design, the convenience of the “top-down” qual-
ity characteristic of variational treatment, namely that it
provides a unifying basis for studies where the object is
to enlarge on what is covered in the modelling, and so
on – perhaps it is reasonable that the role of research in
the fundamental format of modelling should be viewed
with renewed interest. Certainly the developments re-
ported here comprise no more than a brief excursion into
the area.
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