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Abstract. In this paper we will characterize products of balls—especially
the ball and the polydisc—if€™ by properties of the isotropy group of a
single point. It will be shown that such a characterization is possible in the
class of Siegel domains of the second kind, a class that extends the class of
bounded homogeneous domains, and that such a characterizationis nolonger
possible in the class of bounded domains with noncompact automorphism
groups. The main result is that a Siegel domain of the secondXiadC"

is biholomorphically equivalent to a product of balls, iff there is a point

p € G such that the isotropy group gfcontains a torus of dimension

As an application it will be proved that the only domains biholomorphically
equivalent to a Siegel domain of the second kind and to a Reinhardt domain
are exactly the domains biholomorphically equivalent to a product of balls.
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1 Notation and definitions

The unit ball inC™ will be denoted byB,,, the unit polydisc byP,. In this
paper we will give characterizations of products of balls up to biholomor-
phism. So we can assume without loss of generality that all the balls in the
paper are actually unit balls.

LetG be adomain irC™. The automorphism group ¢f will be denoted
by Aut G, the isotropy group of a point € G' by Aut,, G. As usual, these
groups will be equipped with the compact open topology (see [Nar71] for an
introduction to automorphism groups). Both groups are topological groups
with respect to this topology. I is bounded, they are even real Lie groups,
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with Aut, G being compact. Letlut’ G respectivelyAut;, G denote the
connected components of the identity of the groups above.

The class of all domains i@™ biholomaorphically equivalent to a

— bounded symmetric domain will be denotedB$D.,,,

— bounded homogeneous domain will be denote®B&¥D,,,

— Siegel domain of the first kind will be denoted 81,

— Siegel domain of the second kind will be denotedsiy2,,,

— bounded domain with a noncompact automorphism group will be de-
noted byBNC,,.

If the dimension of the domain is not of importance, the index will be
suppressed. The following inclusions are well known:

SD1
N
BSD ¢ BHD C SD2 C BNC

FurthermoreBSD,, # BHD,, for everyn > 3 (a well known result of
I.I. Pyatetskii-Shapiro) BHD,, # SD2, for n > 2, SD1,, # SD2,
for n > 1, andSD2,, # BNC,, for all n. As an application of the main
theorem it will be shown in this paper that there are even topological balls
in BNC,, \ SD2,, forall n > 1.

For an introduction to bounded symmetric domains see [Hel78], for an
introduction to Siegel domains see for example [Mur72]. For the conve-
nience of the reader we will recapitulate the definition of Siegel domains:

Definition A setC C R"isaconeif x € C < Az € C holds for all

A € RT. A cone is calledregular, if it is nonempty, open, convex and
does not contain an entire line (Note that it follows from convexity that
z,y € C = x+y € C holds for regular cones). Let from now éhdenote

a regular cone ifR".

The Siegel domain of the first kinover C' C R" is the tube domaigz €
C":Imz € C}.

A C-hermitian formis a mapping” : C* x C* — C" with the following
properties:

(i) H isC-linear in the first argument
(i) H(z,w)=H(w,z)

(i) H(z,2)eC

(iv) H(z,2)=0&2=0

Note that this definition coincides with the usual definition of a hermitian
formif C = R.
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The Siegel domain of the second kind o¢ewith C—hermitian formH
is now defined to bg(z,w) € C"** : Imz — H(w,w) € C}. The pair
(n, k) is called thaypeof the Siegel domain. It has been shown in [KMO70]
that the type is a biholomorphic invariant; therefore it makes sense to speak
of the type of a domain i8D2 as well.

Finally, note thatAut G and Aut,, G are real Lie groups even & <
SD2, since every Siegel domain of the second kind is biholomorphically
equivalent to a bounded domain.

2 Introduction

In this paper we will study characterizations of the ball and the polydisc, as
well as arbitrary products of balls, by the structure of an isotropy group of
a single point.

Characterizations of the ball are known for quite a while. B. Wong for
example proved in [Won77] that a strongly pseudoconvex domain@ifth
boundary inC™ is biholomorphically equivalent to a ball, iff its automor-
phism group is noncompact. This result has been generalized by several
authors. The proofs of these results are of a differential geometrical nature
and make use of smoothness properties of the boundary of the domain. These
methods are thus not suitable for a characterization of the polydisc. Instead
we will use the Lie group structure of automorphism and isotropy groups.

The starting point is the geometrical observation that the high amount of
symmetry of the ball and the polydisc is reflected in the size of the isotropy
groups of the origin (for proofs see [Nar71]):

Auty B, ={z— Az: AcU(n)}

Auty P, = {diag(ei‘pl, UL p; €ER Vj} >~ (§hr

Auty P, = {z — P - diag(e™',...,e"%") 2 : p; € RVj
andP is a permutation matrix

Let By, x --- x By, be a product of balls. A theorem of H. Cartan states

thatAut’(pr?) G x Gy = Aut;1 Gy % AUtfnz G, for bounded domaing’;

andGsy. Thus
Auty (Byy X -+ X B, ) =U(ky) x - x Ulkp)

In all these cases the isotropy groups containstkaimensional torus of
mappings

{sziag(eiwl,...,eiW”)‘z L pj E]RVj}
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Since products of balls are homogeneous, we have that
Auty, (By, X...x By,) 2 U(k1) X...x U(ky) ¥p € By, X...X By,

so these groups contain a torus of dimensias well. Thusdut,, G contains
a torus of dimensiom for all p € G, if G is biholomorphically equivalent
to a product of balls.

We will use this property for our characterization. To be more precise:
we will investigate if it is possible to characterize products of balls by the
property that at least a single isotropy group contains a torus of dimension
n.

Since we only have conditions on the structure of a single isotropy group,
it is natural to presume that such a characterization will be possible in the
class of bounded homogeneous domains at most (the isotropy groups of a
homogeneous domain are conjugated and thus isomorphic). Surprisingly,
the characterization holds as desired not on\BHD, but in the much
larger clasSD2, a class of domains that lies betweBiHD and BN C.

Our main result is:

Theorem A domainG € SD2, is biholomorphically equivalent to a prod-
uct of balls, iff there is a point € G such thatAut, G contains a torus of
dimensiom.

Since we willwork inthe clasSD2, we will give realizations of products
of balls as Siegel domains of the second kind. It is straightforward to prove
that the map

fiCHE— R

z—1 2w 2wy,
2411 z4+41 T z414

(zy w1y wg) = (21,000 y 2k41) 1= <

maps the Siegel domain of the second kind
{(Z7w17" . 7wn) : ImZ — ‘wl‘Q e e — |wk‘2 > 0}

biholomorphically ontaBy;. More generalz := By, 41 x--- X By, +1 C
C™** is biholomorphically equivalent to the following Siegel domain of the
second kind of typém, k):

Imz — |[wi]? — ... —|wg, [ >0

_ Im z9 — ]wk1+1]2 — ... _’wk1+k2’2 >0
G:: (Z,w) . i (1)

Im 2, — Wy ot 17— —[wg[? >0
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3 Preliminaries

Before we can prove the main theorem of this paper, we will first have to
deal with some special cases and other preliminaries. We begin by exploring
some of the consequences of the condition of the main theorem.

Lemma3.1 Let G C C" be a bounded domain. Assume that there is a
p € G such thatAut, G contains a torusl” of dimensiom. ThenT' is a
maximal torus indut, G.

Proof. Let H := {Dv(p) : ¢ € Aut, G}. A theorem of H. Cartan states
that

J: Aut, G — H, v — Di(p)

is an isomorphism of Lie groups. Thereforé,is a compact subgroup of
GL(n,C). LetT := J(T'). Since the maximal tori itL(n, C) are exactly

the tori of dimensiom, 7' is a maximal torus inf; thus7 is a maximal
torus inAut, G. O

Corollary 3.2 LetC" > G = Gy x --- x Gy, G; C C™ be a bounded
domain, and lep = (p1,...,pk), p; € C™, be a point inG. If Aut, G
contains atorus of dimensienthenAut,, G; contains atorus of dimension
n; for all j.

Proof. Let m; be the dimension of a maximal torus #wt,, G;. Then
mq+---+mg > n. ltfollows now from lemma 3.1 that in faet; +--- +
my, = n, and that furthermoren; = n; forall j. O

Lemma 3.3 Let G € C™ be a bounded domain. Assume that there is a
p € G such thatdut, G contains a torus of dimension Then there is an
involution in Aut;, G with an isolated fixed point ip.

Proof. Again we will identify Aut, G with the compact subgrouff :=
{Dy(p) : ¥ € Aut, G} of GL(n,C). It is well known that for every
compact subgroup < GL(n, C) there exists a hermitian product > on

C™ such thatS < U(n, <, >). Especially it follows that every member of
H is diagonalizable with eigenvalues of absolute valuket T be a torus

of dimensionn in H and letM € T such tha{M*},cy = T (the set of

all suchM is dense iri"). We can assume after a suitable linear change of
coordinates thaWl is a diagonal matrix. Consequentlyconsists solely of
diagonal matrices with diagonal elements of absolute valiinceT is a
torus of dimensiom, it follows that

T = {diag(e’™,....e""): ai,...,a, € R}
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Especially—I € T. Thereis a € Auty, G with Dé(p) = —1, and since
—Iis an involution inGL(n, C), ¢ is an involution inAut;, G. It follows
from the inverse function theorem that- id has an isolated zero im In
other wordsg has an isolated fixed point i O

We now prove some special cases of the main theorem.

Proposition 3.4 A domainG in BSD,, is biholomorphically equivalent to
a product of balls, iff there is a point € G such thatAut, G contains a
torus of dimensiom.

This proposition is an immediate consequence of the classification of
bounded symmetric domains by E. Cartan (see [Hel78]). We include the
details for the convenience of the reader.

Proof. We assume first that: is an irreducible bounded symmetric do-
main. There are 4 classes of these domains with members in infinitely many
dimensions—called the classical domains of type I-IV—and 2 exceptional
domains inC'® respectivelyC?7. Descriptions of the classical domains can
be found in [Hel78], descriptions of the two exceptional domains can be
found in [Koe62]. We will include the definitions of the classical domains
here, since we will need some of the details.

Type | : domains of this type exist in every dimension. ket pg with
p > g > 0. Identify C™ with the set of allp x ¢ matrices with complex
entries. LetZ denote a matrix of this type and [&f denote the; x ¢
identity matrix. Then the domain of type | with parametgi@ndq is

Ry :={Z:1, — Z"Z is positive definité

The isotropy groups are isomorphic$¢U (p) x U(q)).

Type Il : a domain of this type exists only in dimensionsf the form
n = p(p+ 1)/2, p € N. For such am we can identifyC™ with the set
of all symmetricp x p matrices and the domain of type Il is defined as

Rrp = {Z: 1, — ZZis positive definité

The isotropy groups are isomorphictidp).
Type lll : a domain of this type exists only in dimensionf the form
n =p(p+1)/2, p € N. For such am we can identifyC™ with the set
of all skew—symmetri¢p + 1) x (p + 1) matrices (a skew—symmetric
matrix has zeroes on its diagonal). The domain of type Il is defined as

Ryir :={Z : 1,41 + ZZ is positive definit¢

The isotropy groups are isomorphicti@p).



A characterization of products of balls by their isotropy groups 591

Type IV :adomain of this type exists in every dimensior 2; itis defined
by

Rpv == {z:|z2'| = 222" + 1> 0,]22"| < 1}
The isotropy groups are isomorphic$®(n) x SO(2).

Classical domains of different types may coincide in low dimensions; for
example, the domains of type | with= ¢ = 1, type Il withp = 1, and
type Il with p = 1 are all just the unit disc ifT.

Finally, the Lie algebras of the isotropy groups of the exceptional do-
mains inC'® respectivelyC?” areso(10) + R respectivelys + R.

The isotropy groups aff can thus only contain a torus of dimensioif
G is of type | withqg = 1 (or of type Il or lll with p = 1, but these cases are
redundant by the remark above). But the type | domain with 1, p = n
is just the unit ball inC™.

Now let G = G7 x --- x G be a bounded symmetric domain with
irreducible factors;. It follows immediately from corollary 3.2 and the
considerations above th@tis biholomorphically equivalent to a product of
balls. O

Note that it follows immediately from lemma 3.3 that proposition 3.4
holds as well in the larger cla&HD. We will not use this result in the rest
of the paper, and it will be superseded by the main theorem 4.1.

In conjunction with a theorem by O.S. Rothaus, 3.3 and 3.4 can also be
used to characterize the polydiscSiD1:

Proposition 3.5

(i) A domainG in SD1 is biholomorphically equivalent to a product of
balls, iff it is biholomorphically equivalent to a polydisc.

(i) AdomainGin SD1,, is biholomorphically equivalent to a polydisc, iff
there is a poinp € G such thatdut, G contains a torus of dimension
n.

(i) A domainG in SD1,, is biholomorphically equivalent to a polydisc,
iff there is a poinp € G such thatAut;, G is a torus of dimension.

Proof. Let P, be the (unit) polydisc irC™. It has already been mentioned
in the introduction thatdut;, P, is a torus of dimensiom (as is every
other groupAut;, P, p € P,). The condition of (iii) is thus fulfilled for
the polydisc. Furthermoré?, is biholomorphically equivalent to the Siegel
domain of the first kind H+)", whereH* is the upper half plane if8.

Let G be a domain ir8D1,,, which is biholomorphically equivalent to
a product of balls. Then the type 6f is (n,0). It has been shown in the
introduction that the type of the product of ball, 1 x --- x By, +1 C
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C™F k =k + -+ kp,is(m,k). Thusk; = --- = k,, = 0, andG' is
biholomorphically equivalent to a polydisc. This proves ((i)).

Now letG be inSD1. Atheorem of O.S. Rothaus ([Rot71], introduction
respectively theorem 18) states that a Siegel domain of the firstkind is already
biholomorphically equivalent to a bounded symmetric domain, if there is
an involution in Aut G with an isolated fixed point idx. It follows from
lemma 3.3 and proposition 3.4 th@tis biholomorphically equivalent to a
product of balls. Now (i) shows thé&t is biholomorphically equivalent to a
polydisc, which proves (ii) and (iii). O

4 A characterization of products of balls in the classSD2

We will prove our main theorem about a characterization of products of balls
in the class of Siegel domains of the second kind in this section. Additionally
we will give characterizations of the two most important special cases of
products of balls: the ball and the polydisc.

Theorem 4.1 A domainG € SD2, is biholomorphically equivalent to a
product of balls, iff there is a point € G such thatdut,, G contains a torus
of dimensiom.

Proof. Letn = m + k, z € C™, w € CF andG := {(z,w) € C™*F .
Imz — H(w,w) € C} with a regular coneZ C R™ and aC-hermitian
form H : CF x C* — C™. Since the theorem has already been proved in
SD1, we can assumk > 0. In several steps we will use information about
Aut G to receive information abou¥ and vice versa.

Step I Letp = (u,v),u € C™, v € CF. It is well known that the affine
mappings

. <z> n <z+a+2iH(w,b)—|—iH(b,b)

>, aeR™ beCk
w+b

w

are automorphisms af (see [Mur72]). Obviouslypy _,(u,v) = (@, 0)
with aa € C™. ThereforeAut’(uvv) G andAutzﬁ’O) G are isomorphic. We
will assume without loss of generality that= (u,0).
Let U be a torus of dimension in Aut, G. It follows from lemma 3.1
thatU is a maximal torus in the compact and connected Lie gréuf, G.
A well known theorem in Lie group theory states that all maximal tori in a
compact and connected Lie group are conjugated by inner automorphisms,
and that every torus in the Lie group is contained in a maximal torus.
Sincep = (u,0), the mappings»(z, w) = (z,e%w), ¢ € R, form a
one dimensional torus iﬂut; G. There is a maximal torus,, C Aut; G
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that contains all these mappings. SiicandU,, are conjugated, we may
assumd/ = U,.
Step 2 Let F'(z,w) := (f(z,w), g(z,w)), with

f: (fla"'afm)7 g= (gla-“agk)

be an arbitrary automorphism I, and letp(z, w) := (z, e®¥w). SincelU
is abelian, we have

Foyp(z,w) = (f(z,eww),g(z,eww)) =
poF(z,w) = (f(z,w), ewg(z,w))
sflz,w)=f (z,eiww> Ae¥g(z,w) =g (z,eww>

forall (z,w) € G and ally € R.
Let the power series expansionBfat0 € C* with fixed z be

filzyw) =" al(2)w”, gj(z,w) = > bl(2)w"
VENé VGNS
Therefore

fi(z,w) = Z al (2)wi" - .. wpk

V€N§

— Z ai(z) (eiw”l -wi“) (e“/”jl wZ")
VENS
= Z al (z)e™ Wl

VENS

and

Comparing the coefficients yields,(z) = 0, if |v| > 0, anddl(z) =
0, if |[v| # 1. It follows that f is independent ofv, and thatg is of the
form g(z,w) := A(z) - w, where A(z) is a matrix whose components
are holomorphic functions in. The domain of definition off and A is
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the setG := {z € C™ : Jw € C*withImz — H(w,w) € C}. Since
H(w,w) € C, and since” is an open convex cone we have

Imz— Hw,w) € C= (Imz— H(w,w)) + Hw,w) € C

Consequentlyy = {z € C™ : Imz € C} = {z € C™ : (2,0) € G}. Thus
G is a Siegel domain of the first kind i&"”.

Summarizing, we have that every automorphisnvinis of the form
F(z,w) = (f(2),A(2) - w) with holomorphic mapsf : G — C™ and
A : G — Mat(k x k,C). If we want to emphasize that these maps depend
on F', we will denote them byfr respectivelyA .

Step 3 Let F" be arbitrary in. We will prove thatA (z) is invertible for all
z € GG, and thatf is an automorphism af that fixesu.

e (Di(Z) A(<) >) N

det DF(z,w) = det Df(z) - det A(z) # 0

ThusA is invertible.
z€G=F(2,0)=(f(2,0),0) € G= f(z
f(2) = f(Z)) = F(2,0) = (f(2),0) = (f
Thusf is injective.

7 e G=(7,0) € G=thereis(z,w) € Gwith F(z,w) = (f(z), A(z)-

w) = (#,0). SinceA(z) is invertible, it follows thaty = 0. Thusz € G
and f(z) = 2. Furthermorgu,0) = F(u,0) = (f(u),0) = f(u) = u
and it follows thatf € Aut, G. Obviously we can even conclude that

f € Aut!, G.
Step 4 We will prove in this step that
U :={f:3F € U such thatF'(z,w) = (f(2), A(z) -w)} C Aut], G

is a torus of dimensiom. We will use this fact to simplify the shape 6f
by a linear change of coordinates.

The n-dimensional torug/ can be identified as a Lie group wiih :=
{DF(p) : F € U} according to a theorem of H. Cartan. A calculation
shows

DF(z,w) = bi@ 0 with
B(z,w) A(z)
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whereA (z) = (ai;(z)). Consequently,

DF(p) = DF(u,0) = (D’; () A? ))

Define

T, :={Df(u): fe U}and
Ty :={A(u) : IF € U with F(z,w) = (f(z),A(z) - w),
f € U arbitrary}

The projectionsp; : T — Ty, DF(p) — Df(u) andpy : T — Ty,
DF(p) — A(u) are morphisms of Lie groups, therefdfe C GL(m, C)
and7y C GL(k,C) are tori. We haver = m + k = dim 7T < dim T} +
dimTy < m + k. ThusdimT; = m, dimTy = k, andT = T} x Ts.
SincelU 2 T3, we have that/ is a torus of dimensiom. Furthermore we
have for allf € U that the sefly := {A(u) : IF € U with F(z,w) =
(f(2),A(2) - w)} = To = {DF(p) : F € Uandfp = f} 2 {F € U :
fr = f}is atorus of dimensioh.

We will use this to simplify the shape 6f. We just showed thatut,, G
contains a torus of dimensien, whereG is a Siegel domain of the first kind
in C™. It follows from theorem 3.5 tha®' is biholomorphically equivalent
to a polydisc, and thus to the Siegel domain of the first KINdR")™)
over the conéR™)™. It follows from a theorem by Kaup, Matsushima and
Ochiai ([KMO70]) thatG is linearly equivalent td”((R..)™), and thus that
G is linearly equivalent to a Siegel domain of the second kind over the cone
(RT)™. We may assume without loss of generality tfiat )™ is the cone
of G.

ThenG = T((Ry)™) = (HY)™, and f € Aut! (H")™, where
H™ denotes the upper half plane @. A theorem of H. Cartan states

that Aut’(phm) G X Gg = Autz’p1 G1 x Autz’g2 G, for bounded domains

G, Ga. Thus f(2) = (fi(21),- .-, fim(zm)) With f; € Aut;, Ht, u =
(u1,...,uy)andz = (z1,..., z,). Consequently,

aij—l—bj a; bj
i(2;) = 2——= a;,b;,ci,d; € R,anddet =1
fi(z) ¢z 1 d; as, b5, Cj, G5 € e (Cj dj

It follows from the definition thatth€R ™)™ -hermitian formH is of the form
H = (H,,...,H,,), with positive semi—definite hermitidnx k-matrices
H,,....H,,.
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Step 5 Letz = (23, .. .,25") € G be arbitrary. Define
G(z) : = {w € C* : (29, w) € G}
Im zé —w*Hiw >0
={weCk:
Im 2" — w*H,,w > 0

Obviously,G(zp) is a bounded circular domain that contains the origin. It
willbe shown in this step thaf( zo ) is even linearly equivalent to a Reinhardt
domain.

LetU; :={FeU: frp=id} ={F €U : F(z,w) = (2, A(2) - w)}.
It has been shown in the fourth step thiat is a torus of dimensiork.
Every F' € U fixes every point of the fornizy, 0) with zy € G.yVe have
Ui = {DF(20,0): F e U1} 2 {AFp(z0) : F € Uy} forall zp € G. Define
for all F € U; the mapping

F., : G(z0) = G(20), w+— F(z9,w)

and defineU(zg) := {F,, : F € Ui}. ThenU(z) is a Lie group of
automorphisms of7(zy) for all zop € G, andU; = U (z).

This means thal/ (z) is for all zp € G a k—dimensional torus of au-
tomorphisms of the bounded circular domé&ifzy) > 0 fixing the origin.
Consequentlyl/(zp) consists solely of linear maps. It follows now like in
the proof of lemma 3.3 that

U(ZO) = {diag(ezal7 AR 7elak) : al? ctt ?an E R}

up to a linear change of coordinatés(z) is thus linearly equivalent to a
bounded Reinhardt domain that contains the origin.

Step 6 We will show in this step that the matricé¥; are simultaneously
diagonalizable. It will be concluded that after a suitable linear change of
coordinates inv everyHj; is a diagonal matrix.

We will begin by proving that each two of the matridds are simultane-
ously diagonalizable. Let, ¢ with 1 < p, ¢ < m, be arbitrary. IfH, = H,,
there is nothing to prove. Assume therefdfg # H,. We will distinguish
two cases.

1. Case H; # 0 for all 5.

In this caseV; := {w € C* : w*H;w = 0} is a subspace df* with
a codimension of at leastfor all j. W := | Ji_, W} is thus a closed set of
Lebesgue measure zeroGh. Letwy € C*\WW arbitrary, and let

Do gk q . g% J * ;
2y = 1woHpwo, zy := twogHqwo, Im 2y > woH;wo Vj # p,q
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With zg := (23, ..., 2{") we havez € G =T(R7), and

>0 forj#p,q

Im 2} — wiH,wo .
=0 forj=np,q
Thus (zo,wo) € 0G andwy € 90G(z). With Gj(20) = {w € CF :
Im 29 —w*Hjw > 0} we haveG/(zo) = (-, G;(20)- By the definition of
2o it follows that in a neighborhoot” of w, every boundary point aff(z)
is in in the boundary of7,,(zo) or G,(zo) . SinceH,, # H,, we can choose
wp € CF\W in such a way tha@,(z9) andG,(zo) intersect transversally
in wg. Thus there are boundary points@f(zo) as well as boundary points
of G4(z0) in V, which are boundary points @#(z). It has been shown in
the 5th step that’(zy) is linearly equivalent to a bounded Reinhardt domain
that contains the origin. We may assume after a linear change of coordinates
that G(zp) is such a domain. It will now be proved that bath(zp) and
Gy4(20) are Reinhardt domains.

Claim G,(z9) andGy(zp) are bounded Reinhardt domains containing the
origin. BothH,, andH, are diagonal matrices.

Proof. As has been shown above, there are paiptsv, € V' and neigh-
borhoodsV,, V; of v, respectivelyy, in V', such that all boundary points
of G(zp) in V,, are boundary points @, (zp), and that all boundary points
of G(zp) in V, are boundary points af,(zp). SinceG(z) is a Reinhardt
domain, there is for each € 0G;(z) NV}, j € {p,q}, ane > 0 such that
even(elwy, ..., e%kwy) € G(z0) for all g1, ..., ¢, €] — €, €. Thus,
the function

(P15, p8) (e‘iwwh - e_w’“wk)Hj

eupk W

is constantly equal tdm z} on] — ¢, ¢[. Expanding yields at once that all
the coefficients oH;, which are not on the main diagonal, have to be zero.
ConsequentlyH; is a diagonal matrix, and';(zo) is a bounded Reinhardt
domain containing the origin for € {p,q}. O

Summarizing, we have shown that the matritgsandH, are simulta-
neously diagonalizable for arbitraty< p, ¢ < m. Thus all the matriceHl;
are simultaneously diagonalizable. We may assume after a linear change of
coordinates inv that everyH; is diagonal. LeH; = diag(hj1, ..., hix).
ThenG has the form
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hi1
w* w
hi
G =1 (z,w) €C™* : Imz — : >0
hi1
w* w
ik )
hiy ... hyg wi |?
={(z,w) e C™*  Imz— | : : | >0
hit - b ) \Jwgl?
hi1 ... hig ’wl‘Q
DefineH = | : © |,andH|w|? .= H : |. ThenG takes
hkl . hkk |wk\2

the form
G ={(z,w) € C"* . Imz — Hlw|*> > 0}

Since the matricebl; are positive semi—definite, the coefficientsidfare
non-negative real numbers.
2. Case H; = 0 for at least ong.

AssumeHq,... H, # 0,andH, 4, ..., H,, = 0. Inthis case(s is the
product of the Siegel domain of the second kind

Imz; —w*Hijw >0
G = (z1,...,20,w) € C"TF
Imz, —w'H,w >0
and the Siegel domain of the first kifd/ ™)™~ ". It has been shown in
the first case that the matrickl, . . . , H,, and thus of course the matrices

H,, ..., H,, are simultaneously diagonalizable. TherefGrekes the same
simplified form as in the first case, after a linear change of coordinates in

Step 7 We will use the simplified shape @f to gain further information
about the automorphisnis € U.

G={(z,w) €C":Imz > Hwl*} = (z,w) = (2, wy,...,e"Yuy)
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is an automorphism af for arbitrary, ..., ¢ € R. The set of all these
mappings forms a toru& of dimensionk. There is a maximal torus in
Aut;, G'that containg/. Since all the maximal tori idlut;, G are conjugated,

we can assume withoutloss ofgenera!ity'iﬁat U.LetF € U, F(z,w) =
(f(2),A(2) - w) andp(z,w) = (z,e™1wy,...,eY*wy) with arbitrary
Y1, ..., € R.Sincel is abelian, we havé' o o = p o F'. Consequently,

ezwl 6Z¢1

f(2), A(2) wl = |f(2), A(z) - w
etk etk
With A(z) := (a;i(2))1<j<k. this is equivalent to
1<i<k
ajl(z)ew” = ewjaﬂ(z) Vi,1
Thusaj;(z) = 0 for j # L. It follows that the matrixA ¢ (z) is diagonal for

all F € U and allz € G. Summarizing, we have that eveFye U is of the
form

F(z,w) = (fi(z1),. -, fm(zm), a1(2)w1, . .., ar(z)wy)
with f; € Aut;, H™.

Step 8 It has been shown in the 6th step that the components of the matrix

H = (hji1)1<j<m are non-negative real numbers. It will be shown addition-
1<i<k

ally in this step that exactly one element in each columi/as different
from 0.
Assume without loss of generality that in théh column the elements
hi, . .., hy are positive, and the elemerits, , ;, . . ., hy, are zero.
Letzg :=i- (hy,...,he, 1, ..., 1), letwy denote the-th member of
the standard basis @*, and let\ € R* be arbitrary.
Imz — hu\wl\2 — e = h1k|wk\2 >0
(z,w) € G <=
Im 2z, — hml\wl\Q — e — hmklwk\Q >0
For (\229, Awg) we have:

Im A%ihy; — hy|A> =0

Im A%k, — hyg|A2 =0
Im A% — hpgp A2 =22 >0

Im A% — Ay A2 = A2 >0
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= (A%20, \wg) € OG. Since everyF' € U is defined orl'(R7") x C* >
(A220, Mwp), we haveF (\2zg, \wg) € 0G VF € U. Let

F(z,w) = (fi(z1),. -, fm(zm), a1(2)wn, . .., ar(z)wy)
with f; € Aut,, H". Then

F()\2ZO7 )\U}O) = (fl(AQihll)7 o 7f7“()\2ih'rl)7 fr+1()\2i)7 DRI f’m(>\22)7
0,...,0,a;(A\%2)\,0,...,0) € 0G

Im f1(A%ihy) — N2hylai(V220)]2 > 0
.

: 2)
Tm f,(A%ih,) — A2Rylai(\220))? > 0

(as well adm f,;1(A%) > 0,...,Im f,,(A\%i) > 0). At least one of these
inequalities has to be an equality.

The automorphismg,, . . ., f,- will now be given specific values. It has
been shown in the 4th step that for eathe Aut, G = Aut, T(R7)
there is a torus of dimensiaoh of automorphismg” € U with fr = f.
Sincek > 0, there is at least onE' € U with fr = f for every choice of

f € Aut!,G. Let fo, ..., f, =id, and let

az+b . 2Re uq 1
=———witha:= bi=— 0, cc=—, andd :=0
hiz) cz+d “ lug| ] <0, ¢ luq|’
Thenf; € Aut HT, sincea, b, ¢, d € R with det (Z Z) = 1. A trivial

calculation showg (u;) = u1. Thusid # f1 € Aut,, HT = Aut, H*.
ChooseF’ € U with fr = f. It follows from (2) that

Tm f1(A\2ihy) — Nhylai(A22)2 > 0
ha A2 (1 — Jar(\%20)]?) > 0
| ©)

R d2(1 — |a;(M220)|%) > 0
We will distinguish 2 cases, depending on the behavior of the function
A= ]al()\on)].
1. Case |a;(\%2)| =1
In this case we havhn f1(A\%ihy;) > A2hy; VA > 0. Sincec # 0, this
is in contradiction to part (i) of the following lemma:

Lemma4.2 Letu € HT, and letf € Aut H™ with associated matrix
ab
(C d) , Wherec # 0. Then
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(i) thereisar € RT withIm f(iz) < =.
(ii) if |d| < 1,thereis axr € RT withIm f(iz) > x.

Proof. A simple calculation showhm f(iz) = 7 forallz € R*.

ThusIm f(iz) < = & 222 +d*> > 1 & 22 > 1;—32. A corresponding
result holds if the inequality signs are reversed. This proves both parts of
the assertion. O

Therefore the first case cannot occur.
2. Case |a;(N\%2)| # 1

In this case]a;(A\%zg)| # 1 Lebesgue almost everywhere. We will as-
sume from now on that > 1, or in other words that at least 2 elements
are different from O in the-th column of H. It follows from (3) that
la;(A\%20)| < 1 Lebesgue almost everywhere. Since equality has to hold
in at least one of the inequalities (3), it follows that

Im f1(A%ihy) = Ahy|a;(V20) |2
for all A outside a set of measure 0. Consequently,
Im f1(A\%ihy;) = Ahylai(\220)]? < Ahy

forall A € R™. Thisis in contradiction to part (i) of the lemma above. In the
I-th and thus in every column df there is therefore at most one element
different from 0. Since no Siegel domain of the second kind contains an
entire complex line, we have that in every columnfbthere is exactly one
element different from 0.

After a suitable permutation of the coordinates, we have

Im 2z —h11|w1|2 — --~—h111|wll|2 >0

(2w) € G Im 23 — ho g 41|wy 11]? — -+ - = hagy|wy,|* > 0
b) .

Im 2, — Aty g1 Wi, 41| = o= Ay, Jwr,, |2 >0

m m

withl <l) <--- <l :=k.
After the linear change of coordinates

/ / /
wl = hnwl, e ,’wll =/ hlllwl17w11+1 = \/h2,l1+1w11+17 ey
/ /
wy = wy =/, w,,
G has the form

Imz1 — |w1|2—---— |wll|2 >0

(Z w)eG Imzz—|wll+1|2—---—|w12|2>0
> — .

Im zp, — |wy,, 1> = — |wg,, [* >0
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(we usew; instead oiu;- for simplicity). Ithas been shown in the introduction
that this domain is biholomorphically equivalent to the product of balls
By, 41 X Bly—i,41 X --- X By, 1, _,+1. This proves the theorem.O

Let G be a domain that fulfills the conditions of theorem 4.1. It will be
shown next that the number of factors of the product of b@lis biholo-
morphically equivalent to can be computed in terms of global geometrical
invariants ofGG, as well as by properties of the isotropy groups. This will
be used to find characterizations of the two most important special cases of
products of balls, namely the ball and the polydisc.

Corollary 4.3 Let G € SD2, be a domain with a poinp € G such

that Aut, G contains a torus of dimension. Let (m, k) be the type of
G and letC, denote the center olut;, G. Thenm = dim C), andG is

biholomorphically equivalent to a product of ballssaffactors.

Proof. It follows from theorem 4.1 tha¥ is biholomorphically equivalent to
aproduct of balls3, 41 x - - - x By, 1 of m factors for somen € N. It has
been shown in the introduction that the type of this produtfisn — m).
Since the type is a biholomorphic invariant, we have= m as desired.
Theisotropy groups of a balt,, are isomorphict® (n), and the center of
U(n) is given by{e**I : a € R}. Consequently, the connected components
of the identity of the isotropy groups &, 1 < - - - X B, +1 are isomorphic
toU(k1+1) x--- x U(kn, + 1), where the center of this group is given by

{diag(e™™,... e ... e%m . em):ay,...,an € R}

Thusdim C, = m. O

We will use this corollary to give a series of characterizations of the ball
and the polydisc.

Corollary 4.4 (A characterization of the ball and the polydisc)A domain
G € SD2,, is biholomorphically equivalent to a

(i) ball, iff there is a pointp € G such thatAut, G contains a torus of
dimensiom, anddim center Aut), G = 1.
(i) polydisc, iff there is a point € G' such thatdim center Aut), G = n.

Proof. Part (i) is an immediate consequence of corollary 4.3. Now (ii) will
be proved: sincelut;, G is compact, the conditiotiim center Aut, G = n
implies thatAut), G contains a torus of dimension Now corollary 4.3
shows thatz C C™ is biholomorphically equivalent to a product of balls of
n factors. O



A characterization of products of balls by their isotropy groups 603

An immediate consequence of part (ii) of the corollary above is the
following:

Corollary 4.5 (A characterization of the polydisc)A domainG € SD2,,
is biholomorphically equivalent to a polydisc, iff there is a pgirg¢ G such
that Aut;, G is a torus of dimension.

Proof. O

Now the type will be used to characterize the ball and the polydisc in a
unified way:

Corollary 4.6 (A characterization of the ball and the polydisc)A domain
G € SD2,, of the typeg(m, k) is biholomorphically equivalent to a

(i) ball, iff m = 1, and there is a poinp € G such thatAut, G' contains
a torus of dimension.

(i) polydisc, iffm = n, and there is a poinp € G such thatAut, G
contains a torus of dimension

Proof. O

5 A counterexample and applications

Let G C C" be a Reinhardt domain withe G. ThenAuty G contains the
mappings

(21, .-, 2n) = (€21, ..., %), a1,...a, €R

These mappings obviously form a torus of dimensiom Auto G (but
note thatAuty G is not necessarily a Lie group @ is not bounded). The
characterization of theorem 4.1 can therefore be no longer valid in any class
of domains that contains a bounded Reinhardt domain 0 that is not
biholomorphically equivalent to a product of balls. It will be shown by an
example that already the cldBNC > SD2 of domains biholomorphically
equivalent to a bounded domain with a noncompact automorphism group
contains such a Reinhardt domain. Thus theorem 4.1 cannot be extended to
BNC. As an immediate consequence we get BAC,, \ SD2,, contains
topological balls for alh > 1.

The example is the following well knowfhullen domain

Theorem 5.1 LetG := {(z,w) € C?: |2|> + |w|* < 1}. Then

(i) the mapsf,(z,w) := <f—jz, %M),with la] < 1, are automor-
phisms of7,
(i) G € BNC,

(iif) Auto G contains a torus of dimensidh
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butG is not biholomorphically equivalent to a product of balls (in this case
the ball or the polydisc).

Proof. (i) |z —al> =1 —az* = (1—z[?) (1 — |a|?); therefore

z—a 2+ w+/1— |al? 4_ B (1= 12%) (1 —1al?) N
1-az Vi-az | 1 —az?
w|* (1 —1al?)
11— az|?
12 el (1 — a2
:1_(1 |z |w|_)(1 |a|)<1
|1 —az|?

for (z,w) € G. Thus f,(G) C G. A simple calculation shows that
faofoa =1id = f_40 f,. CoOnsequentlyf, is an automorphism af.
(i) If Aut G would be compact, the orbit ), 0) under Aut G would
be compact as well. But the image @, 0) under the mappingg, is
exactly{(a,0) : |a|] < 1}, which is a contradiction. Thudut G is
noncompact.
(iii) Since G is a bounded Reinhardt domain that contains the origin, the
discussion above shows thatity G contains a torus of dimensian
To prove that’ is not biholomorphically equivalent to the ball or the
polydisc, we need the following theorem of T. Sunada ([Sun78]):

Theorem 5.2 (Sunada)wo bounded Reinhardt domai@s, G, in C™ are
biholomorphically equivalent, iff there is a linear map C* — C™ of the
form z; = r;z,(;) for all j, r; € R*, o a permutation of1, ..., n), with
#(G1) = Ga.

Obviously,G is not equivalent to the ball or the polydisc under a linear map
of this form. This completes the proof.0

Corollary 5.3 SD2 g BNC. Furthermore, BNC,, \ SD2,, contains

topological balls for alln > 1.

Remark Since the only bounded simply connected domairCinup to
biholomorphism is the unit disNC; \ SD2; can of course not contain
a (topological) disc.

Proof. (of corollary 5.3.)Let G := {(z,w) : Imz — H(w,w) € C}
be a Siegel domain of the second kind. THerw) — (Az, v Aw) is an
automorphism of7 for all A € R*. Let (2, wp) be inG. If Aut G would
be compact, then the orb#tut G - (29, wo) would be compact as well. But
this is in contradiction tg (\zp, vV Awg) : A € RT} € Aut G - (20, wp).
Thus Aut G is noncompact.
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An example of a non simply connected bounded dondain C! with
noncompact automorphism group can be found in [Kra83]. BiD; #
BNC;. Now letn > 2, and letG := {(z,w) € C? : |2]?> + |w|* <
1} x By_s. It follows from theorem 5.1 and theorem 4.1 tidat¢ SD2;
neverthelessAut G is noncompact. And sinc€ is a complete Reinhardt
domain that contains the origi@,is a topological ball. ThuBNC,,\ SD2,,
contains topological balls foratl > 1. O

It follows immediately from the discussion at the beginning of this sec-
tion and theorem 4.1 that a bounded Reinhardt domain that contains the
origin is biholomorphically equivalent to a Siegel domain of the second
kind, iff it is biholomorphically equivalent to a product of balls. Thus we
have computed the intersection D2 with the class of all domains bi-
holomorphically equivalent to a bounded Reinhardt domain that contains
the origin. This result will now be extended to the cl&sP of all domains
biholomorphically equivalent to any Reinhardt domain. P& denote the
class of all domains biholomorphically equivalent to a product of balls.

Theorem 5.4 SD2 NRD = PB

Proof. Let G C C" be a Reinhardt domain with ¢ G. It will be shown
that G cannot be biholomorphically equivalent to a Siegel domain of the
second kind. We will use the fact that Siegel domains of the second kind are
convex.
1. Case Assume that for allj with 1 < j < n there is a point: =
(21,...,2n) € Gwith z; = 0.

It is well known that in this case every holomorphic function@can
be extended to the complete hull

G = {(rz1,re22, ..., mn2n) : (21,...,20) €G, 0 <1 < 1}

of G. Sincel ¢ G we have 2 G, andG is not a domain of holomorphy.
Thus it cannot be biholomorphically equivalent to a convex domain.
2. Case Assume that there is asuch that; # 0 forall z € G.

Let pr; denote the projection of” onto thej-th coordinate. Let =
(#1,...,2n) beinG, and lety : [0,1] — C", t — (62”“21, e ,ezmtzn).
SinceG is a Reinhardt domain, we have that G. The projectiorpr;(vy)
of this curve is a circle around the origin. Singet pr;(G), [pri(y)] €
m1(pr;(G)) is nontrivial. Thereforéy| € m;(G) is nontrivial as well, and
G cannot be biholomorphically equivalent to a convex domain.

Let nowG be a Reinhardt domain that is biholomorphically equivalent
to a Siegel domain of the second kind. It has been shown abové thék.
Therefore the:-dimensional torus of linear mappings

[1e %1 10

(215 .y 2n) = ("M 21, .., e 2y), a1,...0q €ER
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is in Auty G. It now follows from theorem 4.1 tha® is biholomorphically
equivalent to a product of balls.OO

Using the theorem of Sunada, we can now give a complete description
of all Reinhardt domains that are biholomorphically equivalent to a Siegel
domain of the second kind.

Corollary 5.5 AReinhardtdomaityin C™ is biholomorphically equivalent
to a Siegel domain of the second kind, iff it is a product of ellipsoids of the
form

2

Fo(1) i Fo(n1) <1
S1 Snq
G=<L2eC":
Zo(ni+-+ng_1+1) 4y Zo(ni++ng) <1
Sni++ng_1+1 Snyi+-+ng )
wheren; + --- +mng = n, s1,...,5, € RT, ando a permutation of
(1,...,n).

Proof. This follows immediately from theorem 5.4 and theorem 5.2 of
Sunada. O

Finally, theorem 5.4 can be reformulated to give another characterization
of products of balls.

Corollary 5.6 A domain is biholomorphically equivalent to a product of
balls, iff it is biholomorphically equivalent to a Siegel domain of the second
kind and to a Reinhardt domain.

Proof. O
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