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Abstract: We consider forj = 1
2, 3

2, . . . a spherically symmetric, static system of
(2j + 1) Dirac particles, each having total angular momentumj . The Dirac particles
interact via a classical gravitational and electromagnetic field.

The Einstein–Dirac–Maxwell equations for this system are derived. It is shown that,
under weak regularity conditions on the form of the horizon, the only black hole solutions
of the EDM equations are the Reissner–Nordström solutions. In other words, the spinors
must vanish identically. Applied to the gravitational collapse of a “cloud” of spin-1

2-
particles to a black hole, our result indicates that the Dirac particles must eventually
disappear inside the event horizon.

1. Introduction

In [1,2], particle-like solutions of the Einstein-Dirac-Maxwell (EDM) equations were
constructed for a static, spherically symmetric singlet system. It was found that the
solutions in a given state (i.e. in the ground state or in any fixed excited state) cease
to exist if the rest massm of the fermions becomes larger than a certain threshold
valuems . The most natural physical interpretation of this observation is that form >

ms , the gravitational interaction becomes so strong that a black hole would form. This
suggests that there should be black hole solutions of the coupled EDM equations for
large fermion masses. The work [3], however, indicates that this intuitive picture of
black hole formation is wrong. Namely, it was proved in [3] that the Dirac equation has
no time-periodic solutions in a Reissner-Nordström black hole background, even if the
Dirac particles have angular momentum and can thus, in the classical picture, “rotate
around” the black hole. This implies that if we neglect the influence of the Dirac particles
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on the gravitational and electromagnetic field, there are no black hole solutions of the
EDM equations.

In order to understand if and how Dirac particles can form black holes, we study
in this paper the fully coupled EDM equations. We do not assume the Dirac particles
to be in a spherically symmetric state; they are allowed to have angular momentumj .
However, we arrange 2j + 1 of these particles in such a way that the total system is
static and spherically symmetric. In the language of atomic physics, we consider the
completely filled shell of states with angular momentumj . Classically, one can think
of this multiple-particle system as of several Dirac particles rotating around a common
center such that their angular momentum adds up to zero. Since the system of fermions
is spherically symmetric, we get a consistent set of equations if we also assume spherical
symmetry for the gravitational and electromagnetic field. This allows us to separate out
the angular dependence and reduce the problem to the analysis of a system of nonlinear
ODEs.

We prove analytically that, under weak regularity conditions on the form of the
horizon, the black hole solutions of our coupled EDM equations are either the Reissner–
Nordström solutions (in which case the Dirac wave functions are identically zero), or
the event horizon has the form of the extreme Reissner–Nordström metric. In the latter
case, we show numerically that the Dirac wave functions cannot be normalized. Thus
our Einstein–Dirac–Maxwell system does not admit black hole solutions. Our results
show that the study of black holes in the presence of Dirac spinors leads to unexpected
physical effects.Applied to the gravitational collapse of a “cloud” of Dirac particles, this
is a further indication that if an event horizon forms, the Dirac particles must eventually
disappear inside this horizon.

The methods used in this paper are quite different from those in [3]. Namely, in
contrast to [3], we do not derive “matching conditions” for the spinors across the horizon.
We work here only with the equations outside the event horizon, and the proof relies on
the nonlinear coupling of the spinors into the Einstein–Maxwell equations.

2. The Spherically Symmetric Multi-Particle System

The gravitational field is described by the static, spherically symmetric Lorentzian metric
in polar coordinates

ds2 = gij dxi dxj = 1

T 2 dt2 − 1

A
dr2 − r2 dϑ2 − r2 sin2 ϑ dϕ2 (2.1)

with positive functionsA = A(r) andT = T (r). We consider as our space-time the
regionr > ρ > 0 outside a ball of radiusρ around the origin. The physical situation we
have in mind is that the surfacer = ρ is the event horizon of a black hole. We assume
the metric to be asymptotically Minkowskian,

lim
r→∞ A(r) = 1 = lim

r→∞ T (r). (2.2)

The electromagnetic field is described by a potentialA of the formA = (−φ, 0), where
φ is the Coulomb potentialφ = φ(r).
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In direct generalization of the situation in the Reissner–Nordström background [3],
the Dirac operatorG takes the form

G = iGj (x)
∂

∂xj
+ B(x)

= iT γ 0
(

∂

∂t
− ieφ

)
+ γ r

(
i
√

A
∂

∂r
+ i

r
(
√

A − 1) − i

2

√
A

T ′

T

)

+ iγ ϑ ∂

∂ϑ
+ iγ ϕ ∂

∂ϕ
, (2.3)

whereγ t ,γ r ,γ ϑ , andγ ϕ denote theγ -matrices of Minkowski space in polar coordinates,

γ t = γ 0,

γ r = γ 1 cosϑ + γ 2 sinϑ cosϕ + γ 3 sinϑ sinϕ,

γ ϑ = 1

r

(
−γ 1 sinϑ + γ 2 cosϑ cosϕ + γ 3 cosϑ sinϕ

)
,

γ ϕ = 1

r sinϑ

(
−γ 2 sinϕ + γ 3 cosϕ

)
.

As with the central force problem in Minkowski space [4], this Dirac operator commutes
with: a) the time translation operatori∂t , b) the total angular momentum operatorJ 2 =
(L + S)2, c) thez-component of total angular momentumJz, and d) with the operator
γ 0 P (whereP is parity). Since these operators also commute with each other, we can
write any solution of the Dirac equation as a linear combination of solutions which are
simultaneous eigenstates of these operators. We denote this “eigenvector basis” for the
solutions by

9c
jkω with c = ±, j = 1

2
,

3

2
, . . . , k = −j, −j + 1, . . . , j, ω ∈ IR;

(2.4)

the eigenvalues are

i∂t9
c
jkω = ω 9c

jkω,

J 2 9c
jkω = j (j + 1) 9c

jkω,

Jz 9±
jkω = k 9±

jkω,

γ 0P 9±
jkω = ±9±

jkω ×
{

1 for j + 1
2 even

−1 for j + 1
2 odd

.

For the functions9c
jkω, the Dirac equation reduces to ordinary differential equations

in the radial variabler. The quantum numberk describes the orientation of the wave
function9c

jkω in space, and thus spherical symmetry of the Dirac operator implies that
the radial Dirac equation is the same for all values ofk. In order to build up our many-
particle system, we take, for givenc, j , andω, one solution of the radial Dirac equation
and consider the system of the 2j + 1 particles

9c
jkω, k = −j, . . . , j
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corresponding to this radial solution. Using the formalism of many-particle quantum
mechanics, we can describe the fermions with the Hartree–Fock state

9HF = 9c
j k=−j ω ∧ 9c

j k=−j+1ω ∧ · · · ∧ 9c
j k=j ω. (2.5)

For simplicity, we usually avoid this formalism here; it is easier to just work with an
orthonormal basis of the one-particle states.

For clarity, we point out that each fermion has non-zero angular momentum and is
thusnot in a spherically symmetric state. Nevertheless, the system of 2j + 1 particles is
spherically symmetric; this can be verified in detail as follows: The Hartree–Fock state
(2.5) is an eigenstate ofJz; namely

Jz 9HF = (Jz 9c
j k=−j ω) ∧ 9c

j k=−j+1ω ∧ · · · ∧ 9c
j k=j ω

+9c
j k=−j ω ∧ (Jz 9c

j k=−j+1ω) ∧ · · · ∧ 9c
j k=j ω

+ · · · + 9c
j k=−j ω ∧ 9c

j k=−j+1ω ∧ · · · ∧ (Jz 9c
j k=j ω)

=
j∑

k=−j

k 9HF = 0.

Similarly, we can apply the “ladder operators”J± = Jx ± iJy to the Hartree–Fock
state,

J± 9HF = (J± 9c
j k=−j ω) ∧ 9c

j k=−j+1 ω ∧ · · · ∧ 9c
j k=j ω

+9c
j k=−j ω ∧ (J± 9c

j k=−j+1 ω) ∧ · · · ∧ 9c
j k=j ω

+ · · · + 9c
j k=−j ω ∧ 9c

j k=−j+1 ω ∧ · · · ∧ (J± 9c
j k=j ω). (2.6)

After substituting the relations

J± 9c
jkω = √

j (j + 1) − k(k ± 1) 9c
j k±1 ω,

the anti-symmetry of the wedge product yields that each summand in (2.6) vanishes. We
conclude that

J 9HF = 0.

Since the total angular momentum operatorJ is the infinitesimal generator of rotations,
this implies that9HF is spherically symmetric.

For a physically meaningful solution of the Dirac equation, the wave function must
be normalized. The normalization integral for the wave functions9c

jkω over the hyper-
surfaceH = {t = const, r > ρ} is∫

H
9c

jkωGj9c
jkω νj dµH, (2.7)

whereν is the future-directed normal ofH, and wheredµH denotes the invariant measure
onH induced by the Lorentzian metric. For a normalized solution of the Dirac equation,
(2.7) gives the probability for the particle to be in the regionr > ρ outside the ball of
radiusρ centered at the origin. It seems tempting to demand that, for a normalizable
solution of the Dirac equation, the integral (2.7) must be finite. However, as explained in
[3], the normalization integral inside the event horizon (which we do not consider here),
is not necessarily positive, and it might happen that an infinite contribution nearr = ρ
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in (2.7) is compensated by an infinite negative contribution inside the horizon. Therefore
we only demand that the normalization integral away from the horizon is finite; namely

∫
{t=const, r>r0}

9c
jkωGj9c

jkω νj dµH < ∞ for everyr0 > ρ. (2.8)

We remark that the singlet state of [1,2] can be recovered from our multi-particle
system by considering the casej = 1

2.

3. The EDM Equations

We now derive the system of differential equations. We begin by separating out the
angular and time dependence in the Dirac equation. We choose the wave functions9c

jkω

of the previous section in the explicit form

9+
jkω = e−iωt

√
A

r


 χk

j− 1
2

8+
jkω 1(r)

iχk

j+ 1
2

8+
jkω 2(r)


 , (3.1)

9−
jkω = e−iωt

√
A

r


 χk

j+ 1
2

8−
jkω 1(r)

iχk

j− 1
2

8−
jkω 2(r)


 , (3.2)

where8c
jkω are two-component radial functions, and whereχk

j± 1
2
, j = 1

2, 3
2, . . . , k =

−j, −j + 1, . . . , j denote the 2-spinors

χk

j− 1
2

=
√

j + k

2j
Y

k− 1
2

j− 1
2

(
1
0

)
+

√
j − k

2j
Y

k+ 1
2

j− 1
2

(
0
1

)
,

χk

j+ 1
2

=
√

j + 1 − k

2j + 2
Y

k− 1
2

j+ 1
2

(
1
0

)
−

√
j + 1 + k

2j + 2
Y

k+ 1
2

j+ 1
2

(
0
1

)

(Ym
l are the spherical harmonics). The functionsχk

j± 1
2

are eigenvectors of the operator

K = σL + 1,

K χk

j± 1
2

= ∓(j + 1

2
) χk

j± 1
2
.

Using the relations between the angular momentum operators (see [3] for details), the
Dirac equation(G − m)9c

jkω with G as in (2.3) reduces to the ordinary differential
equation

√
A

d

dr
8±

jkω

=
[
(ω − eφ)T

(
0 −1
1 0

)
± 2j + 1

2r

(
1 0
0 −1

)
− m

(
0 1
1 0

)]
8±

jkω. (3.3)
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Since this equation is independent ofk, we will in the following omit the indexk and
simply write8c

jω. The normalization integral (2.8) for the wave functions takes the form

∫ ∞

r0

|8c
jω(r)|2

√
T

A
dr < ∞ for everyr0 > ρ. (3.4)

The Dirac equation (3.3) implies that the “radial flux” function (see [3])

F(r) := 8c
jω(r)

(
0 −i

i 0

)
8c

jω(r) (3.5)

is a constant, as is verified by a short computation. Since|8c
jω|2 ≥ F and since the

metric is asymptotically flat, the normalization integral (2.7) can be finite only if this
constant is zero. We can thus assume thatF vanishes identically. This means that the
product8c

jω 18
c
jω 2 (constructed from the two components of8c

jω) is a real function.
For a given radiusr0 ∈ (ρ, ∞), we can thus arrange with a constant phase transformation

8c
jω(r) → eiα 8c

jω(r) , α ∈ IR,

that both8c
jω 1(r0) and8c

jω 2(r0) are real. Since all the coefficients in the Dirac equation
(3.3) are real, it follows that the spinors8c

jω(r) are real even for allr ∈ (ρ, ∞). We
denote these two real components of8c

jω by α andβ.
Next we must calculate the total current and energy-momentum tensor of the Dirac

particles. With our explicit formulas (3.1) and (3.2) for the angular dependence of the
wave functions, the anti-symmetrization in the Hartree–Fock state (2.5) is trivial. One
obtains that the electromagnetic current of the multi-particle system is simply the sum
of the currents of all states9c

jkω,

jk = 9HF Gk 9HF =
j∑

k=−j

9c
jkω Gk 9c

jkω.

Because of spherical symmetry, the angular componentsjϑ andjϕ of the Dirac current
vanish. The “sum rule”

j∑
k=−j

χk

j± 1
2
(ϑ, ϕ) χk

j± 1
2
(ϑ, ϕ) = 2j + 1

4π
(3.6)

yields, after a straightforward computation, that

j t (x) =
j∑

k=−j

9c
jkωGt (x)9c

jkω = T 2

r2 (α2 + β2)
2j + 1

4π
.

To calculate the radial currentj r , we will need the formula [3, Eq. (3.7)]

σ r χk

j± 1
2

= χk

j∓ 1
2
, (3.7)

whereσ r is the Pauli matrix in the radial direction,

σ r = σ 1 cosϑ + σ 2 sinϑ cosϕ + σ 3 sinϑ sinϕ.
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Using (3.7), (3.6), and the fact that the radial fluxF(r) vanishes, we obtain

j r =
j∑

k=−j

9c
jkωGr(x)9c

jkω = 0.

Similar to the total current, the energy-momentum tensor of the multi-particle system is
simply the sum of the energy-momentum of all states9c

jkω; it has the general form

Tab = 1

2
Re

j∑
k=−j

9c
jkω (iGa (∂b − ieAb) + iGb (∂a − ieAa))9c

jkω (3.8)

(this formula is obtained by varying the classical Dirac action; see e.g. [1]). The following
calculation depends on whether the indexc of the wave functions in (3.8) isc = + or
c = −. We use the±/∓-notation, whereby the upper and lower choice correspond to
the casesc = + andc = −, respectively. From spherical symmetry,T t

ϑ , T t
ϕ , T r

ϑ , T r
ϕ , and

T ϑ
ϕ must vanish. An easy computation using the sum rule (3.6) and the Dirac equation

(3.3) gives

T t
t = (ω − eφ)T 2

r2 (α2 + β2)
2j + 1

4π
,

T r
r = − (ω − eφ)T 2

r2 (α2 + β2)
2j + 1

4π
± T

r3αβ
(2j + 1)2

4π
+ mT

r2 (α2 − β2)
2j + 1

4π
.

The calculations ofT ϑ
ϑ andT

ϕ
ϕ are slightly more difficult. First, spherical symmetry

yields that

T ϑ
ϑ = T ϕ

ϕ = 1

2
Re

j∑
k=−j

9c
jkω (iGϑ∂ϑ + iGϕ∂ϕ) 9c

jkω .

The formula

Gϑ∂ϑ + Gϕ∂ϕ = −1

r
σ r γL

allows us to rewrite the angular derivatives using the angular momentum operatorL.
This gives

T ϑ
ϑ = T ϕ

ϕ = αβ

2

T

r3 Re
j∑

k=−j

(
χk

j∓ 1
2
(σ r σL)χk

j± 1
2

− χk

j± 1
2
(σ r σL)χk

j∓ 1
2

)

(3.7)= αβ

2

T

r3 Re
j∑

k=−j

(
χk

j± 1
2

σL χk

j± 1
2

− χk

j∓ 1
2

σL χk

j∓ 1
2

)
.

We now use the fact that the spinorsχk

j± 1
2

are eigenvectors of the operatorσL = K −1,

and carry out thek-summation with (3.6) to get

T ϑ
ϑ = T ϕ

ϕ = ∓αβ

2

T

r3

(
(j + 3

2
) + (j − 1

2
)

)
2j + 1

4π
= ∓ T

r3 αβ
(2j + 1)2

8π
.
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Finally, we put the obtained formulas for the Dirac current and energy-momentum
tensor together with the Maxwell energy-momentum tensor [2] into the Einstein and
Maxwell equations

Ri
j − 1

2
R δi

j = −8π T i
j , ∇lF

kl = 4πe jk.

The Einstein equations reduce to two first-order equations forA and T ; similarly,
Maxwell’s equations simplify to one second-order equation, and we end up with the
following system of EDM equations:

√
A α′ = ±2j + 1

2r
α − ((ω − eφ)T + m) β, (3.9)

√
A β ′ = ((ω − eφ)T − m) α ∓ 2j + 1

2r
β, (3.10)

r A′ = 1 − A − 2(2j + 1)(ω − eφ)T 2 (α2 + β2) − r2AT 2 |φ′|2, (3.11)

2rA
T ′

T
= A − 1 − 2(2j + 1)(ω − eφ)T 2 (α2 + β2) ± 2

(2j + 1)2

r
T αβ

+2(2j + 1) mT (α2 − β2) + r2AT 2 |φ′|2, (3.12)

r2A φ′′ = −(2j + 1) e (α2 + β2) −
(

2rA + r2A
T ′

T
+ r2

2
A′

)
φ′. (3.13)

The two cases for the signs±/∓ correspond to the two valuesc = ± for the fermionic
wave functions9c

jkω. Equations (3.9) and (3.10) are the Dirac equations (3.3). The
Einstein equations are (3.11) and (3.12), and (3.13) is Maxwell’s equation. According
to (3.4), the normalization condition is∫ ∞

r0

(α2 + β2)

√
T

A
dr < ∞ for every r0 > ρ. (3.14)

We remark that the system (3.9)–(3.13), (3.14) has particle-like solutions, which can
be constructed numerically using the methods in [1]. The mass-energy spectrum of the
solutions has the same qualitative behavior as for the two-particle EDM system [2].

4. Non-Existence Results

We want to investigateblack hole solutionsof the system (3.9)–(3.13). This means,
more precisely, that we consider solutions of (3.9)–(3.13) defined outside the ball of
radiusρ > 0 around the origin which are asymptotically flat, (2.2), and satisfy the
normalization condition (3.14). We assume that the surfacer = ρ is an event horizon;
i.e. the functionA(r) tends to zero forr ↘ ρ, whereasT (r) goes to infinity in this limit.
We make the following assumptions on the form of the horizon:

(I) The volume element
√|detgij | = r2A− 1

2 T −1 is smooth and non-zero on the
horizon, i.e.

T −2 A−1, T 2A ∈ C∞([ρ, ∞)).

This assumption is sometimes called:the horizon is regular.
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(II) The strength of the electromagnetic field is given by the scalarFij F ij =
−2|φ′|2AT 2 with the electromagnetic field tensorFij = ∂iAj −∂jAi . We assume
this scalar to be bounded near the horizon; thus in view of (I) we assume that

|φ′(r)| < c1, ρ < r < ρ + ε1

for some positive constantsc1, ε1.
(III) The functionA(r) obeys a power law, i.e.

A(r) = c (r − ρ)s + O((r − ρ)s+1), r > ρ (4.1)

with positive constantsc ands.

If assumptions (I) or (II) were violated, an observer freely falling into the black hole
would feel strong forces when crossing the horizon. Assumption (III) is a technical
condition which seems general enough to include all physically relevant horizons. For
example, the Schwarzschild horizon hass = 1, whereass = 2 corresponds to the
extreme Reissner-Nordström horizon. However, assumption (III) does not seem to be
essential for the statement of our non-existence results; with more mathematical effort,
it could be weakened or perhaps even omitted completely. We now state our main result:

Theorem 4.1. The black hole solutions of the EDM system (3.9)–(3.13) satisfying the
regularity conditions (I), (II), and (III) either coincide with a non-extreme Reissner-
Nordström solution withα = 0 = β, or s = 2 and the following asymptotic expansions
hold nearr = ρ:

A(r) = A0 (r − ρ)2 + O((r − ρ)3), (4.2)

T (r) = T0 (r − ρ)−1 + O((r − ρ)0), (4.3)

φ(r) = ω

e
+ φ0 (r − ρ) + O((r − ρ)2), (4.4)

α(r) = α0 (r − ρ)κ + O((r − ρ)κ+1), (4.5)

β(r) = β0 (r − ρ)κ + O((r − ρ)κ+1) (4.6)

with positive constantsA0, T0 and real parametersφ0, α0, β0. The powerκ must satisfy
the constraint

1

2
< κ = 1

A0

√
m2 − e2φ2

0T 2
0 +

(
2j + 1

2ρ

)2

, (4.7)

and the spinor coefficientsα0 andβ0 are related by

α0

(√
A0 κ ± 2j + 1

2ρ

)
= −β0 (m − eφ0T0), (4.8)

where ‘±’ refers to the two choices of the signs in (3.9)–(3.13).

We begin the analysis with the case that the powers in (4.1) is less than 2.

Lemma 4.2. Assume thats < 2 and that(α, β, A, T , φ) is a black-hole solution where
the spinors(α, β) are not identically zero. Then the function(α2 + β2) is bounded both
from above and from below near the horizon, i.e. there are constantsc, ε > 0 with

c ≤ α(r)2 + β(r)2 ≤ 1

c
, ρ < r < ρ + ε. (4.9)
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Proof. The Dirac equations (3.9),(3.10) imply that

√
A

d

dr
(α2 + β2) = 2

(
α

β

) 
±2j + 1

2r
−m

−m ∓2j + 1

2r


 (

α

β

)

≤
(

4m2 + (2j + 1)2

r2

) 1
2

(α2 + β2). (4.10)

Since(α, β) is a non-trivial solution, the uniqueness theorem for solutions of ODEs
implies that(α2 + β2)(r) is non-zero for allρ < r < ρ + ε. Thus we can divide
Eq. (4.10) by

√
A (α2 + β2) and integrate. This yields the bound∣∣∣log((α2 + β2)(ρ + ε)) − log((α2 + β2)(r))

∣∣∣
≤

∫ ρ+ε

r

A− 1
2 (t)

(
4m2 + (2j + 1)2

t2

) 1
2

dt. (4.11)

Sinces < 2, we see that the integrand in (4.11) is integrable atr = ρ. Thus the right
hand side of (4.11) is majorized by

∫ ρ+ε

ρ

A− 1
2 (t)

(
4m2 + (2j + 1)2

t2

) 1
2

dt,

so we may take the limitr ↘ ρ in (4.11) to obtain the estimate (4.9).ut
Proposition 4.3. For 0 < s < 2, the only black hole solutions of the system (3.9)–(3.13)
are the non-extreme Reissner–Nordström solutions.

Proof. We shall assume that we are given a black hole solution which is not the Reissner-
Nordström solution, and obtain a contradiction. In this case, the spinors(α, β) are not
identically zero, so we may apply Lemma 4.2 and conclude that the spinors are bounded
nearr = ρ.

We first consider the differential equation forAT 2. The Einstein equations (3.11) and
(3.12) give

r
d

dr
(AT 2) = − 4(2j + 1) (ω − eφ) T 4 (α2 + β2) ± 2

(2j + 1)2

r
T 3 αβ

+ 2(2j + 1) m T 3 (α2 − β2). (4.12)

According to the regularity condition (I), the left and thus also the right side of this
equation is smooth. Since the spinors are bounded away from zero nearr = ρ, and since
T → ∞ asr ↘ ρ, we see that

lim
ρ<r→ρ

(ω − eφ(r)) = 0. (4.13)

We write Maxwell’s equation (3.13) in the form

φ′′ = − 1

A

(2j + 1) e

r2 (α2 + β2) − 1

r2
√

A T
[r2

√
A T ]′ φ′. (4.14)
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According to the regularity condition (I), the square bracket in (4.14), and thus the whole
coefficient ofφ′, is a smooth function. However, the factorA−1 in the first summand in
(4.14) blows up on the horizon. Ifs ≥ 1, the singularity ofA−1 is not integrable. This
implies that|φ′| is unbounded on the horizon, contradicting the regularity condition (II).
We conclude thats < 1. We can then integrate Eq. (4.14) and obtain the local expansion
around the horizon

φ′(r) = c1 (r − ρ)−s+1 + c2 + O((r − ρ)−s+2),

wherec2 is an integration constant. Integrating once again and using (4.13) yields the
expansion

φ(r) = c1 (r − ρ)−s+2 + c2 (r − ρ) + ω

e
+ O((r − ρ)−s+3). (4.15)

Finally, we substitute the expansion (4.15) into theA-equation (3.11). Since the
functionsA andr2AT 2|φ′|2 are bounded near the horizon, and since (4.15) implies that
(ω−eφ) = O(r−ρ)whereasT 2(α2+β2) ∼ (r−ρ)−s with s < 1, the right side of (3.11)
is bounded in the limitr ↘ ρ. However, the left side diverges likerA′(r) ∼ (r −ρ)s−1.
This is a contradiction.ut
It remains to consider the cases ≥ 2.

Lemma 4.4. If s ≥ 2,

lim
ρ<r→ρ

(r − ρ)−
s
2 (α2 + β2)(r) = 0. (4.16)

Proof. As in the proof of Proposition 4.3, we consider the Maxwell equation (4.14).
Since|φ′| is bounded near the horizon according to condition (II), we conclude from (I)
that the inhomogeneous term in (4.14) must be integrable,∫ ρ+ε

ρ

1

A
(α2 + β2) < ∞. (4.17)

Next we take the derivative of the function in (4.16),

d

dr

(
(r − ρ)−

s
2 (α2 + β2)

)
= − s

2
(r − ρ)−

s
2−1(α2 + β2) + (r − ρ)−

s
2

d

dr
(α2 + β2),

and substitute the bound (4.10),∣∣∣∣ d

dr

(
(r − ρ)−

s
2 (α2 + β2)

)∣∣∣∣
≤ s

2
(r − ρ)−

s
2−1(α2 + β2)

+
(

4m2 + (2j + 1)2

r2

) 1
2

A− 1
2 (r − ρ)−

s
2 (α2 + β2). (4.18)

Sinces ≥ 2, we have(r − ρ)− s
2−1 < (r − ρ)−s , and thus (4.17) implies that the first

summand on the right side of (4.18) is integrable. Using

A− 1
2 (r − ρ)−

s
2 (α2 + β2) = A−1(α2 + β2)

[
A

1
2 (r − ρ)−

s
2

]
= O(A−1(α2 + β2)),
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we see that, according to (4.17), the second summand in (4.18) is also integrable. As a
consequence, the function(r − ρ)− s

2 (α2 + β2) has a limit atr = ρ. If this limit were
non-zero, the integral (4.17) would diverge. We conclude that this limit must be zero.
ut
Lemma 4.5. If s ≥ 2, the function|φ′| has a finite, non-zero limit on the horizon; namely

lim
ρ<r→ρ

|φ′| = 1

ρ
lim

ρ<r→ρ
A− 1

2 T −1 > 0. (4.19)

Proof. To begin, we first show that

lim
ρ<r→ρ

(ω − eφ) T 2 (α2 + β2) = 0. (4.20)

If the function |(ω − eφ)T | is bounded, then (4.20) is an immediate consequence of
Lemma 4.4. Thus we must only consider the case that|(ω − eφ)T | is unbounded near
the horizon. The differential equation forAT 2, (4.12), gives the estimate∣∣∣∣r d

dr
AT 2

∣∣∣∣ ≥ T 3(α2 + β2)

(
4(2j + 1)|(ω − eφ)T | − 2

(2j + 1)2

r
− 2(2j + 1) m

)
.

According to assumption (I), the left side of this inequality is bounded near the horizon.
Using that|(ω − eφ)T | becomes arbitrarily large near the horizon, we conclude that the
functionT 3(α2 + β2)|(ω − eφ)T | must be bounded. This implies (4.20).

We now consider theA-equation (3.11). Sinces ≥ 2, the left side of (3.11) converges
to zero forr ↘ ρ. Thus the right side of (3.11) must also go to zero in this limit,

0 = lim
ρ<r→ρ

1 − A − 2(2j + 1)(ω − eφ) T 2 (α2 + β2) − r2 A T 2 |φ′(r)|2.

Using (4.20) completes the proof.ut
We can now rule out the cases > 2; namely we have

Proposition 4.6. For s > 2, there are no solutions of the system (3.9)–(3.13).

Proof. According to Lemma 4.5, the function(ω − eφ) has a Taylor expansion around
the horizon with non-vanishing linear term,

(ω − eφ)(r) = c + d(r − ρ) + o(r − ρ) with |d| = e

ρ
lim

ρ<r→ρ
A− 1

2 T −1.

Thus the coefficient(ω − eφ)T in the Dirac equation (3.9), (3.10) is monotone near the
horizon and diverges. Using (3.9) and (3.10), this implies that the vector(α, β) spins
around the origin faster and faster asr approaches the horizon, which suggests that it
cannot go to zero in this limit. In fact, [3, Lemma 5.1] yields that the spinors are bounded
away from zero,

lim inf
ρ<r→ρ

(α2 + β2) > 0.

This contradicts Lemma 4.4.ut
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Proof of Theorem 4.1.According to Proposition 4.3 and Proposition 4.6, we must only
consider the cases = 2; thus (4.2) and (4.3) hold. Lemma 4.4 yields that the function
(α2 + β2) goes to zero on the horizon. Applying [3, Lemma 5.1], one sees that the
function(ω − eφ)T cannot diverge monotonically near the horizon. On the other hand,
Lemma 4.5 shows that(ω − eφ) has a Taylor expansion around the horizon with non-
vanishing linear term. We conclude that (4.4) holds, and that(ω−eφ)T has a finite limit
on the horizon,

lim
ρ<r→ρ

(ω − eφ)T = λ with |λ| (4.19)= e

ρ
lim

ρ<r→ρ
(r − ρ)−1 A− 1

2 .

Exactly as in [3, Sect. 5], one can rewrite the radial Dirac equations as ODEs in the
variable

u(r) = −r − ρ ln(r − ρ)

and apply the stable manifold theorem [5, Thm. 4.1] to conclude thatα andβ satisfy a
power law near the horizon, (4.5) and (4.6). Lemma 4.4 gives the boundκ > 1

2.
Now we substitute the expansions (4.2)–(4.6) into the Dirac equations (3.9),(3.10).

This gives the conditions

√
A0 κ α0 = ±2j + 1

2ρ
α0 + (eφ0T0 − m) β0,

√
A0 κ β0 = −(eφ0T0 + m)α0 ∓ 2j + 1

2ρ
β0,

which are equivalent to (4.7) and (4.8).ut
Our main theorem gives strong restrictions for the behavior of black hole solutions

near the event horizon.According to the conditionκ > 1
2, the Dirac wave functions must

decay so fast in the limitr ↘ ρ that they have no influence on the asymptotic form of
both the metric and the electric field on the horizon. Namely, according to (4.2)–(4.4),
the metric and electric field must behave near the horizon like a vacuum solution, more
precisely like the extreme Reissner–Nordström solution. The restriction to the extremal
case means physically that the electric charge of the black hole must be so large that the
electric repulsion balances the gravitational attraction and prevents the Dirac particles
from “falling into” the black hole. This is certainly not the physical situation which
one can expect in the gravitational collapse of e.g. a star in the Universe. Nevertheless,
extreme Reissner–Nordström black holes have zero temperature [6] and can thus be
considered as the asymptotic states of black holes emitting Hawking radiation. For this
reason, it is interesting to study if the asymptotic expansion of Theorem 4.1 leads to
global solutions of the EDM equations.

For an extreme Reissner–Nordström background field, it is proven in [3, Sect. 5] that
the solutions of the Dirac equation satisfying (4.5),(4.6) violate the normalization con-
dition (3.14). Thus the question is if the influence of the spinors on the gravitational and
electromagnetic field can make the normalization integral finite. This is a hard analytic
problem, because one must control the global behavior of the solution. However, we have
done numerical investigations, taking the expansions in Theorem 4.1 as initial condition
on the horizon and solving the equations for increasingr. It turns out that the solutions
either develop singularities for finiter, or the spinors(α, β) are not normalizable. Thus
our numerics show that the expansions in Theorem 4.1 do not give normalizable black
hole solutions of the EDM equations.
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