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Abstract: We consider forj = % % ... a spherically symmetric, static system of

(2j + 1) Dirac particles, each having total angular momenturithe Dirac particles
interact via a classical gravitational and electromagnetic field.

The Einstein—Dirac—Maxwell equations for this system are derived. It is shown that,
under weak regularity conditions on the form of the horizon, the only black hole solutions
of the EDM equations are the Reissner—Nordstrom solutions. In other words, the spinors
must vanish identically. Applied to the gravitational collapse of a “cloud” of s%)in—
particles to a black hole, our result indicates that the Dirac particles must eventually
disappear inside the event horizon.

1. Introduction

In [1,2], particle-like solutions of the Einstein-Dirac-Maxwell (EDM) equations were
constructed for a static, spherically symmetric singlet system. It was found that the
solutions in a given state (i.e. in the ground state or in any fixed excited state) cease
to exist if the rest mass: of the fermions becomes larger than a certain threshold
valuem,. The most natural physical interpretation of this observation is thafor

my, the gravitational interaction becomes so strong that a black hole would form. This
suggests that there should be black hole solutions of the coupled EDM equations for
large fermion masses. The work [3], however, indicates that this intuitive picture of
black hole formation is wrong. Namely, it was proved in [3] that the Dirac equation has
no time-periodic solutions in a Reissner-Nordstrom black hole background, even if the
Dirac particles have angular momentum and can thus, in the classical picture, “rotate
around” the black hole. This implies that if we neglect the influence of the Dirac particles

* Research supported in part by the Schweizerischer Nationalfonds.
** Research supported in part by the NSF, Grant No. DMS-G-9802370.
*** Research supported in part by the NSF, Grant No. 33-585-7510-2-30.



250 F. Finster, J. Smoller, S.-T. Yau

on the gravitational and electromagnetic field, there are no black hole solutions of the
EDM equations.

In order to understand if and how Dirac particles can form black holes, we study
in this paper the fully coupled EDM equations. We do not assume the Dirac particles
to be in a spherically symmetric state; they are allowed to have angular momegntum
However, we arrange;j2+ 1 of these particles in such a way that the total system is
static and spherically symmetric. In the language of atomic physics, we consider the
completely filled shell of states with angular momentynClassically, one can think
of this multiple-particle system as of several Dirac particles rotating around a common
center such that their angular momentum adds up to zero. Since the system of fermions
is spherically symmetric, we get a consistent set of equations if we also assume spherical
symmetry for the gravitational and electromagnetic field. This allows us to separate out
the angular dependence and reduce the problem to the analysis of a system of nonlinear
ODEs.

We prove analytically that, under weak regularity conditions on the form of the
horizon, the black hole solutions of our coupled EDM equations are either the Reissner—
Nordstrom solutions (in which case the Dirac wave functions are identically zero), or
the event horizon has the form of the extreme Reissner—Nordstrdm metric. In the latter
case, we show numerically that the Dirac wave functions cannot be normalized. Thus
our Einstein—Dirac—Maxwell system does not admit black hole solutions. Our results
show that the study of black holes in the presence of Dirac spinors leads to unexpected
physical effects. Applied to the gravitational collapse of a “cloud” of Dirac particles, this
is a further indication that if an event horizon forms, the Dirac particles must eventually
disappear inside this horizon.

The methods used in this paper are quite different from those in [3]. Namely, in
contrast to [3], we do not derive “matching conditions” for the spinors across the horizon.
We work here only with the equations outside the event horizon, and the proof relies on
the nonlinear coupling of the spinors into the Einstein—-Maxwell equations.

2. The Spherically Symmetric Multi-Particle System

The gravitational field is described by the static, spherically symmetric Lorentzian metric
in polar coordinates

! 1 ,
ds? = gijdx' dx/ = ﬁdtz - Zdrz — r2dv? — r?sif9 dg?®  (2.1)

with positive functionsA = A(r) andT = T (r). We consider as our space-time the
regionr > p > 0 outside a ball of radius around the origin. The physical situation we

have in mind is that the surfage= p is the event horizon of a black hole. We assume
the metric to be asymptotically Minkowskian,

im AG) = 1 = lim T(). 2.2)

r—00

The electromagnetic field is described by a potedialf the formA = (—¢, 0), where
¢ is the Coulomb potentiad = ¢ (r).
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In direct generalization of the situation in the Reissner—Nordstrom background [3],
the Dirac operato6 takes the form

. 0
G=iG'(x) — + B(x)
dax/

=iTyO<a%—ieqb)—i—y’(iﬂ%—i—é(ﬂ—l)—%ﬂ%)

5 0 9
— 2.3
+iy? aﬁ+y FP (2.3)

wherey’,y",y?, andy ¥ denote the’-matrices of Minkowski space in polar coordinates,

y' VO
y' = y cost? + J/ sing® cosp + y sin® sing,
1 H .
V = —( y siny + y cos?¥ cosp + y cosy Sln(p>,
r
1
¢ = —y2 sin 3 cos )
v rsin® ( Y gty ¢

As with the central force problem in Minkowski space [4], this Dirac operator commutes
with: a) the time translation operatai;, b) the total angular momentum operaicr=

(L + 8)2, c) thez-component of total angular momentumn and d) with the operator

y® P (whereP is parity). Since these operators also commute with each other, we can
write any solution of the Dirac equation as a linear combination of solutions which are
simultaneous eigenstates of these operators. We denote this “eigenvector basis” for the
solutions by

/3

. .13 . .
ko with ¢ =+, J:E,E,..., k=—j,—j+1...,j, welR;

(2.4)

the eigenvalues are

iat C —Cl)‘-p]kw,
J2 ka - .](J + l) \Ijjkwa
+ +
LWE = kW
1 forj+ 1 even
0 + + J T3
PV =+V¥ .
jko = F=55ko XY 1 for j 4+ 1 odd

For the functionst$, . the Dirac equation reduces to ordinary differential equations
in the radial varlable The quantum numbér describes the orientation of the wave
function \IJ]ckw in space, and thus spherical symmetry of the Dirac operator implies that
the radial Dirac equation is the same for all values.dh order to build up our many-
particle system, we take, for given j, andw, one solution of the radial Dirac equation
and consider the system of thg 2 1 particles

;Ikw’ k:_j,...,j
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corresponding to this radial solution. Using the formalism of many-particle quantum
mechanics, we can describe the fermions with the Hartree—Fock state

A A WE

WP = s A k) (2.5)

—jo —jt+Hlw
For simplicity, we usually avoid this formalism here; it is easier to just work with an
orthonormal basis of the one-particle states.

For clarity, we point out that each fermion has non-zero angular momentum and is
thusnotin a spherically symmetric state. Nevertheless, the system efRparticles is
spherically symmetric; this can be verified in detail as follows: The Hartree—Fock state

(2.5) is an eigenstate of ; namely

HF
JZ\I—’ :(JZ\IJ]C']C:*jw)/\lpjc'szj+la)/\"’/\\p;k=jw
"HI'; k=—jo N (Jz ‘I’; k:—j+1w) ARRERA ‘1’5 k=jow
ot W o AV 1w A A )
J
=Y ke =o
k=—j

Similarly, we can apply the “ladder operatorg? = J, £ iJ, to the Hartree—Fock
state,

Je WP = (Je WS AW g, A A

jk=jo
T o A Ve Ve 1) A A Yo
L4 qj;k:—jw A ‘"Iljk:—j+lw NN \I";k:jw)' (2.6)

After substituting the relations

Je W, = ViG+D —k(k£1) ¥, 4,

the anti-symmetry of the wedge product yields that each summand in (2.6) vanishes. We
conclude that

JwHF = 0.

Since the total angular momentum operalas the infinitesimal generator of rotations,
this implies thatvHF is spherically symmetric.

For a physically meaningful solution of the Dirac equation, the wave function must
be normalized. The normalization integral for the wave funct'rb%) over the hyper-
surfaceH = {r = const r > p}is

/H WG ,GI W, v duy, (2.7)

wherev is the future-directed normal f, and where/ 3, denotes the invariant measure
on# induced by the Lorentzian metric. For a normalized solution of the Dirac equation,
(2.7) gives the probability for the particle to be in the regios p outside the ball of
radiusp centered at the origin. It seems tempting to demand that, for a normalizable
solution of the Dirac equation, the integral (2.7) must be finite. However, as explained in
[3], the normalization integral inside the event horizon (which we do not consider here),
is not necessarily positive, and it might happen that an infinite contribution-negs
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in (2.7) is compensated by an infinite negative contribution inside the horizon. Therefore
we only demand that the normalization integral away from the horizon is finite; namely

/ \y;kwcf\y?kw vjduy < oo  foreveryrg > p. (2.8)
{t=const r>rg} ’

We remark that the singlet state of [1,2] can be recovered from our multi-particle
system by considering the cage= %

3. The EDM Equations

We now derive the system of differential equations. We begin by separating out the
angular and time dependence in the Dirac equation. We choose the wave fuﬂ(%jgns

of the previous section in the explicit form

k +
VA Xj 1 Pk 1(r)

Wi o= it (3.1)
ki -k —+ ’
Jjke r l)(j+% CDjsz(r)
k —
Wo = piot \/_Z Xj+d ko1 (") 3.2
jka_) =e i k q>— (r) ( . )
r Xj,% jkw 2
wherecbjikw are two-component radial functions, and Whgﬁ%, j= % % o k=

—j,—j+1,...,jdenote the 2-spinors

0

1 E)

k J+H1-k k-3(1 j+1+k k+i (0
Xipi= 575 Yuilo) — o5 YViiilg
Itz 2j+2 Jt3 2j+2 it3

(/" are the spherical harmonics). The functio(fj_fil are eigenvectors of the operator
2

K=0L +1,
1
Kx* ., =50+ x5 ..
Xjpp = FUFZ X551
Using the relations between the angular momentum operators (see [3] for details), the

Dirac equation(G — m)\Il]C.km with G as in (2.3) reduces to the ordinary differential
equation

d +
\/Zacbjkw

- 2j +1
- |:(a)—e¢)T <2 01) + % ((1)_01> —m (%)}@fkw. (3.3)
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Since this equation is independentikgfwe will in the following omit the index and
simply write®¢ . The normalization integral (2.8) for the wave functions takes the form

o0
/ | (N £dr < oo foreveryrg > p. (3.4)
o
The Dirac equation (3.3) implies that the “radial flux” function (see [3])
Foy = o0, (27 ) e 35
(r) = @5, i 0 o) (3.5)

is a constant, as is verified by a short computation. Slﬂx;%|2 > F and since the
metric is asymptotically flat, the normalization integral (2.7) can be finite only if this
constant is zero. We can thus assume fhatanishes identically. This means that the
productcbjw 1<I>C.w2 (constructed from the two components@jw) is a real function.
Foragiven rad|uso € (p, o0), we can thus arrange with a constant phase transformation

¢3w(r) — ¢ ®5w(r) , o €lR,

that bothtbjw 1(ro) and@?w ,(ro) are real. Since all the coefficients in the Dirac equation
(3.3) are real, it follows that the spinods‘;w(r) are real even for alt € (p, c0). We
denote these two real componentsll% by @ andg.

Next we must calculate the total current and energy-momentum tensor of the Dirac
particles. With our explicit formulas (3.1) and (3.2) for the angular dependence of the
wave functions, the anti-symmetrization in the Hartree—Fock state (2.5) is trivial. One
obtains that the electromagnetic current of the multi-particle system is simply the sum
of the currents of all states, ,,

& = WFF GRgHF = Zly
k=—j

Because of spherical symmetry, the angular compongnésid j¢ of the Dirac current
vanish. The “sum rule”

2j +1

Z X1 @0 X 0 9) = = (3.6)
k=—j
yields, after a straightforward computation, that
; 2j +1
jl) = Z V5, G W, = @45 z
k=—j
To calculate the radial currerit, we will need the formula [3, Eq. (3.7)]
r .k _ k

whereo’ is the Pauli matrix in the radial direction,

o = ol cos® + o2 siny cosp + o sinY sing.
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Using (3.7), (3.6), and the fact that the radial flix-) vanishes, we obtain

Z v G )W, = 0.
k=—j

Similar to the total current, the energy-momentum tensor of the multi-particle system is
simply the sum of the energy-momentum of all stat/§§w; it has the general form

T = = Re Z VG (Gy Oy —ieAp) + iGp 3y — ieAy)) VS, (3.8)
k=—j

(this formula is obtained by varying the classical Dirac action; see e.g. [1]). The following
calculation depends on whether the indexf the wave functions in (3.8) is = + or
¢ = —. We use thet/F-notation, whereby the upper and lower choice correspond to
the cases = + andc = —, respectively. From spherical symmetfy, T(,f, Ty, T,,and

¥ must vanish. An easy computation using the sum rule (3.6) and the Dirac equation
(f 3) gives

Ttt (a)—e¢>)T (@ 2+/32)2]+1
—ep)T 2j+1 T _(2j+1)7? 2j+1
Trr:_(w;f)( _|_,3)J+ _Sﬁer_( 2_,32)L.
r r 47 4

The calculations ofTﬂ? and 7, are slightly more difficult. First, spherical symmetry
yields that

) =T¢ = —ReZ Ve, (G703 + iG¥0,) W5,
k=—j
The formula
1
G’y +G¥d, = —=o" yL
r

allows us to rewrite the angular derivatives using the angular momentum opgtator
This gives

~

J
g - BT k(o ko TE gr k
Ty T, 5 3Rek2‘ in%(a O'L)in% in%(a aL)Xj]F%
==J

an o
2

‘wl ~

k k
Re E oL — oL x" .
( :tl Xil Xj:F% XFF%)

We now use the fact that the splno(r’é are eigenvectors of the operatal, = K — 1,
and carry out thé&-summation with (326) to get
af T 2j+1 T  (2j+1)7?

i (</+ )+ ——)) L= = e

TV — 19 = =22 —
v ¢ :':2 :Fr3aﬁ 87
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Finally, we put the obtained formulas for the Dirac current and energy-momentum
tensor together with the Maxwell energy-momentum tensor [2] into the Einstein and
Maxwell equations

1. 4
i i i kl -k
Rj_ER‘Sj— 87rTj , VIF* = 4me j".
The Einstein equations reduce to two first-order equationsAfand T'; similarly,
Maxwell's equations simplify to one second-order equation, and we end up with the
following system of EDM equations:

\/Zo/zzlzzjz_:la — (0 — ed)T +m) B, (3.9)

VAR = (@-ep)T—ma s LI2g (3.10)

rA'=1—A — 22j + 1)(w — ep)T? (@ + B — r?AT?|¢'|%, (3.11)
2rA;/=A—1 — 2Q2j + D(w — ed)T? (a® + B2 + szr;l)zTaﬂ

+2(2j + 1) mT (&® — B?) + r?AT?|¢'|%, (3.12)

rPAP = —2j+1e @+ B — <2rA +r2A % + ; A’) . (3.13)

The two cases for the sigas/F correspond to the two values= + for the fermionic
wave functionstl!jc.kw. Equations (3.9) and (3.10) are the Dirac equations (3.3). The
Einstein equations are (3.11) and (3.12), and (3.13) is Maxwell's equation. According
to (3.4), the normalization condition is

o0
T
/ @+ B2 % dr < oo forevery rg> p. (3.14)
ro

We remark that the system (3.9)—(3.13), (3.14) has particle-like solutions, which can
be constructed numerically using the methods in [1]. The mass-energy spectrum of the
solutions has the same qualitative behavior as for the two-particle EDM system [2].

4. Non-Existence Results

We want to investigatélack hole solution®f the system (3.9)—(3.13). This means,
more precisely, that we consider solutions of (3.9)—(3.13) defined outside the ball of
radiusp > 0 around the origin which are asymptotically flat, (2.2), and satisfy the
normalization condition (3.14). We assume that the surfaeep is an event horizon;

i.e. the functionA (r) tends to zero for \, p, wheread (r) goes to infinity in this limit.

We make the following assumptions on the form of the horizon:

(I) The volume element/|detg;;| = r2A~2 T~ is smooth and non-zero on the
horizon, i.e.

T72A7L, T?A € C®([p, x)).

This assumption is sometimes call¢igle horizon is regular
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(I The strength of the electromagnetic field is given by the sc#larF"/ =

—2|¢'|2 AT? with the electromagnetic field tensBy; = 3;.4; — 3;.A;. We assume
this scalar to be bounded near the horizon; thus in view of (I) we assume that

' (r)] < c1, p<r<p+er

for some positive constants, ¢1.
(1) The function A(r) obeys a power law, i.e.

A(r) = cr=p) + 0 —p)™,  r>p (4.1)
with positive constants ands.

If assumptions (1) or (II) were violated, an observer freely falling into the black hole
would feel strong forces when crossing the horizon. Assumption (lIl) is a technical
condition which seems general enough to include all physically relevant horizons. For
example, the Schwarzschild horizon has= 1, whereas = 2 corresponds to the
extreme Reissner-Nordstrém horizon. However, assumption (Ill) does not seem to be
essential for the statement of our non-existence results; with more mathematical effort,
it could be weakened or perhaps even omitted completely. We now state our main result:

Theorem 4.1. The black hole solutions of the EDM system (3.9)—(3.13) satisfying the
regularity conditions (1), (Il), and (lll) either coincide with a non-extreme Reissner-
Nordstrém solution witlk = 0 = 8, or s = 2 and the following asymptotic expansions
hold nearr = p:

A(r) = Ag (r — p)% + O((r — p)3), (4.2)
Tr)=To(r — )t + O — )9, (4.3)
$(r) = f + o (r — p) + O — p)?), (4.4)
a(r) = ag (r — p)* + O((r — p)*h, (4.5)
B(r) = Bo (r — p)* + O(r — p)th (4.6)

with positive constantd, Tp and real parametergo, ag, Bo. The powek must satisfy
the constraint

1 1 2j +1\?
Lev-t mz_e2¢grg+( - ) @)
and the spinor coefficientg and g are related by
2j+1
o <\/A0K + sz > = —po (m — e¢oTo), (4.8)

where 4’'refers to the two choices of the signs in (3.9)—(3.13).
We begin the analysis with the case that the pawier(4.1) is less than 2.

Lemma 4.2. Assume that < 2 and that(e, 8, A, T, ¢) is a black-hole solution where
the spinorga, 8) are not identically zero. Then the functiee? + 82) is bounded both
from above and from below near the horizon, i.e. there are constaats 0 with

1
c < ()l(V)2+,3(r)2 < -, p<r<p+e. (4.9)
c



258 F. Finster, J. Smoller, S.-T. Yau

Proof. The Dirac equations (3.9),(3.10) imply that

., L2+
2 2 o o
VA (@ +/3)=2<ﬂ> _Zr 2j+1 (g)
+ 2r
1
. 2\ >
< <4m2+(2Jr+1)>2(012+/32)- (4.10)

Since(a, B) is a non-trivial solution, the uniqueness theorem for solutions of ODEs
implies that(a? + B2)(r) is non-zero for allp < r < p + ¢. Thus we can divide

Eq. (4.10) byv/A (o2 + B?) and integrate. This yields the bound

log((@? + B3(p + ) — log((a? + )|

1
pte 27 1 2\ 2
5/ A3 (1) <4m2+(1t+)) dr. (4.11)

Sinces < 2, we see that the integrand in (4.11) is integrable &t p. Thus the right
hand side of (4.11) is majorized by

1
pte 2i 12 2
/ 10 (4m2+—( J; ) ) dt,
0

so we may take the limit N\, p in (4.11) to obtain the estimate (4.9n

Proposition 4.3. For0 < s < 2, the only black hole solutions of the system (3.9)—(3.13)
are the non-extreme Reissner—Nordstrom solutions.

Proof. We shall assume that we are given a black hole solution which is not the Reissner-
Nordstrém solution, and obtain a contradiction. In this case, the spianofd are not
identically zero, so we may apply Lemma 4.2 and conclude that the spinors are bounded
nearr = p.

We first consider the differential equation f&7'2. The Einstein equations (3.11) and
(3.12) give

SN2
P AT = 4@+ D - T @+ ) £ 2 D
r r

+2R2j + 1) m T3 (a? — B?). (4.12)

According to the regularity condition (1), the left and thus also the right side of this
equation is smooth. Since the spinors are bounded away from zero agarand since
T — oo asr \| p, we see that

lim (a) —ep(r)) = (4.13)

p<r—
We write Maxwell’s equation (3.13) in the form

L (21_+ Dz g - 2VATY ¢ (4.14)

o = -5 f
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According to the regularity condition (1), the square bracket in (4.14), and thus the whole
coefficient ofg’, is a smooth function. However, the factér?! in the first summand in
(4.14) blows up on the horizon. §f > 1, the singularity ofA~1 is not integrable. This
implies thati¢’| is unbounded on the horizon, contradicting the regularity condition (l1).
We conclude that < 1. We can then integrate Eq. (4.14) and obtain the local expansion
around the horizon

¢)/(r) = C1 (r — p)_\'+1 + c2 + O((r _p)—§‘+2)’

wherec; is an integration constant. Integrating once again and using (4.13) yields the
expansion

$(r) = c1(r—p) T2+ c2(r—p) + f +O(r—pt3.  (4.15)

Finally, we substitute the expansion (4.15) into theequation (3.11). Since the
functionsA andr2AT?|¢’|? are bounded near the horizon, and since (4.15) implies that
(w—e¢) = O(r—p) wheread ?(«?+82) ~ (r—p)~* withs < 1, therightside of (3.11)
is bounded in the limit \ p. However, the left side diverges liket’(r) ~ (r — p)* L.

This is a contradiction.O

It remains to consider the case> 2.

Lemma4.4.Ifs > 2,

lim (r—p)"2 (@®+ BA(r) = 0. (4.16)

pP<Ir—p

Proof. As in the proof of Proposition 4.3, we consider the Maxwell equation (4.14).
Since|¢’| is bounded near the horizon according to condition (I1), we conclude from (1)
that the inhomogeneous term in (4.14) must be integrable,

+e
/ Tleep) < (4.17)
0 A

Next we take the derivative of the function in (4.16),
d —$(2 1 32 s -5-1, 2 | g2 —3d 2 g2
J— — 2 = —— — 2 — 2 —
(r=pEeP+82)) = =5 = p) @+ B+ = p) R0+ B,
and substitute the bound (4.10),
d ~302 1 g2
‘E(v—p) 2@+ p ))‘

<Z(r—-p 2?4+ 8d

N«

1
. 2\ 3
—(ZJ:; D )2 A3 = p) 202 + D), (4.18)

+ (4m2 -

Sinces > 2, we have(r — ,o)‘%‘l < (r — p)~¢, and thus (4.17) implies that the first
summand on the right side of (4.18) is integrable. Using

AR = p) 2@+ D) = AN+ D) (420 — )72 | = O(ATH P + ),
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we see that, according to (4.17), the second summand in (4.18) is also integrable. As a

consequence, the functign — p)‘§ (a? + B?) has a limit at- = p. If this limit were
non-zero, the integral (4.17) would diverge. We conclude that this limit must be zero.
O

Lemma 4.5. If s > 2, the functiori¢’| has a finite, non-zero limit on the horizon; namely
: , 1 1,1
lim |¢| = — |lim A 277 > 0. (4.19)
pP<r—p L P<r—p

Proof. To begin, we first show that

lim (0 —ep) T? (@®+ B = 0. (4.20)
pP<r—>p

If the function |(w — e¢)T| is bounded, then (4.20) is an immediate consequence of
Lemma 4.4. Thus we must only consider the caselaat- e¢)T| is unbounded near
the horizon. The differential equation farT'2, (4.12), gives the estimate

. 2
o2 a2 2j+1
dr r

> T3 + 7 <4(2j+1)|(a)—e¢)T|—2 —2(2j+1)m).
According to assumption (1), the left side of this inequality is bounded near the horizon.
Using that(w — e¢) T| becomes arbitrarily large near the horizon, we conclude that the
function73(? + B2)|(w — e¢)T | must be bounded. This implies (4.20).

We now consider thd-equation (3.11). Since> 2, the left side of (3.11) converges
to zero forr \ p. Thus the right side of (3.11) must also go to zero in this limit,

0= lim 1—A—22j+1(w—ep) T? (@®+ p% —r2 AT?|¢'(r)|%

pP<r—>p
Using (4.20) completes the proofa

We can now rule out the case> 2; namely we have

Proposition 4.6. For s > 2, there are no solutions of the system (3.9)—(3.13).

Proof. According to Lemma 4.5, the functiq@ — e¢) has a Taylor expansion around
the horizon with non-vanishing linear term,

(—ed)(r)=c+d(r—p)+o(r—p) with |d=S< lm A—27L
P P<r—p

Thus the coefficientw — e¢)T in the Dirac equation (3.9), (3.10) is monotone near the
horizon and diverges. Using (3.9) and (3.10), this implies that the véetg) spins
around the origin faster and fasterraapproaches the horizon, which suggests that it
cannot go to zero in this limit. In fact, [3, Lemma 5.1] yields that the spinors are bounded
away from zero,

liminf (a? 4+ 8%) > 0.

pP<Ir—p

This contradicts Lemma 4.40
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Proof of Theorem 4.1According to Proposition 4.3 and Proposition 4.6, we must only
consider the case = 2; thus (4.2) and (4.3) hold. Lemma 4.4 yields that the function
(a? + B?) goes to zero on the horizon. Applying [3, Lemma 5.1], one sees that the
function(w — e¢)T cannot diverge monotonically near the horizon. On the other hand,
Lemma 4.5 shows thdt — e¢) has a Taylor expansion around the horizon with non-
vanishing linear term. We conclude that (4.4) holds, and(thate¢) T has a finite limit

on the horizon,

@19 € lim (r —,0)_1 A_%.

im (w—ep)T = A with |A]
o 0 p<r—p

p<r—

Exactly as in [3, Sect. 5], one can rewrite the radial Dirac equations as ODEs in the
variable

u(r) = —r—p In(r —p)

and apply the stable manifold theorem [5, Thm. 4.1] to concludectfzend 8 satisfy a
power law near the horizon, (4.5) and (4.6). Lemma 4.4 gives the bou:n(%.

Now we substitute the expansions (4.2)—(4.6) into the Dirac equations (3.9),(3.10).
This gives the conditions

2j +1
VAokap == 20 ag + (e¢oTo —m) o,

VAo K Bo = —(egoTo + m)ag F

2j +

! p
2p O’

which are equivalent to (4.7) and (4.8)1

Our main theorem gives strong restrictions for the behavior of black hole solutions
near the event horizon. According to the conditios % the Dirac wave functions must
decay so fast in the limit \, p that they have no influence on the asymptotic form of
both the metric and the electric field on the horizon. Namely, according to (4.2)—(4.4),
the metric and electric field must behave near the horizon like a vacuum solution, more
precisely like the extreme Reissner—Nordstréom solution. The restriction to the extremal
case means physically that the electric charge of the black hole must be so large that the
electric repulsion balances the gravitational attraction and prevents the Dirac particles
from “falling into” the black hole. This is certainly not the physical situation which
one can expect in the gravitational collapse of e.g. a star in the Universe. Nevertheless,
extreme Reissner—Nordstrom black holes have zero temperature [6] and can thus be
considered as the asymptotic states of black holes emitting Hawking radiation. For this
reason, it is interesting to study if the asymptotic expansion of Theorem 4.1 leads to
global solutions of the EDM equations.

For an extreme Reissner—Nordstrém background field, it is proven in [3, Sect. 5] that
the solutions of the Dirac equation satisfying (4.5),(4.6) violate the normalization con-
dition (3.14). Thus the question is if the influence of the spinors on the gravitational and
electromagnetic field can make the normalization integral finite. This is a hard analytic
problem, because one must control the global behavior of the solution. However, we have
done numerical investigations, taking the expansions in Theorem 4.1 as initial condition
on the horizon and solving the equations for increasirigturns out that the solutions
either develop singularities for finite or the spinorgw, 8) are not normalizable. Thus
our numerics show that the expansions in Theorem 4.1 do not give normalizable black
hole solutions of the EDM equations.
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