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Abstract. We prove in full generality the mirror duality conjecture for string-
theoretic Hodge numbers of Calabi–Yau complete intersections in
Gorenstein toric Fano varieties. The proof is based on properties of intersection
cohomology.

1 Introduction

The �rst author has conjectured that the polar duality of re
exive polyhedra
induces the mirror involution for Calabi–Yau hypersurfaces in Gorenstein toric
Fano varieties [2]. The second author has proposed a more general duality
which conjecturally induces the mirror involution for Calabi–Yau complete
intersections in Gorenstein toric Fano varieties [7]. The most general form of
the combinatorial duality which includes mirror constructions of physicists for
rigid Calabi–Yau manifolds was formulated by both authors in [4].
The main purpose of our paper is to show that all proposed combinatorial

dualities agree with the following Hodge-theoretic property of mirror symmetry
predicted by physicists:
If two smooth n-dimensional Calabi–Yau manifolds V and W form a

mirror pair; then their Hodge numbers satisfy the relation

hp;q(V ) = hn−p; q(W ); 05 p; q5 n : (1)

A veri�cation of this property becomes rather non-trivial if we do not
make restrictions on the dimension n. The main di�culty is the necessity
to work with singular Calabi–Yau varieties whose singularities in general do
not admit any crepant desingularization. This di�culty was the motivation for
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introduction of so called string-theoretic Hodge numbers hp;qst (V ) for singular
V [6]. The string-theoretic Hodge numbers hp;qst (V ) coincide with the usual
Hodge numbers hp;q(V ) if V is smooth, and with the usual Hodge numbers of
a crepant desingularization V̂ of V if such a desingularization exists. Therefore
the property (1) must be reformulated as follows:
Let (V;W ) be a mirror pair of singular n-dimensional Calabi–Yau vari-

eties. Then the string-theoretic Hodge numbers satisfy the duality:

hp;qst (V ) = h
n−p; q
st (W ); 05 p; q5 n : (2)

The string-theoretic Hodge numbers for Gorenstein algebraic varities with
toroidal or quotient singularities were introduced and studied in [6]. It was
also conjectured in [6] that the conbinatorial construction of mirror pairs of
Calabi–Yau complete intersections in Gorenstein toric Fano varieties satis�es
the duality (2). This conjecture has been proved in [6] for mirror pairs of
Calabi–Yau hypersurfaces of arbitrary dimension that can be obtained by the
Greene–Plesser construction [19]. Some other results supporting this conjecture
have been obtained in [2, 5, 27]. Additional evidence in favor of the conjecture
has been received by explicit computations of instanton sums using generalized
hypergeometric functions [3, 20, 22, 24].
The paper is organized as follows:
In Sect. 2, we introduce a polynomial invariant B(P; u; v) of an Eulerian par-

tially ordered set P using results of Stanley [31]. For our purposes, their most
important property is the relation between B(P; u; v) and B(P∗; u; v), where P∗

is the dual to P Eulerian poset (Theorem 2.13). It seems that the polynomials
B(P; u; v) have independent interest in combinatorics1.
In Sect. 3, we give an explicit formula for the polynomial E(Z ; u; v) which

describes the mixed Hodge structure of an a�ne hypersurface Z in an alge-
braic torus T (Theorem 3.24). We remark the following: the explicit formula
for E(Z ; 1; 1) is due to Bernstein, Khovanskiî and Kushnirensko [21, 23]; the
computation of the polynomial E(Z ; t; 1) which describes the Hodge �ltration
on H∗

c (Z) is due to Danilov and Khovanskiî [10] (see also [1]); the polynomial
E(Z ; t; t) which describes the weight �ltration on H∗

c (Z) has been computed
by Denef and Loeser [13].
In Sect. 4, we derive an explicit formula for the polynomial Est(V ; u; v)

where V is a Calabi–Yau complete intersection in a Gorenstein toric Fano
variety (Theorem 4.14). The coe�cients of Est(V ; u; v) are equal up to a
sign to string-theoretic Hodge numbers of V . Since our formula is written
in terms of B-polynomials as a sum over pairs of lattice points contained in
the corresponding pair of dual to each other re
exive Gorenstein cones C and
�C, the mirror duality for string-theoretic Hodge numbers becomes immediate
consequence of the duality for B-polynomials after the transposition C ↔ �C
(Theorem 4.15). Following some recent development of ideas of Witten [33]
by Morisson and Plesser [25], we conjecture that the formula obtained in this

1 We are grateful to R. Stanley who point out us that another proof of Theorem 2.13 could be
obtained from the results which were used in his proof of a conjecture of G. Kalai [32] Sect. 8.
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paper gives the spectrum of the abelian gauge theory in two dimensions which
could be constructed from any pair (C; �C) of two dual to each other re
exive
Gorenstein cones.

2 Combinatorial polynomials of Eulerian posets

Let P be a �nite poset (i.e., �nite partially ordered set). Recall that the M�obius
function �P(x; y) of a poset P is a unique integer valued function on P × P
such that for every function f : P → A with values in an abelian group A the
following M�obius inversion formula holds:

f(y) =
∑
x5y
�P(x; y)g(x); where g(y) =

∑
x5y

f(x) :

From now on we always assume that the poset P has a unique minimal
element 0̂, a unique maximal element 1̂, and that every maximal chain of P
has the same length d which will be called the rank of P. For any x 5 y in
P, de�ne the interval

[x; y] = {z ∈ P : x 5 z 5 y} :
In particular, we have P = [0̂; 1̂]. De�ne the rank function � : P → {0; 1; : : : ; d}
of P by setting �(x) equal to the length of any saturated chain in the interval
[0̂; x].

De�nition 2.1 [31] A poset P as above is said to be Eulerian if for any
x 5 y (x; y ∈ P) we have

�P(x; y) = (−1)�(y)−�(x) :
Remark 2.2 It is easy to see that any interval [x; y] ⊂ P in an Eulerian poset P
is again an Eulerian poset with the rank function �(z)− �(x) for any z ∈ [x; y].
If an Eulerian poset P has rank d, then the dual poset P∗ is again an Eulerian
poset with the rank function �∗(x) = d− �(x).
Example 2.3 Let C be an d-dimensional �nite convex polyhedral cone in Rd

such that −C ∩ C = {0} ∈ Rd. Then the poset P of faces of C satis�es all
the assumptions above with the maximal element C, the minimal element {0},
and the rank function � which is equal to the dimension of the corresponding
face. It is easy to show that P is an Eulerian poset of rank d.

De�nition 2.4 [31] Let P = [0̂; 1̂] be an Eulerian poset of rank d. Define two
polynomials G(P; t); H (P; t) ∈ Z[t] by the following recursive rules:

G(P; t) = H (P; t) = 1 if d = 0 ;

H (P; t) =
∑

0̂¡x51̂

(t − 1)�(x)−1G([x; 1̂]; t) (d ¿ 0) ;

G(P; t) = �¡d=2((1− t)H (P; t)) (d ¿ 0) ;



186 V.V. Batyrev, L.A. Borisov

where �¡r denotes the truncation operator Z[t]→ Z[t] which is defined by

�¡r

(∑
i
ait i
)
=
∑
i¡r
ait i :

Theorem 2.5 [31] Let P be an Eulerian poset of rank d= 1. Then

H (P; t) = t d−1H (P; t−1) :

Proposition 2.6 Let P be an Eulerian poset of rank d= 0. Then

t dG(P; t−1) =
∑

0̂5x51̂

(t − 1)�(x)G([x; 1̂]; t) :

Proof. The case d = 0 is obvious. Using 2.5, we obtain

(t − 1)H (P; t) = t dG(P; t−1)− G(P; t) (d ¿ 0) :

Now the statement follows from the formula for H (P; t) in 2.4.

De�nition 2.7 Let P be an Eulerian poset of rank d. Define the polynomial
B(P; u; v) ∈ Z[u; v] by the following recursive rules:

B(P; u; v) = 1 if d = 0 ;∑
0̂5x51̂

B([0̂; x]; u; v)ud−�(x)G([x; 1̂]; u−1v) = G(P; uv) :

Example 2.8 Let P be the boolean algebra of rank d= 1. Then G(P; t) = 1,
H (P; t) = 1 + t + · · ·+ t d−1, and B(P; u; v) = (1− u)d.
Example 2.9 Let C ⊂ R3 be a 3-dimensional �nite convex polyhedral cone
with k 1-dimensional faces (−C ∩ C = {0} ∈ R3), P the Eulerian poset of
faces of C. Then G(P; t) = 1 + (k − 3)t, H (P; t) = 1 + (k − 2)t + t 2, and

B(P; u; v) = 1− (k − (k − 3)v)u+ (k − (k − 3)v)u2 − u3 :

We notice that B(P; u; v) satis�es the relation

B(P; u; v) = (−u)3B(P; u−1; v)

which is a consequence of the selfduality P ∼= P∗ and a more general
property 2.13.

Proposition 2.10 Let P be an Eulerian poset of rank d ¿ 0. Then B(P; u; v)
has the following properties:

(i) B(P; u; 1) = (1− u)d and B(P; 1; v) = 0;
(ii) the degree of B(P; u; v) with respect to v is less than d=2.



Mirror duality and string-theoretic Hodge numbers 187

Proof. The statement (i) follows immediately from 2.6 and the recursive de�-
nition of B(P; u; v). In order to prove (ii) we use induction on d. By assump-
tion, the degree of B([0̂; x]; u; v) with respect to v is less than �(x)=2. On the
other hand, the v-degree of G([x; 1̂]; u−1v) is less than (d− �(x))=2 (see 2.4).
It remains to apply the recursive formula of 2.7.

Proposition 2.11 Let P be an Eulerian poset of rank d. Then B-polynomials
of intervals [0̂; x] and [x; 1̂] satisfy the following relation:∑
0̂5x51̂

B([0̂; x]; u−1; v−1)(uv)�(x)(v− u)d−�(x) = ∑
0̂5x51̂

B([x; 1̂]; u; v)(uv− 1)�(x) :

Proof. Let us substitute u−1; v−1 instead of u; v in the recursive relation 2.7.
We obtain∑

0̂5x51̂

B([0̂; x]; u−1; v−1)u−d+�(x)G([x; 1̂]; uv−1) = G(P; u−1v−1) : (3)

By 2.6, we have

G(P; u−1v−1) = (uv)−d
∑

0̂5x51̂

(uv− 1)�(x)G([x; 1̂]; uv) (4)

and

G([x; 1̂]; uv−1) =
∑

x5y51̂

(u−1v− 1)�(y)−�(x)ud−�(x)v�(x)−dG([y; 1̂]; u−1v)

=
∑

x5y51̂

ud−�(y)v�(x)−d(v− u)�(y)−�(x)G([y; 1̂]; u−1v) : (5)

By 2.7, we also have

G([x; 1̂]; uv) =
∑

x5y51̂

ud−�(y)B([x; y]; u; v)G([y; 1̂]; u−1v) : (6)

By substitution (6) in (4), and two equations (4), (5) in (3) we obtain:∑
0̂5x5y51̂

B([0̂; x]; u−1; v−1)u�(x)−�(y)v�(x)−d(v− u)�(y)−�(x)G([y; 1̂]; u−1v)

=
∑

0̂5x5y51̂

B([x; y]; u; v)u−�(y)v−d(uv− 1)�(x)G([y; 1̂]; u−1v) : (7)

Now we use induction on d. It is easy to see that the equation (7) and
the induction hypothesis for y ¡ 1̂ immediately imply the statement of the
proposition.

Proposition 2.12 The B-polynomials are uniquely determined by the relation
2.11; by the property of v-degree from 2.10(ii); and by the initial condition
B(P; u; v) = 1 if d = 0.
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Proof. Indeed, if we know B([x; y]; u; v) for all �(y)− �(x)¡ d, then we
know all terms in 2.11 except for B(P; u; v) on the right hand side and
B(P; u−1; v−1)(uv)d on the left hand side. Because the v-degree of B(P; u; v) is
less than d=2, the possible degrees of monomials with respect to variable v in
B(P; u; v) and B(P; u−1; v−1)(uv)d do not coincide. This allows us to determine
B(P; u; v) uniquely.

Theorem 2.13 Let P be an Eulerian poset of rank d; P∗ be the dual Eulerian
poset. Then

B(P; u; v) = (−u)dB(P∗; u−1; v) :

Proof. We set
Q(P; u; v) = (−u)dB(P∗; u−1; v) :

It is clear that Q(P; u; v) = 1 and v-degree of Q(P; u; v) is the same as v-degree
of B(P; u; v). By 2.12, it remains to establish the same recursive relations for
Q(P; u; v) as for B(P; u; v) in 2.11. The last property follows from straightfor-
ward computations. Indeed, the equality∑
0̂5x51̂

Q([0̂; x]; u−1; v−1)(uv)�(x)(v− u)d−�(x) = ∑
0̂5x51̂

Q([x; 1̂]; u; v)(uv− 1)�(x)

(8)
is equivalent to the relation 2.11 for B(P∗; u; v−1):∑

0̂5x51̂

B([x; 1̂]∗; u−1; v)(uv−1)d−�(x)(v−1 − u)�(x)

=
∑

0̂5x51̂

B([0̂; x]∗; (u; v−1)(uv−1 − 1)d−�(x) ;

because

Q([x; 1̂]; u; v) = (−u)d−�(x)B([x; 1̂]∗; u−1; v)
and

Q([0̂; x]; u−1; v−1) = (−u)−�(x)B([0̂; x]∗; u; v−1) :

3 E-polynomials of toric hypersurfaces

Let M and N be two free abelian groups of rank d which are dual to each
other; i.e., N = Hom(M;Z). We denote by

〈∗; ∗〉 : M × N → Z

the canonical bilinear pairing, and by MR (resp. by NR) the real scalar exten-
sions of M (resp. of N ).
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De�nition 3.1 A subset C ⊂ M is called a d-dimensional rational convex
polyhedral cone with vertex {0} ∈ M if there exists a finite set {e1; : : : ; ek}
⊂ M such that

C = {�1e1 + · · ·+ �kek ∈ MR : where �i ∈ R=0 (i = 1; : : : ; k)}
and −C + C = MR; −C ∩ C = {0} ∈ M .
Remark 3.2 If C ⊂ M is a d-dimensional rational convex polyhedral cone
with vertex {0} ∈ M , then the dual cone

�C = {z ∈ NR : 〈ei; z〉= 0 for all i ∈ {1; : : : ; k}}
is also a d-dimensional rational convex polyhedral cone with vertex {0} in
the dual space NR. Moreover, there exists a canonical bijective correspondence
F ↔ F∗ between faces F ⊂ C and faces F∗ ⊂ �C (dim F + dim F∗ = d):

F 7→ F∗ := {z ∈ �C :〈z′; z〉 = 0 for all z′ ∈ F}
which reverses inclusion relation between faces.

Let P be the Eulerian poset of faces of a d-dimensional rational convex
polyhedral cone C ⊂ MR with vertex in {0}. For convenience of notations, we
use elements x ∈ P as indices and denote by Cx the face of C corresponding
to x ∈ P, in particular, we have C0̂ = {0}, C 1̂ = C, and �(x) = dimCx. The
dual Eulerian poset P∗ can be identi�ed with the poset of faces C∗x of the dual
cone �C ⊂ NR.
De�nition 3.3 A d-dimensional cone C (d= 1) as in 3.1 is called Gorenstein
if there exists an element nC ∈ N such that 〈z; nC〉¿ 0 for any nonzero
z ∈ C; and all vertices of the (d− 1)-dimensional convex polyhedron

�(C) = {z ∈ C :〈z; nC〉 = 1}
belong to M . This polyhedron will be called the supporting polyhedron of C.
For convenience; we consider {0} as a 0-dimensional Gorenstein cone with
the supporting polyhedron �({0}) := ∅. For any m ∈ C ∩M; we define the
degree of m as

degm = 〈m; nC〉 :
Remark 3.4 It is clear that any face Cx of a Gorenstein cone is again a
Gorenstein cone with the supporting polyhedron

�(Cx) = {z ∈ Cx : 〈z; nC〉 = 1} :
Now we recall standard facts from the theory of toric varieties [9, 11, 26]

and �x our notations:
Let P(C) be the (d− 1)-dimensional projective toric variety associated

with a Gorenstein cone C. By de�nition,

P(C) = ProjC[C ∩M ]
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where C[C ∩M ] is a graded semigroup algebra over C of lattice points
m ∈ C ∩M . Each face Cx ⊂ C of positive dimension de�nes an irreducible
projective toric subvariety

P(Cx) = ProjC[Cx ∩M ] ⊂ P(C)

which is a compacti�cation of a (�(x)− 1)-dimensional algebraic torus

Tx := SpecC[Mx] ;

where Mx ⊂ M is the subgroup of all lattice points m ∈ (−Cx + Cx) ∩M
such that 〈m; nC〉 = 0. Moreover, the multiplicative group law on Tx extends
to a regular action of Tx on P(Cx) so that one has the natural
strati�cation

P(Cx) =
⋃

0̂¡y5x

Ty

by Tx-orbits Ty. We denote by OP(C)(1) the ample tautological sheaf on P(C).
In particular, lattice points in �(C) can be identi�ed with a torus invariant basis
of the space of global sections of OP(C)(1). We denote by Z the set of zeros
of a generic global section of OP(C)(1) and set

Zx := Z ∩ Tx (0̂¡ x 5 1̂) :

Thus we have the natural strati�cation:

Z =
⋃

0̂¡x51̂

Zx ;

where each Zx is a smooth a�ne hypersurface in Tx de�ned by a generic
Laurent polynomial with the Newton polyhedron �(Cx).

De�nition 3.5 Define two functions

S(Cx; t) := (1− t)�(x)
∑

m∈Cx ∩M
t degm

and
T (Cx; t) := (1− t)�(x)

∑
m∈ Int(Cx)∩M

t degm ;

where Int(Cx) denotes the relative interior of Cx ⊂ C.

The following statement is a consequence of the Serre duality (see [10, 1]):

Proposition 3.6 S(Cx; t) and T (Cx; t) are polynomials satisfying the relation

S(Cx; t) = t dT (Cx; t−1) :
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De�nition 3.7 [10] Let X be a quasi-projective algebraic variety over C. For
each pair of integers (p; q); one defines the following generalization of Euler
characteristic:

ep; q(X ) =
∑
k
(−1)khp; q(Hkc (X )) ;

where hp;q(Hkc (X )) is the dimension of the (p; q)-component of the mixed
Hodge structure of Hkc (X ) [12]. The sum

E(X ; u; v) :=
∑
p; q
ep; q(X )upvq

is called E-polynomial of X .

Next statement is also due to Danilov and Khovanskiî (see [10] Sect. 4; or
another approach in [1]):

Proposition 3.8 We set E(Z0̂; t; 1) := (t − 1)−1. Then

E(Zx; t; 1) =
(t − 1)�(x)−1 + (−1)�(x)S(Cx; t)

t
for �(x)= 0.

The purpose of this section is to give an explicit formula for E-polynomials
of a�ne hypersurfaces Zx ⊂ Tx. Following the method of Denef and Loeser
[13] combined with ideas of Danilov and Khovanskiî [10], we compute
E(Zx; u; v) using intersection cohomology (with the middle perversity) intro-
duced by Goresky and MacPherson [17]. Recall that intersection cohomology
IH∗(X ) of a quasi-projective algebraic variety X of pure dimension n over
an algebraically closed �eld K can be de�ned as hypercohomology of the so
called intersection complex IC•X which is uniquely determined as an object
of the derived category Db(X ). In the case char K ¿ 0 the intersection com-
plex IC•X with l-adic coe�cients carries a natural weight �ltration which has
been studied by Beilinson, Bernstein, Deligne and Gabber using the theory of
perverse sheaves [8]. There exists the following explicit construction of IC•X
proposed by Deligne:
Let X = Z0 ⊃ Z1 ⊃ Z2 ⊃ · · · ⊃ Zn ⊃ Zn+1 = ∅ be an irreducible strati�ed

complex algebraic variety of dimension n; i.e., Zk are closed subvarieties, the
strata Sk = Zk\Zk+1 are smooth complex algebraic locally closed subvarieties
of codimension k in X , and the open subset S0 is dense in X . Denote by F
a constant sheaf on S0 with coe�cients in some �eld F (the �eld F is usually
one of the following: Q,Ql,R, or C). Then the intersection complex IC•X (F)
with coe�cients in F can be de�ned as

IC•X (F) := �¡nRin · · · �¡1Ri1F ;

where ik : X \Zk → X \Zk+1 is the open inclusion and �¡k truncates sheaf co-
homology in degrees = k. The cohomology Hi(IC•X (F)) are constructible
sheaves which do not depend on the choice of a strati�cation. Without lost
of generality we can often assume that the sheaves Hj(IC•X (F)) are locally
constant along all connected components X ki of strata S

k .
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De�nition 3.9 Let X be a quasi-projective algebraic variety over K; X =
⋃
i Xi

a stratification of X by pairwise disjoint smooth irreducible locally closed
strata Xi such that the cohomology sheaf Hj(IC•X (F)) is locally constant
along Xi for every j = 0. Assume that for every stratum Xi we have:

(i) Hj(IC•X (F))|X i = 0 for all odd values of j;
(ii) the Tate twisted sheaves H2kj(IC•X (F))(−k)|X i are direct sums of

copies of the constant sheaf F on Xi.

In this situation; we define for every stratum Xi ⊂ X the polynomial

Gint(Xi; t) :=
∑
k=0

dimFH2k(IC•X (F))st
k ;

where H2k(IC•X (F))s is the stalk of H
2k(IC•X (F)) over some closed point

s ∈ Xi.
Remark 3.10 It follows immediately from the construction of Deligne that

degGint(Xi; t)¡ codim Xi=2 :

The mixed Hodge structure on intersection cohomology of algebraic vari-
eties over C has been introduced by M. Saito using the theory of mixed Hodge
modules [28, 29, 30]. In particular, one has the following property:

Theorem 3.11 Let X =
⋃
i Xi be a stratified quasi-projective algebraic variety

over C. Then the hypercohomology groups with compact supports of IC•X and
its restrictions to strata Xi ⊂ X have natural mixed Hodge structures.

De�nition 3.12 Let X =
⋃
i Xi a stratified quasi-projective variety. We call

the polynomial

Eint(X ; u; v) :=
∑
k
(−1) khp; q(IH k

c (X ))u
pvq

the intersection cohomology E-polynomial of X .
Let IH•

c (X=Xi) the hypercohomology of the restriction of IC
•
X to Xi. We

call the polynomial

Eint(X=Xi; u; v) :=
∑
k
(−1) khp; q(IH k

c (X=Xi))u
pvq

the intersection cohomology E-polynomial of the stratum Xi ⊂ X .
From M. Saito’s theory, one immediatelly obtains:

Theorem 3.13 Let X =
⋃
i Xi be a stratified quasi-projective algebraic variety

over C. Then
Eint(X ; u; v) =

∑
i
Eint(X=Xi; u; v) :

Moreover; if the stratification of X satisfies the conditions (i), (ii) in 3.9,
then

Eint(X ; u; v) =
∑
i
E(Xi; u; v) · Gint(Xi; uv) :
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Following ideas in [8, 16] for the l-adic version of the intersection coho-
mology of algebraic varieties over K in the case char K ¿ 0, M. Saito has
proved the following purity theorem for varieties over C (see a generalized
version of the purity theorem for links in [14]):

Theorem 3.14 Let X be a projective algebraic variety over C. Then the mixed
Hodge structure in IH j(X ) is pure of weight j.

Corollary 3.15 Let X be a projective algebraic variety. Then

hp;q(IHp+q(X )) = (−1)p+qep; qint (X ) ;
where the numbers ep; qint (X ) are the coefficients of the intersection cohomology
E-polynomial

Eint(X ; u; v) =
∑
p; q
ep; qint (X )u

pvq :

The following statement has been discovered by Bernstein, Khovanskiî and
MacPherson (see two independent proofs in [13] and [15]):

Theorem 3.16 Let
P(C) =

⋃
0̂¡x51̂

Tx

be a projective toric variety with the natural stratification by the torus orbits
Tx. Then this stratification satisfies the condition (i), (ii) in 3.9 and

Gint(Tx; t) = G([x; 1̂]; t) :

In particular, one has

Eint(P(C); u; v) =
∑

0̂¡x51̂

(uv− 1)�(x)−1G([x; 1̂]; uv) = H (P; uv) :

Corollary 3.17 Let W ⊂ P(C) be a hypersurface that meets transversally
all toric strata Tx ⊂ P(C) that it intersects (W is not assumed to be
ample). Then

Eint(W ; u; v) =
∑

0̂¡x51̂

E(Wx; u; v)G([x; 1̂]; uv) ;

where Wx = W ∩ Tx (0̂¡ x 5 1̂).

Proof. Let IC•P(C) (resp. IC
•
W
) be the intersection complex which is obtained

by the construction of Deligne applied to the natural strati�cation of P(C)
by Tx (resp. of W by Wx). Since the strati�cation of P(C) by Tx is locally
isomorphic in analytic topology to the strati�cation of W × A1 by Wx × A1,
the restriction of IC•P(C) to W coincides with IC•

W
, and the restrictions of the

cohomology sheaves Hi(IC•P(C)) to W coincide with Hi(IC•
W
). By 3.16, IC•

W
satis�es the conditions (i), (ii) in 3.9 with respect to the strati�cation by Wx
and

Gint(Wx; t) = Gint(Tx; t) :

Now the statement follows from 3.13.
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Applying 3.8, we obtain:

Corollary 3.18

Eint(Z ; t; 1) =
∑

0̂¡x51̂

(
(t − 1)�(x)−1 + (−1)�(x)S(Cx; t)

t

)
G([x; 1̂]; t) :

De�nition 3.19 Define HLef (P; t) to be the polynomial of degree (d− 2) with
the following properties:

(i) HLef (P; t) = t d−2HLef (P; t−1);
(ii) �5(d−2)=2HLef (P; t) = �5(d−2)=2H (P; t).

Proposition 3.20

HLef (P; t) = (1− t)−1(G(P; t)− t d−1G(P; t−1)) :

Proof. Let us set

Q(P; t) := (1− t)−1(G(P; t)− t d−1G(P; t−1)) :
We check that the properties 3.19(i)–(ii) are satis�ed for Q(P; t). Indeed
3.19(i) follows immediately from the de�nition of Q(P; t). If

H (P; t) =
∑

05i5d−1
hit i

and
G(P; t) = h0 +

∑
15i¡d=2

(hi − hi−1)t i ;

then

Q(P; t) = h0
1− t d−1
1− t +

∑
15i¡d=2

(hi − hi−1) t
i − t d−1−i
1− t :

This shows (ii) and the fact that Q(P; t) is a polynomial.

Proposition 3.21 Define Eprimint (Z ; u; v) to be the polynomial

Eprimint (Z ; u; v) := Eint(Z ; u; v)− HLef (P; uv) :
Then Eprimint (Z ; u; v) is a homogeneous polynomial of degree (d− 2).
Proof. By the Lefschetz theorem for intersection cohomology [18], we have
isomorphisms

IH i(P(C)) ∼= IH i(Z); (05 i ¡ d− 2)
and the short exact sequence

0→ IHd−2(P(C))→ IHd−2(Z)→ IHd−2prim (Z)→ 0 ;

where IHd−2prim (Z) denotes the primitive part of intersection cohomology of Z in

degree (d− 2). By purity Theorem 3.14, the Hodge structure of IHd−2prim (Z) is
pure. On the other hand, it follows from the Poincar�e duality for intersection
cohomology that Eprimint (Z ; u; v) is the E-polynomial of this Hodge structure.
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Theorem 3.22 We set E(Z0̂; u; v) := (uv− 1)−1. Then E-polynomials E(Zx;
u; v) of affine toric hypersurfaces satisfy the following recursive relation∑

0̂5x51̂

(E(Zx; u; v)− (uv)−1(uv− 1)�(x)−1)G([x; 1̂]; uv)

= vd−2
∑

0̂5x51̂

(u−1v)(−1)�(x)S(Cx; uv−1)G([x; 1̂]; uv−1) :

Proof. By 3.18 and 3.20, we have

Eprimint (Z ; t; 1) = Eint(Z ; t; 1)− HLef (P; t)

=
∑

0̂¡x51̂

t−1((t − 1)�(x)−1 + (−1)�(x)S(Cx; t))G([x; 1̂]; t)

−(1− t)−1(G(P; t)− t d−1G(P; t−1)) :

Using 2.6, we obtain∑
0̂¡x51̂

t−1(t − 1)�(x)−1G([x; 1̂]; t) = t−1(t − 1)−1(t dG(P; t−1)− G(P; t)) :

This yields

Eprimint (Z ; t; 1) =
∑

0̂5x51̂

t−1(−1)�(x)S(Cx; t)G([x; 1̂]; t) : (9)

On the other hand, by 3.17 and 3.20, we have

Eprimint (Z ; u; v) = Eint(Z ; u; v)− HLef (P; uv)
=

∑
0̂¡x51̂

E(Zx; u; v)G([x; 1̂]; uv)

−(1− uv)−1(G(P; uv)− (uv)d−1G(P; (uv)−1)) :
Using 2.6, we obtain∑
0̂5x51̂

(uv)−1(uv− 1)�(x)−1G([x; 1̂]; uv) = (uv)d−1(uv− 1)−1G(P; (uv)−1) :

This yields

Eprimint (Z ; u; v) =
∑

0̂5x51̂

(E(Zx; u; v)− (uv)−1(uv− 1)�(x)−1)G([x; 1̂]; uv) :
(10)

By 3.21, we have

Eprimint (Z ; u; v) = v
d−2Eprimint (Z ; uv

−1; 1) :

It remains to combine (9) and (10).
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De�nition 3.23 Let m be a lattice point in C ∩M . We denote by x(m) the
minimal element among x ∈ P such that the face Cx ⊂ C contains m. The
interval [x(m); 1̂] ⊂ P parametrizes the set of all faces of C containing m.
We identify the dual interval [x(m); 1̂]∗ with the Eulerian poset of all faces
C∗x ⊂ �C such that 〈m; z〉 = 0 for all z ∈ C∗x .
Theorem 3.24 Let us set Z := Z1̂. Then there exists the following explicit
formula for E(Z ; u; v) in terms of B-polynomials:

E(Z ; u; v) =
(uv− 1)d−1

uv

+
(−1)d
uv

∑
m∈C∩M

(v− u)�(x(m))B([x(m); 1̂]∗; u; v)
(u
v

)degm
:

Proof. By induction, E-polynomials are uniquely determined from the recur-
sive formula 3.22. Therefore, it su�ces to show that the functions

(uv− 1)�(x)−1
uv

+
(−1)�(x)
uv

∑
m∈Cx ∩M

(v− u)�(x(m))B([x(m); x]∗; u; v)
(u
v

)degm
satisfy the same recursive formula as polynomials E(Zx; u; v). Indeed, let us
substitute these functions instead of E-polynomials in the left hand side of
3.22 and expand

(−1)�(x)S(Cx; uv−1) =
(u
v
− 1
)�(x) ∑

m∈Cx ∩M

(u
v

)degm
on the right hand side of 3.22. Now we choose a lattice point m ∈ C ∩M ,
collect terms containing (u=v)degm in right and left hand sides, and use the
equality (2.6) ∑

x(m)5x51̂

(u
v
− 1
)�(x)

G([x; 1̂]; uv−1)

=
(u
v
− 1
)�(x(m)) (u

v

)d−�(x(m))
G([x(m); 1̂]; u−1v)

on the right hand side. By the duality (2.13)

B([x(m); x]∗; u; v) = (−u)�(x)−�(m(x))B([x(m); x]; u−1; v) ;
it remains to establish the recursive relation:

(v− u)�(x(m))
uv

∑
x(m)5x51̂

(−1)�(x)(−u)�(x)−�(m(x))B([x(m); x]; u−1; v)G([x; 1̂]; uv)

=
(u
v
− 1
)�(x(m)) vd−1

u

(u
v

)d−�(x(m))
G([x(m); 1̂]; u−1v)

which is equivalent to the recursive relation in 2.7 after the substitution u−1

instead of u.
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4 Mirror duality

Let M and N = Hom(N;Z) be dual to each other free abelian groups of rank
d, MR and NR the real scalar extensions of M and N , 〈∗; ∗〉 : M × N → Z
the natural pairing.

De�nition 4.1 [4] Let C ⊂ MR be a d-dimensional Gorenstein cone. The cone
C is called re
exive if the dual cone �C ⊂ NR is also Gorenstein; i.e.; there
exists a lattice element m �C ∈ M such that all vertices of the supporting poly-
hedron �( �C) = {z ∈ �C : 〈m �C; z〉 = 1} are contained in M . In this case, we
call r = 〈m �C; nC〉 the index of C.
De�nition 4.2 [2] Let M be a free abelian group of rank d. A d-dimensional
polyhedron in MR with vertices in M is called re
exive if it can be iden-
tified with a supporting polyhedron of some (d+ 1)-dimensional reflexive
Gorenstein cone of index 1.

Recall the de�nition of string-theoretic Hodge numbers of an algebraic
variety X with at most Gorenstein toroidal singularities [6]:

De�nition 4.3 [6] Let X =
⋃
i∈ I Xi be a k-dimensional stratified algebraic

variety over C with at most Gorenstein toroidal singularities such that for
any i ∈ I the singularities of X along the stratum Xi of codimension ki are
defined by a ki-dimensional finite rational polyhedral cone �i; i.e.; X is locally
isomorphic to

C k−ki × U�i
at each point x ∈ Xi where U�i is a ki-dimensional affine toric variety which
is associated with the cone �i (see [9]). Then the polynomial

Est(X ; u; v) :=
∑
i∈ I
E(Xi; u; v) · S(�i; uv)

is called the string-theoretic E-polynomial of X. If we write Est(X ; u; v) in
form

Est(X ; u; v) =
∑
p; q
ap; qupvq ;

then the numbers hp;qst (X ) := (−1)p+qap; q are called the string-theoretic
Hodge numbers of X.

Remark 4.4 Comparing with 3.13, 3.16 and 3.17, the de�nition of the string-
theoretic Hodge numbers looks as if there were a complex ST •X whose hyper-
cohomology groups have natural Hodge structure which assumed to be pure
if X is compact. We remark that the construction of such a complex ST •X (an
analog of the intersection complex) is still an open problem.

Let V = D1 ∩ · · · ∩ Dr be a generic Calabi–Yau complete intersection of
r semi-ample divisors D1; : : : ; Dr in a d-dimensional Gorenstein toric Fano
variety X (k = r). According to [4], there exists a d-dimensional re
exive
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polyhedron � and its decomposition into a Minkowski sum

� = �1 + · · ·+ �r ;
where each lattice polyhedron �i is the supporting polyhedron for global sec-
tions of a semi-ample invertible sheaf Li

∼= OX(Di) (i = 1; : : : ; r).
De�nition 4.5 [7] Denote by E1; : : : ; Ek the closures of (d− 1)-dimensional
torus orbits in X and set I := {1; : : : ; k}. A decompostion into a Minkowski
sum � = �1 + · · ·+ �r as above is called a nef-partition if there exists a
decomposition of I into a disjoint union of r subsets Ij ⊂ I (j = 1; : : : ; r)
such that

O(Dj) ∼= O
(∑
l∈ Ij

El

)
; (j = 1; : : : ; r)

Now we put M = Zr ⊕M , d = d+ r, and de�ne the d-dimensional cone
C ⊂ MR as

C := {(�1; : : : ; �r ; �1z1 + · · ·+ �rzr) ∈ MR : �i ∈ R=0; zi ∈ �i; i = 1; : : : ; r} :
We extend the pairing 〈· ; ·〉 : M × N → Z to the pairing between M and
N := Zr ⊕ N by the formula

〈(a1; : : : ; ar ; m); (b1; : : : ; br ; n)〉 =
r∑
i=1
aibi + 〈m; n〉 :

Theorem 4.6 [7, 4] Let � = �1 + · · ·+ �r be a nef-partition. Then it defines
canonically a d-dimensional reflexive polyhedron 3 ⊂ NR and a nef-partition
3 = 31 + · · ·+3r which are uniquely determined by the property that
�C := {(�1; : : : ; �r ; �1z1 + · · ·+ �rzr) ∈ NR : �i ∈ R=0; zi ∈ 3i ; i = 1; : : : ; r}

is the dual reflexive Gorenstein cone �C ⊂ NR.
De�nition 4.7 [7] The nef-partition 3 = 31 + · · ·+3r as in 4.6 is called
the dual nef-partition.

We set
Y := P(L1 ⊕ · · · ⊕Lr) :

Recall the standard construction of the reduction of complete intersection
V ⊂ X to a hypersurface Ṽ ⊂ Y [4]. Let � be the canonical projection Y→ X
and OY(−1) the tautological Grothendieck sheaf on Y. Since

�∗OY(1) =L1 ⊕ · · · ⊕Lr ;
we obtain the isomorphism

H 0(Y;OY(1)) ∼= H 0(X;L1)⊕ · · · ⊕ H 0(X;Lr) :

Assume that Di is the set of zeros of a global section si ∈ H 0(X;Li)
(15 i 5 r). We de�ne Ṽ as the zero set of the global section s ∈ H 0(Y;OY)
which corresponds to the r-tuple (s1; : : : ; sr) under above isomorphism. Our
main interest is the following standard property ([4]):
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Proposition 4.8 The restriction of � on Y\Ṽ is a locally trivial C r−1-bundle
in Zariski topology over X\V .
Let us set

P = Proj
⊕
i=0
H 0(Y;OY(i)) :

The following statement is contained in [4]:

Proposition 4.9 The tautological sheaf OY(1) is semi-ample and the natural
toric morphism

� : Y→ P

is crepant. Moreover, OY(r) is the anticanonical sheaf of Y; P is a Gorenstein
toric Fano variety, and Z := �(Ṽ ) is an ample hypersurface in P.

There is the following explicit formula for Est(V ; u; v) in terms of Est(P; u; v)
and Est(Z ; u; v):

Theorem 4.10

Est(V ; u; v) = ((uv− 1)((uv) r − 1)−1)Est(P; u; v)− (uv)1−rEst(P\Z ; u; v) :

Proof. Since V is transversal to all toric strata in X we have:

Est(V ; u; v) = Est(X; u; v)− Est(X\V ; u; v) :
Using the CPr−1-bundle structure of Y over X, we obtain:

Est(X; u; v) = ((uv) r − 1)−1(uv− 1)Est(Y; u; v) :
By 4.8, we also have

Est(X\V ; u; v) = (uv)1−rEst(Y\Ṽ ; u; v) :
Since birational crepant toric morphisms do not change string-theoretic Hodge
numbers (see [6]), by 4.9, we conclude

Est(Y; u; v) = Est(P; u; v); Est(Y\Ṽ ; u; v) = Est(P\Z ; u; v) :
De�nition 4.11 Let C ⊂ MR be a reflexive Gorenstein cone; �C ⊂ NR the dual
reflexive Gorenstein cone. We define

�(C; �C) := {(m; n) ∈ M ⊕ N : m ∈ C; n ∈ �C; and 〈m; n〉 = 0} :
De�nition 4.12 Let (m; n) be an element of �(C; �C). We define the
Eulerian poset P(m;n) as the subset of all faces Cx ⊂ C such that Cx con-
tains m and 〈z; n〉 = 0 for all z ∈ Cx. We denote by �(x∗(n)) the dimension
of the intersection of C with the hyperplane 〈z; n〉 = 0.
Remark 4.13 The dual Eulerian poset P∗(m;n) can be identi�ed with the subset
of all faces C∗x ⊂ �C such that C∗x contains n and 〈m; z〉 = 0 for all z ∈ C∗x .
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Theorem 4.14 Let us set d = d+ r and

A(m;n)(u; v) =
(−1)�(x∗(n))
(uv) r

(v− u)�(x(m))B(P∗(m;n); u; v)(uv− 1)d−�(x
∗(n)) :

Then

Est(V ; u; v) =
∑

(m;n)∈�(C; �C)

(u
v

)degm
A(m;n)(u; v)

(
1
uv

)deg n

Proof. By De�nition 4.3,

Est(P; u; v) =
∑

0̂¡x51̂

(uv− 1)�(x)−1S(C∗x ; uv)

=
∑

0̂¡x51̂

(uv− 1)�(x)−1(uv− 1)d−�(x)T (C∗x ; (uv)−1)

= (uv− 1)d−1 ∑
0̂¡x51̂

( ∑
n∈Int(C∗x ) ∩ N

(uv)−deg n
)

= (uv− 1)d−1 ∑
n∈@ �C∩ N

(uv)−deg n ;

where @ �C = �C\Int( �C) is the boundary of �C. Since N ∩ Int( �C) = p+ N ∩ �C
and degp = r, we conclude:

Est(P; u; v) = (1− (uv)−r)(uv− 1)d−1
∑

n∈ �C∩N
(uv)−deg n

= ((uv) r − 1)(uv− 1)d−1 ∑
n∈Int( �C)∩N

(uv)−deg n :

On the other hand,

Est(P\Z ; u; v) = Est(P; u; v)− Est(Z ; u; v) :

By De�nition 4.3 and Theorem 3.24,

Est(Z ; u; v)

=
∑

0̂¡x51̂

(
(uv− 1)�(x)−1

uv

)
S(C∗x ; uv)

+
∑

0̂¡x51̂

(
(−1)�(x)
uv

∑
m∈Cx ∩ M

(v− u)�(x(m))B([x(m); x]∗; u; v)
(u
v

)degm)
S(C∗x ; uv)

= (uv)−1Est(P; u; v)

+
∑

0̂¡x51̂

(
(−1)�(x)
uv

∑
m∈Cx ∩M

(v− u)�(x(m))B([x(m); x]∗; u; v)
(u
v

)degm)
S(C∗x ; uv) :
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By 4.10,

Est(V ; u; v)

= ((uv− 1)((uv) r − 1)−1 − (uv)1−r + (uv)−r)Est(P; u; v)

+
∑

0̂¡x51̂

(
(−1)�(x)
(uv)r

∑
m∈Cx ∩M

(v− u)�(x(m))B([x(m); x]∗; u; v)
(u
v

)degm)
S(C∗x ; uv)

= (uv)−r(uv− 1)d ∑
n∈Int( �C)∩N

(uv)−deg n

+
∑

0̂¡x51̂

(
(−1)�(x)
(uv)r

∑
m∈Cx ∩M

(v− u)�(x(m))B([x(m); x]∗; u; v)
(u
v

)degm)
S(C∗x ; uv)

=
∑

0̂5x51̂

(
(−1)�(x)
(uv)r

∑
m∈Cx ∩M

(v− u)�(x(m))B([x(m); x]∗; u; v)
(u
v

)degm)
S(C∗x ; uv) :

It remains to use the formula

S(C∗x ; uv) = (uv− 1)d−�(x)
∑

n∈ Int(C∗x )∩N
(uv)−deg n (0̂5 x 5 1̂)

and notice that �(x) = �(x∗(n)) if n is an interior lattice point of C∗x
(see 4.12).

Theorem 4.15 Let V be a (d− r)-dimensional Calabi–Yau complete intersec-
tion defined by a nef-partition � = �1 + · · ·+ �r; W a (d− r)-dimensional
Calabi–Yau complete intersection defined by the dual nef-partition 3 =
31 + · · ·+3r . Then

Est(V ; u; v) = (−u)d−rEst(W ; u−1; v) ;

i.e.;

hp; qst (V ) = h
d−r−p; q
st (W ) 05 p; q5 d− r :

Proof. If we use the duality between two d-dimensional re
exive
Gorenstein cones C ⊂ MR and �C ⊂ NR 4.6, then the statement of Theorem
follows immediatelly from the explicit formula in 4.14 and from the duality
for B-polynomials 2.13.
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