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Abstract. Let R be acomplete local ring of dimensidrover a perfect field of prime characteristic

p, and letM be anR-module of finite length and finite projective dimension. S. Dutta showed

that the equality lim— W = £(M) holds when the ringR is a complete intersection

or a Gorenstein ring of dimension at most 3. We construct a module over a Gorensteinaing
dimension five for which this equality fails to hold. This then provides an example of a nonzero
Todd clasg3(R), and of a bounded free complex whose local Chern character does not vanish on
this class.

1 Introduction

Let R be a complete local ring of dimensiehover a perfect field of prime
characteristip, and letG, be a bounded complex of free modules with finite
length homology. In [Du] S. Dutta introduced theit multiplicity

X (F"(G,))
pnd
where F"(—) denotes the th iteration of the Frobenius functor. C. Szpiro and

L. Peskine showed in [PS2] that the equality

X (F"(G.) = p" x(G,)

holds for a graded complex over a graded ring, and Szpiro conjectured that this
would hold in general over a Cohen-Macaulay ring, see [Sz]. In the specific case
that G, is the resolution of a modul#/ of finite length and finite projective
dimension, the conjecture then asserts that

Xoo(Go) = lim
n—oo

’

LF"(M)) = p"e(M).
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Dutta showed that this equality does hold if the riRis a complete intersection

or a Gorenstein ring of dimension at most 3, see [Du]. In [Ro3] P. Roberts con-
structed a counterexample to Szpiro’s conjecture over a Cohen-Macaulay ring of
dimension three using the famous example of negative Serre intersection multi-
plicity due to Dutta, Hochster and McLaughlin, [DHM]. The question however
remained open for Gorenstein rings, and the main aim of this paper is to demon-
strate that the conjecture is false in general over Gorenstein rings. Specifically,
we construct a modul@f of finite length and finite projective dimension over a
Gorenstein ringR of dimension five such that

L(FR(M))

lim o £ 0(M).

n—o00

Using techniques similar to those used in [DHM], we first construct a module
N of finite length and of finite projective dimension over the hypersurface

A=K[U,V,W,X,Y, Z],/(UX+ VY + WZ),

wherem is the ideakU, V, W, X, Y, Z), such thaty (N, A/P) = —2, whereP

is the prime idealu, v, w). (Lower case letters will denote the images of the
corresponding variables.) We believe this is of independent interest since it is an
example of two modules, one of whom has finite projective dimension, with a
nonvanishing intersection multiplicity where the sum of the dimensions of the
modules is dimA — 2. It should be pointed out thatAf; andN, are two modules,
each of which has finite projective dimension overthen the condition

dimN; +dimN, <dimA

does implyy (N1, N2) = 0 by the main theorems of [Ro1] or [GS].

The limit multiplicity has an interpretation in terms of localized Chern char-
acters and the local Riemann-Roch formula, see [Ro3] or [Ro4]. The results
mentioned above then provide an example of a nonzero Toddwgl@sover a
Gorenstein ring? of dimension five, and of a bounded free complex whose local
Chern character does not vanish on this class. In [Ku] K. Kurano does obtain a
Gorenstein ringk of dimension five with a nonzero Todd clasgR), but it is
not known if there is a free complex whose local Chern character does not vanish
on this Todd class.

2 Background

In this section we give a brief summary of the relevant terminology as well as
record some well-known facts aboytand x, that we shall find useful later in
our work.
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For two moduled/ andN over alocal ring R, m) suchthaM ® N has finite
length andM has finite projective dimension, the Serre intersection multiplicity

is defined as
dimR

X(M,N) =) (=D)'¢(Torf (M. N))
i=0
where{(—) denotes the length. This definition does agree with the geometric
notion of intersection multiplicity, see [Ser]. For a bounded comglgx

0O—->Gy—>-+—>G1—>Gg—0

with finite length homology, we define

X(GJ) = (-D'U(Hi(G.)).

i=0

Let R be a ring of positive characteristiec and dimensioni. Using the
Frobenius endomorphisrf of R (which takes to r? for r € R), Peskine and
Szpiro defined the Frobenius functBg (—). This functor takes aR-moduleM
to

Fr(M) =M ®x 'R,

where’ R is R viewed as a module over itself with a left action via the Frobenius
endomorphism, and a right action via the usual multiplication. WeRjge-)

(or simply F"(—)) to denote the:th iteration of the Frobenius functor. For a
bounded free comple&, with finite length homology, Dutta defined

x(F"(G,))
pna' :

If G, is a finite free resolution of a®-module M of finite length and finite
projective dimension, then

Xoo(Go) = lim
n—00

(G =) and (G = lim “TEOD)

0o prd
For the second assertion note that

H;(F}G,) =Torf(M,”" R) =0
foralli > 1 andn > 0, by [PS1, Theorem 1.7].

Lemma 2.1. Let R be an integral domain of characteristjec > 0 and letS be
a module-finite extension ring which has ranks anR-module. Then for any
bounded comple&, of free R-modules which has finite length homology,

Xoo(Ge ®r §) =7+ Xoo(Ga).
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Proof. SinceS is anR-module of rank-, there exists a short exact sequence

0 R S T 0

where T is a torsion R-module and thus has dimension less tlAnSince
x(Fr(G.) ®r —) is additive on short exact sequences, we get

X(FR(G) ®r S) =71 - x(FR(G) + x(Fr(G) ®r T). (%)
Since the modul& has dimension less than the dimensiomRof
FI (G, T
im XFR(G)®rT) _

n—00 p”d

0

by [Sei, Proposition 1]. We obtain the desired equality by dividing the equation
(x) by p"® and forming the appropriate limits since

Fi(G.) ®r S = Fi(G. ®& S).
O

We will also use the following lemma, which is similar to Proposition 2.4 of
[DHM].

Lemma 2.2. Let (R, m, K) be a local ring, and letM be a finitely generated
R-module. Suppose th#&tis an ideal ofR such thatR/ P is a regular ring. Then
M has finite projective dimension if and onlyTiérX (M, R/ P) = Ofor i > 0.

Proof. SinceR/P is regular, the residue fiel® has a finite resolution by free
R/P-modules. Then T¢r(M, R/ P) = Ofori > Oifand only if Tor* (M, K) =
0 fori > 0. However Tof(M, K) = 0fori » 0 if and only if M has finite
projective dimension. 0

3 Overview of the construction

We summarize the work that will be carried out in Sections 4 and 5 and explain
how this provides the example we are aiming for.

In Section 4 we construct a modulé of length 55 and finite projective
dimension over the local hypersurface

A=K[U,V, W, X, Y, Z],/(UX + VY +WZ),

wherem is the maximal idea{U, V, W, X, Y, Z), such thatV has a nonzero
intersection multiplicity withA / P whereP is the prime idealu, v, w). Specif-
ically, we have

5
x(N,A/P) = Z(—l)fz(Tor;‘(N, A/P)) = —2.
i=0



Intersection multiplicities over Gorenstein rings 159

In Section 5 we construct a Gorenstein normal donfaiwhich is a module
finite extension ofd and for which there is an exact sequencelahodules

0 A8 R P 0. (k%)

Note that the ringR has rank 4 as an-module. Consider th&-moduleM =
N ®4 R. We claim that for this module

L(FR(M))

lim S # U(M).
p "

n—oo

To see this, letF, be a finite free resolution aV over A. SinceA — R is a
module-finite extension, the compléx, = F, ®4 R has finite length homol-
ogy. Furthermore sinc® is Cohen-Macaulay, the complé€x, is acyclic by the
Acyclicity Lemma of Peskine and Szpiro, [PS1, Lemma 1.8]. HeRgprovides
a finite free resolution oM as anR-module. To compute the length 8f we
use the additivity ofy (F, ® 4 —) on the exact sequencex). This gives

UM) = x(Go) = x(Fe ®a R) =3x(F,) + x(Fo Q4 P).
The additivity also gives
X(Fe®a P) = x(F,) — x(Fo®a A/P),

and so

EM) = 4x(F,) — x(Fo®4 A/P) = 4L(N) — x(N, A/ P)
=4.55—(-2) =222

On the other hand, sind@ has rank 4 as aa-module, Lemma 2.1 gives

lim —Z(Fﬁéjl/l))

n—o00

= Xoo(Ge) = Xoo(Fe ®4 R) = 4 xoo(F,).

SinceA is a hypersurface an#, is a finite resolution ofV, we havey,,(F,) =
£(N) by [Du, Theorem 1.9]. Therefore,

im {ErM))

e = 4.55= 220
n—o00 p”



160 C.M. Miller, A.K. Singh

4 A module of finite projective dimension

Consider the local hypersurface
A=K[U,V, W, X,Y,Z],,/(UX+ VY +W2Z)

whereU, V, W, X, Y andZ are indeterminates over a fiekd of arbitrary char-
acteristic, anah is the maximalidealU, V, W, X, Y, Z). We construct a module
N of finite length and finite projective dimension ov&r which has a nonzero
intersection multiplicity with the moduld / P, whereP denotes the prime ideal
(u, v, w)A. Specifically, we construgV such that

5
X(N,A/P)=> (=D'e(Tor (N, A/ P)) = -2.
i=0

The following complex is an minimal free resolution &f P:

¢3 ¢4 ¢3 2 1

A* At At A3 A 0.
The maps in this complex are given by the matrices:
x 0 —w v
pr=uvw), 2=y w 0 —ul,
z—v u O
O u v w 0 x y z
_lu 0O z -y _Ix 0 —w v
3 = v —z 0 x |’ and ¢, = y w 0 -—u
w y —x 0 z—v u O

The modules Tgh(N, A/ P) may be computed by tensoring the above com-
plex with the modulev. If N has length 55, the resulting complex may be viewed
as

*_, g220 B K220 % k220 b2 K165 61 K55 0

wheref, 6,, « andg are matrices ovek . Thei th homology of this complex is
Tor (N, A/ P), and will vanish fori > 3 provided the sum of the ranks of the
matricesy andg is 220. In this case the moduMhas finite projective dimension
by Lemma 2.2, and an easy calculation shows that
x(N,A/P)
= ¢(Tord (N, A/P)) — £(Tor} (N, A/ P)) + £(Tory (N, A/ P))
= 55— 165+ 220— rank(a) = 110— rank(a).

In our construction, the matrix will have rank 112 ang will have rank 108.
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As in [DHM], we regard a module of finite length ovdras a finite dimen-
sional vector space ovek. The action of the generators of the ring can then
be treated as commuting nilpotent endomorphism of this vector space. We shall
denote the endomorphisms given by the action,af, w, x, y, z by the matri-
cesyr, Vo, V3, Va, VU5, ¥e, respectively. Note that the matrices must satisfy the
relation

Vi, = Yy, foralli andy,
corresponding to commutativity, and the relation

V1va + Yors + Yrahe = 0

corresponding to the defining equation of the hypersurface.

The module of finite length and finite projection that we construct is an-
nihilated bym?® + (x, y, z)m. Consequentlyy; may be written in block form
as

Y = fori=1,...,6.

cocoo
coocoo
coof

Furthermore we set
a4:a5:a6:0and b4:b5:b6:0.

Since
al

0
0
0
0

cooo
ocoo

0
0
0

Oi

the relatiomjr1v/4 + Y25 + V3 =
The matricesi, as, az are

IS

[¢)

asily seen to be satisfied.

=100, a2=(010, as=(00 1),

where 1 denotes the» 4 identity matrix, and O denotes the<d4 zero matrix.
For b; we take

10000 01000 00100
=|1010000), »,=1000100], b3=1000010
00100 00001 00000

where 1 denotes the 4 identity matrix, and O denotes the<44 zero matrix.
Note that for all andj we haves;b; = a;b;, and so the commutativity relations

wi'ﬂlfj = wjvfi do hold.
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After interchanging certain rows and columns, the matris

Oara,a3 0 ¢1 ¢ c3
a1 0 0 0cpt O ¢ —cs5
a 0 0 Ocp —ce 0 ¢4
a3 0 0 Oc3 ¢5 —c4 O
000O00O0d d ds
0 0O0O0d 0 ds —ds
0 00 O0d,—ds O dg
0 0O0Ods ds —ds O
00O0O0O0b by b3
0000, O O O
0000, 0O O O
0000w O O O

The rank of the matrix is easily seen to be the sum of 40 and the rank of the
submatrix

di dy ds
0 ds —ds
o1 = —de 0 d4
ds —ds O
b1 by b3

Similarly, after deleting rows and columns of zeros and interchanging certain
rows and columns, the matrikreduces to

0 0 0 O Cq4 C5 Cp
0 —asz dp Ca 0 —C3 C2
as 0 —a 1C5 C3 0 — Cc1

—dy ai 0 Ce —C2 (C1 0
0 O O Ods ds ds
0 O O0ds O —ds d>
0 0 Odsds 0 —d
0 O Ods—dr, di O
0 0 O O O —b3 by
0O 0 O O0bs O -0y
0 0 0 O-bp by O )
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This rank of this matrix is the sum of 12 and the rank of the submatrix

0 cs c¢5 c6
0 di ds ds
dy 0 —ds dy
lds a5 0 —-a
b= de —dy di O
0 0 —b3 by
0 by 0 —by
\0 —b2 by O

We next letc; = ¢cp = ¢c3 = c4 = ¢5 = 0 and
c6=(00000])

where 1 denotes the» 4 identity matrix, and O denotes the<d4 zero matrix.
It remains to exhibit matriceg; for 1 < i < 6 such that the matrices and
have ranks 112 and 108 respectively. Wedlet= d, = 0 and

0000000010000000000000%0
00000000010000000000O0OO0OJO
00000000001000000000O0OO0OJO
00000000000100000000OO0OJO
00000000000000O0O001000000]0
0000000000O0O0OOOOOO100000]0
000000000O0O0OOOOOOOO10000]0
d3=]100000000000000000001000]0
0000000000O0OOOOOOOOO1O00]0
000000000000OOC0O0OOO0OO0OO10J0
0000000OOOOOOOOOOOOOOO1)0
000000000O0O0OOOOOOOOOOOOOJ1
0000000000O0O10000000O0OO0OO0JO
00000000000001000000000)0
0000000000000010000000d0
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1000000000000000000010%0
01000000000000000000010J0
001000000000000000000O01)0
00010000000000000000000J1
00001000000000000000000J0
00000100000000000000OO0OJO
000000100000000000OOOCOOOJO
dy=]100000001000000000000000]0
00000000O0OOOOOOOOOOOOOOOJO
000000000000O0OOOOOOOOOO|O
000000000000O00OOOOOOOOOO|O
00000000000O0O0OOOOOOOOOO|O
000000000000O0OOOOOOOOOO|O
00000000000010000000000)0
0000000000000001000000d0

OOOOOOOOOOOOOOOOOOOOOO%O
00000000O0OOOOOOOOOOOOOOOJO
00000000O0OO0OOOOOOOOOOOOOJO
000000000000O0O0O0O0OOOO0OOO0|O
000000000000000O0O1000000JO
0000000000000O00O0O0O100000J0
000000000000O0OOO0OO10000J0
ds=]100000000000000000001000jQ
000000000000O0OCOO0OOOO100J0
00000000000OOOOOOOOOO10]O
000000000000OOOOOOOOOOO1)0
000000000000OOOCOOOOOOOOO0)]1
00000000000000OC0O10000000JO
00000000000OOOOOOOOOO0OOO0)O
0000000000000000000000&0

and



Intersection multiplicities over Gorenstein rings 165

1000000000000000000000%0
01000000000000000000000J0
00100000000000000000000j0
00010000000000000000000j0
00001000000000000000000J0
00000100000000000000000O0J|O
00000010000000000000000JO
dg=]100000001000000000000000]Q
00000000100000000000000J0
00000000010000000000O0OOO0|O
00000000001000000000O0OOO0|O
000000000001000000000OO0J|O
000000000000O1000000000O0J|O
00000000000001000000000)0
0000000000000010000000d0

Of course, any choice of matricés, ds4, ds anddg in general position will serve
our purpose. That the matrices exhibited above do have the required rank prop-
erties is an elementary, though tedious, verification.

5 The construction of the Gorenstein ring

We now construct a Gorenstein normal domaiwhich is an extension of a free
A-module by the prime ideaP. The construction is carried out in the case that
A is a hypersurface over a field of characteristic 2.

Consider the ringR = Ala, b, ¢, d, e] where

a = .Juyz, b =\/vxz, c = Jwxy, d = Juvw, e = Jowyz.

The ringR is a normal domain; in fact, it is the integral closure4oin the field
L(/uyz, /vxz) whereL is the fraction field ofA. This furthermore shows that
the ringR has rank 4 as an-module.

To show thatR is a Cohen-Macaulay ring, we work with the system of
parameters:, x, v, y, w — z and show that the multiplicity of the idedl =
(u, x, v, y, w—z) is 8 and that this equals the length of tkievector space/I.

Considerthe extensidii[u, x, v, y, w—z] € R.The degree of this extension
may be computed by examining the corresponding extension of fraction fields,
and so is easily seen to be 8.

The following relations show thaR is generated as aa-module by the
elements la, b, ¢, d, e.
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a? = uyz, ab=ze+vyz, ac=ye+ wyz,

ad = ue, ae=dyz, b? = vxz,
bc =xe, bd=ve+vwz, be=vzc,

c? =wxy, cd =we+vwy, ce = wyb,
d? = uvw, de = vwa, e? = vwyz.

The relations amongst the elementsrRoélso include

ux +vy +wz, xa+ yb+zc, wb+vc+ xd,
wa + uc + yd, va + ub + zd.

Consequently the images of the following elements form a generating set for
R/I as aK vector space:

1 z,a,b,c d, e, ze.

Hence the length oR /1 is less than or equal to 8, but since the multiplicity of
the ideall was earlier computed to be 8, the length must be precisely 8. This
shows thatR is a Cohen-Macaulay ring, and furthermore that it is Gorenstein,
since the socle iR /I is of dimension one, being generated by the image dt
is not difficult to verify that the relations listed above are precisely the relations
amongst the generators Bf

Lastly, it may be verified that there is an exact sequence-ofodules

0 A3 R P 0
where the maR — P is determined by

1-0,a—>u, b—>v,c—>w,d—>0,e—0.

6 Local Chern characters

Let X be a closed subset of SpRowhere the ringR is a d-dimensional ho-
momorphic image of a regular local ring. For each integéet Z; (X) denote
the freeQQ-module generated by cycles of the fof®y/ P] for P in X such that
dimR/P = i. For a primeQ with dimR/Q = i + 1 and an element of R
such thate ¢ Q, define

div(r, 0) = Y L((R/(Q+xR)p)IR/P].
dimR/P=i

Let B;(X) denote the subgroup &f;(X) generated by elements of the form
div(x, Q) for Q in X. Thei th graded piece of the Chow groupXfis A;(X) =
Z;(X)/B;(X), and the Chow group of is

d
A0 = P A,
i=1
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Let G, be a bounded free complex 8fmodules, and leZ C SpecR be the
support of this complex. The local Chern charactgi®y)) is the sum

Ch(Go) = Chd(Go) + Chdfl(Go) +---+ Cl”b(G.)

where, for eaclt,
chi(G,) 1 Ai(X) = A (XN Z)

is aQ-module homomorphism. (For precise definitions and properties we refer
the reader to [Fu].) We consider the special case of the local Riemann-Roch
formula where the homology modules of the compigxare of finite length: for

any finitely generate®-moduleN, there is an element

T(N) =149(N) +--- + 10(N) € A.(SUPAN)),
called theTodd clasof N, such that
x(Goe ® N) =ch(G,)(t(N)).

Note that since the support 6f, is the closed point of Spak, ch(G,)(t(N))

is an element ofAo(SpecR/m)) = Q. If G, is the resolution of a modul& of
finite length and finite projective dimension, the local Riemann-Roch formula
then gives

d
L(M) =ch(G.,)(t(R)) = ZChi(G.)(f; (R)).
i=0
Now suppose in addition tha& is a complete local ring over a perfect field
of prime characteristip. Since the local Chern characters are compatible with
finite maps, one can show that
. L(FY (M
Tim % — chy(Ga)(tu(R)).
see, [Ro4, Proposition 12.7.1]. If the ring is a complete intersection then
7;(R) =0foralli < d, and so

L(FR(M))

€M) = ch(GL)(r(R) = chu(Gu)(w(R) = lim =

For a Gorenstein ring the duality property shows thaj_; (R) = O for all odd
numbers. In the specific case th&is a Gorenstein ring of dimension 3 a6d

is the resolution of a modul® of finite length and finite projective dimension,
this then gives

LM) = ch(Go)(T(R)) = chg(G.)(t3(R)) + Chi(Go)(T2(R)).

The operator ci(G,) can be identified with the MacRae invariant, and is known
to vanish whenever the modulé has codimension greater than one, see [R02,
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Theorem 3], and also [Fo,Ma]. In [Ku] Kurano gave examples of Gorenstein
rings R for which t;(R) # 0 for somei < d. However it is not known in the
case of Kurano’s examples if there exists a bounded free conmiil@ith finite
length homology for which cliG,)(z; (R)) does not vanish for some< d. We
would also like to point out that, using the example in [DHM] of a module with
negative intersection multiplicity, Roberts did construct an example of a Cohen-
Macaulay ringR of dimension 3 such that efiG,)(72(R)) # 0 for a bounded
free complexG, with finite length homology, which is, in fact, the resolution of
a module of finite length and finite projective dimension.

In our example, wher® is a Gorenstein ring of dimension 5 agy is the
finite free resolution of the modul#, we have

€(M) = chs(G.)(t5(R)) + chg(G.)(t3(R)) = 222
(Recall that ch(G,) = 0 by [Ro2, Theorem 3].) On the other hand,

chs(G)(rs(R) = fim A — 220

and so, we must have
chs(G.)(13(R)) = 2.

Thus our example provides an example of a Todd cta@®) over a five dimen-

sional Gorenstein ringk, and of a bounded free complex with a local Chern
character that does not vanish on this class. Furthermore, we may also conclude
that in our example, wherg = 2, we have the formula

C(FA(M)) =220-2%" +2.2% foralln > 0

by the following proposition, which follows from the compatibility of local Chern
characters with finite maps: see the proof of [Ro4, Proposition 12.7.1].

Proposition 6.1 (Roberts)LetR be a Noetherian local ring of positive charac-
teristic p and dimensiol. Suppose that the residue fieldfs perfect and that

the Frobenius endomorphism is a finite map. Then for any bounded free complex
G, with finite length homology, we have

d
Ch(FA(G))(T(R) = Y p"chi(Ga) (i (R))

i=0

forall n > 0.
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7 Further consequences of the example

Let (R, m) be acomplete local ring of dimensidnand letM be ankR-module of

finite length. The lengtld(F"(M)) is equal top™@¢(M) if the ring R is regular,

and this may be viewed as a special case of the following result, [Du, Theorem
1.9]:

Theorem 7.1 (Dutta).Let(R, m) be a complete intersection ring of dimension
d, and letM be anR-module of finite length. Then

L(FR(M)) = £(M)p"?,
and equality holds if the module has finite projective dimension.

C. Miller has obtained a converse to this theorem in [Mi], which then gives
a characterisation of modules of finite length and finite projective dimension:

Theorem 7.2 (Miller). Let(R, m) be a complete intersection ring of dimension
d, and letM be anR-module of finite length. Then the following statements are
equivalent:

1) €(FE(M)) = £(M)p" forall n > 0.

2) The moduleVM has finite projective dimension.

3) lim, o YD) _ popy.

pnd

A natural question raised by these theorems is whether there is a relationship
between?(Fp(M)) and¢(M)p™ if the ring R is Gorenstein, but is not a com-
plete intersection. The examples we have constructed already show that over a
Gorenstein ringr of dimension 5, the equalit§( Fg(M)) = 2(M) p> need not
hold for a moduleM of finite length and finite projective dimension. We next
show that the inequality(F(M)) > ¢(M) p" which holds forall modulesM
of finite length over a complete intersection ring, fails to hold over Gorenstein
rings even when the finite length module has finite projective dimension.

In Section 4 we constructed a modweover the hypersurface

A=K[U,V, W, X,Y,Z],,/(UX+ VY +W2Z)
which has finite length and finite projective dimension and has the property that
X(N,A/P)= -2,

whereP is the prime idealu, v, w). Let Q denote the prime idedk, v, w), and
consider the short exact sequence

O—— A/ —— A/(v,w) —— A/P —— 0,
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where the first map is multiplication by the elemanSince the elementisand
w form a regular sequence in the rig the Koszul resolution gives that

2
XN, A/, w)) =Y (=1 Hi(v, w; N),
i=0
whereH; (v, w; N) denotes théth Koszul homology module. Since diiV) <
2, we then hav{l?:o(—l)"H,-(v, w; N) = 0 by [Ser, Theorem 1, Chapter IV].
Consequently,
X(N,A/Q)=—x(N,A/P) =2
Consider the automorphism of A which switchest andu, and fixesv, w, y
andz. Let N’ denote the modul&/ now viewed as am-module by restriction
of scalars viar. We then have

X(N',A/P) = x(N,A/Q)=2.

The same argument as in Section 3 then shows thdt-tmeduleM’ = N'®4 R
has length
LMy =4L(N")y — x(N', A/ P) = 218
whereas o
lim —E(FRESHM )
n—oo p
Remark 7.3.For a Cohen-Macaulay local ring, let ££(A) denote the Grothen-
dieck group ofA-modules which have finite length and finite projective dimen-
sion. Ifxy, ..., xyisasystem of parameters férthen[A/ (x4, ..., x;)]isanele-
ment of £(A). The intersection theory of the modules of the fdrftxy, . .., x,)
is well understood: iV is a finitely generated-module with dimM < d, then

Xx(A/(x1, ..., xq), M) =0

by [Ser, Theorem 1, Chapter 1V]. Consequently it is of interest to understand
the groupG (A) which is the quotient of Z/£(A) by the subgroup generated by all
modules of the formA / (x4, ..., x4) Wherexy, ..., x, is a system of parameters
for A. UsingK -theoretic methods, M. Levine has computed this group for certain
hypersurfaces, see [L§4]. We would like to point out that in the case whete

is the hypersurface

A=K[U,V,W,X,Y, Z],/(UX+ VY +WZ),

=220

andN is the module of finite length and finite projective dimension constructed
in Section 4, the fact that (N, A/(u, v, w)) # 0 shows thafN] is a nonzero
element of the grou (A).
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