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Abstract. We prove in full generality the mirror duality conjecture for string-
theoretic Hodge numbers of Calabi—-Yau complete intersections in
Gorenstein toric Fano varieties. The proof is based on properties of intersection
cohomology.

1 Introduction

The first author has conjectured that the polar duality of reflexive polyhedra
induces the mirror involution for Calabi—Yau hypersurfaces in Gorenstein toric
Fano varieties [2]. The second author has proposed a more general duality
which conjecturally induces the mirror involution for Calabi—Yau complete
intersections in Gorenstein toric Fano varieties [7]. The most general form of
the combinatorial duality which includes mirror constructions of physicists for
rigid Calabi—Yau manifolds was formulated by both authors in [4].

The main purpose of our paper is to show that all proposed combinatorial
dualities agree with the following Hodge-theoretic property of mirror symmetry
predicted by physicists:

If two smooth n-dimensional Calabi—Yau manifolds V and W form a
mirror pair, then their Hodge numbers satisfy the relation

WAVY=hn"P4wW), 0= p, q<n. (D)

A verification of this property becomes rather non-trivial if we do not
make restrictions on the dimension n. The main difficulty is the necessity
to work with singular Calabi—Yau varieties whose singularities in general do
not admit any crepant desingularization. This difficulty was the motivation for
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introduction of so called string-theoretic Hodge numbers hly (V') for singular
V [6]. The string-theoretic Hodge numbers hZ?(V) coincide with the usual
Hodge numbers #79(V) if V' is smooth, and with the usual Hodge numbers of
a crepant desingularization ¥ of ¥ if such a desingularization exists. Therefore
the property (1) must be reformulated as follows:

Let (V,W) be a mirror pair of singular n-dimensional Calabi-Yau vari-
eties. Then the string-theoretic Hodge numbers satisfy the duality:

WAV = BTMIOP). 0= pg S @)

The string-theoretic Hodge numbers for Gorenstein algebraic varities with
toroidal or quotient singularities were introduced and studied in [6]. It was
also conjectured in [6] that the conbinatorial construction of mirror pairs of
Calabi—Yau complete intersections in Gorenstein toric Fano varieties satisfies
the duality (2). This conjecture has been proved in [6] for mirror pairs of
Calabi—Yau hypersurfaces of arbitrary dimension that can be obtained by the
Greene—Plesser construction [19]. Some other results supporting this conjecture
have been obtained in [2, 5, 27]. Additional evidence in favor of the conjecture
has been received by explicit computations of instanton sums using generalized
hypergeometric functions [3, 20, 22, 24].

The paper is organized as follows:

In Sect. 2, we introduce a polynomial invariant B(P;u,v) of an Eulerian par-
tially ordered set P using results of Stanley [31]. For our purposes, their most
important property is the relation between B(P;u,v) and B(P*;u,v), where P*
is the dual to P Eulerian poset (Theorem 2.13). It seems that the polynomials
B(P;u,v) have independent interest in combinatorics!.

In Sect. 3, we give an explicit formula for the polynomial £E(Z;u,v) which
describes the mixed Hodge structure of an affine hypersurface Z in an alge-
braic torus T (Theorem 3.24). We remark the following: the explicit formula
for E(Z;1,1) is due to Bernstein, Khovanskii and Kushnirensko [21, 23]; the
computation of the polynomial E(Z;¢, 1) which describes the Hodge filtration
on H}(Z) is due to Danilov and Khovanskii [10] (see also [1]); the polynomial
E(Z;t,t) which describes the weight filtration on H(Z) has been computed
by Denef and Loeser [13].

In Sect.4, we derive an explicit formula for the polynomial Eg(V;u,v)
where V' is a Calabi—-Yau complete intersection in a Gorenstein toric Fano
variety (Theorem 4.14). The coefficients of Eq(V;u,v) are equal up to a
sign to string-theoretic Hodge numbers of V. Since our formula is written
in terms of B-polynomials as a sum over pairs of lattice points contained in
the corresponding pair of dual to each other reflexive Gorenstein cones C and
C, the mirror duality for string-theoretic Hodge numbers becomes immediate
consequence of the duality for B-polynomials after the transposition C « C
(Theorem 4.15). Following some recent development of ideas of Witten [33]
by Morisson and Plesser [25], we conjecture that the formula obtained in this

! We are grateful to R. Stanley who point out us that another proof of Theorem 2.13 could be
obtained from the results which were used in his proof of a conjecture of G. Kalai [32] Sect. 8.
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paper gives the spectrum of the abelian gauge theory in two dimensions which
could be constructed from any pair (C,C) of two dual to each other reflexive
Gorenstein cones.

2 Combinatorial polynomials of Eulerian posets

Let P be a finite poset (i.e., finite partially ordered set). Recall that the Mobius
function up(x,y) of a poset P is a unique integer valued function on P x P
such that for every function f : P — 4 with values in an abelian group A the
following Mobius inversion formula holds:

f() = 2 up(x, y)g(x), where g(y)= > f(x).
Xy x=y
From now on we always assume that the poset P has a unique minimal
element 0, a unique maximal element 1, and that every maximal chain of P
has the same length d which will be called the rank of P. For any x < y in
P, define the interval

x,y]={zeP:x 2z < y}.

In particular, we have P = [0,1]. Define the rank function p : P — {0,1,...,d}
of P by setting p(x) equal to the length of any saturated chain in the interval
[0, x].

Definition 2.1 [31] A poset P as above is said to be Eulerian if for any
x =y (x,y € P) we have

pp(x, y) = (=1)P =7,

Remark 2.2 1t is easy to see that any interval [x, y] C P in an Eulerian poset P
is again an Eulerian poset with the rank function p(z) — p(x) for any z € [x, y].
If an Eulerian poset P has rank d, then the dual poset P* is again an Eulerian
poset with the rank function p*(x) = d — p(x).

Example 2.3 Let C be an d-dimensional finite convex polyhedral cone in R?
such that —C N C = {0} € RY. Then the poset P of faces of C satisfies all
the assumptions above with the maximal element C, the minimal element {0},
and the rank function p which is equal to the dimension of the corresponding
face. It is easy to show that P is an Eulerian poset of rank d.

Definition 2.4 [31] Let P = [0,1] be an Eulerian poset of rank d. Define two
polynomials G(P,t), H(P,t) € Z[t] by the following recursive rules:
G(P,t)=H(P,t)=1 ifd=0;

HP,H)= Y (t—DPO7IG(x11,1) (d > 0),

ﬁ<x§i

G(P,1) = t<ap((1 =0)H(P,1)) (d > 0),



186 V.V. Batyrev, L.A. Borisov

where T, denotes the truncation operator L[t] — Z[t] which is defined by

T, (Za,-t’) =Y at'.
i

i<r

Theorem 2.5 [31] Let P be an Eulerian poset of rank d = 1. Then
H(P,t)=t"""HP,t7").

Proposition 2.6 Let P be an Eulerian poset of rank d = 0. Then

'GP = Y (1= 1DPOG(x 1) .

0<x<i
Proof. The case d = 0 is obvious. Using 2.5, we obtain
(t— DH(P,t) =t'G(P,t™ ") — G(P,t) (d > 0).
Now the statement follows from the formula for H(P,¢) in 2.4.

Definition 2.7 Let P be an Eulerian poset of rank d. Define the polynomial
B(P;u,v) € Z[u,v] by the following recursive rules:

B(P;u,v)=1 ifd=0,

S B([0,x7; u, 0)u? PO G([x, 1], 'v) = G(P,uv) .

ﬁgng

Example 2.8 Let P be the boolean algebra of rank d = 1. Then G(P,t) = 1,
HP,t)=1+t+---+t7"! and B(P;u,v) = (1 — u)°.

Example 2.9 Let C C R? be a 3-dimensional finite convex polyhedral cone
with k 1-dimensional faces (—C N C = {0} € R3), P the Eulerian poset of
faces of C. Then G(P,t) =1+ (k —3)t, H(P,t) = 1 + (k — 2)t + ¢, and

B(P;u,v) =1—(k — (k= 3)v)u+ (k — (k —3)o)u’ —u’.
We notice that B(P;u,v) satisfies the relation
B(Pyu,0) = (—u)’B(P;u”",v)

which is a consequence of the selfduality P = P* and a more general
property 2.13.

Proposition 2.10 Let P be an Eulerian poset of rank d > 0. Then B(P;u,v)
has the following properties:

(i) B(P;u,1) = (1 — u)* and B(P;1,v) = 0;

(i1) the degree of B(P;u,v) with respect to v is less than d/2.
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Proof. The statement (i) follows immediately from 2.6 and the recursive defi-
nition of B(P;u,v). In order to prove (ii) we use induction on d. By assump-
tion, the degree of B([0,x];u,v) with respect to v is less than p(x)/2. On the
other hand, the v-degree of G([x,1];u~'v) is less than (d — p(x))/2 (see 2.4).
It remains to apply the recursive formula of 2.7.

Proposition 2.11 Let P be an Eulerian poset of rank d. Then B-polynomials
of intervals [0,x] and [x,1] satisfy the following relation:

S B([0,x); w07 D) Do — w)? P = 3 B(Ix, 1w, v)(uo — 1)P9)

0=<x<i 0<x<1

Proof. Let us substitute u~!, v~! instead of u,v in the recursive relation 2.7.

We obtain

S B([0,x];u v HPOG([x 1w = G . (3)

nggi
By 2.6, we have
GPu~v™ ) = (o)™ 3 (uv = DPPIG([x 1] uv) 4)

0<xxi

G L) = 5 @ o— 1)/ MOy =dG [y, i)

x<ysi

_ E ud*ﬂ(y)UP(X)*d(v _ u)p(y)fp(x)G([y,i],uflv) . (5)

x<y<i

By 2.7, we also have

G(lx,1Luw) = ¥ u’PDB([x, yl;u,0)G([y,11,u"'v). (6)

x<y<i
By substitution (6) in (4), and two equations (4),(5) in (3) we obtain:

S B([0,x]u v OO — gy PP Gy, 11,4 )

0=xsys<i

= X Blxyhuvu v w - DOG([y1Lu ). (7)

0=x<y=<i

Now we use induction on d. It is easy to see that the equation (7) and
the induction hypothesis for y < 1 immediately imply the statement of the
proposition.

Proposition 2.12 The B-polynomials are uniquely determined by the relation
2.11, by the property of v-degree from 2.10(ii), and by the initial condition
B(Pyu,v)=11ifd=0.
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Proof. Indeed, if we know B([x, y];u,v) for all p(y)— p(x) < d, then we
know all terms in 2.11 except for B(P;u,v) on the right hand side and
B(P;u~",v=")(uv)? on the left hand side. Because the v-degree of B(P;u,v) is
less than d/2, the possible degrees of monomials with respect to variable v in
B(P;u,v) and B(P;u~",v=")(uv)? do not coincide. This allows us to determine
B(P;u,v) uniquely.

Theorem 2.13 Let P be an Eulerian poset of rank d, P* be the dual Eulerian
poset. Then

B(P;u,v) = (—u)'B(P*;u",v).
Proof. We set
O(P;u,v) = (—u)'B(P*;u™",v).

It is clear that Q(P;u,v) = 1 and v-degree of Q(P;u,v) is the same as v-degree
of B(P;u,v). By 2.12, it remains to establish the same recursive relations for
O(P;u,v) as for B(P;u,v) in 2.11. The last property follows from straightfor-
ward computations. Indeed, the equality

> 0([0.xLu" v Yu) o — )PV = 30 O(x L u0)(uo - 1)7)

0=<x=i 0=<x<i
(®)
is equivalent to the relation 2.11 for B(P*;u,v™"):

S B(x 115 u Y o) (o™ Y PO — )P

5§x§f
= 3 B([0.x]*; (u, 0 Y(uv™! — 1)d7P0)
ﬁgxgi
because
O([x 11 u,v) = (=) POB([x, 117507, v)
and

O([0,x];u",v™") = (—u) PWIB(0,x] " u, 07" .

3 E-polynomials of toric hypersurfaces

Let M and N be two free abelian groups of rank d which are dual to each
other; i.e., N = Hom(M, Z). We denote by

(#,%) : M x N = Z

the canonical bilinear pairing, and by My (resp. by Ngr) the real scalar exten-
sions of M (resp. of N).
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Definition 3.1 A4 subset C C M is called a d-dimensional rational convex
polyhedral cone with vertex {0} € M if there exists a finite set {ey,..., e}
C M such that

C= {/1]6] + -+ Arer € My i where 4; € Ryo (i = 1,...,k)}
and —C 4+ C =Mg, —CNC ={0} e M.

Remark 3.2 If C C M is a d-dimensional rational convex polyhedral cone
with vertex {0} € M, then the dual cone

C={z€Ng:le,z) =0 forallic{l,. .. k}}

is also a d-dimensional rational convex polyhedral cone with vertex {0} in
the dual space Nr. Moreover, there exists a canonical bijective correspondence
F — F* between faces F' C C and faces F* C C (dimF 4+ dim F* =d):

FrF*:={zcC:(Z,z) =0 for all z/ € F}
which reverses inclusion relation between faces.

Let P be the Eulerian poset of faces of a d-dimensional rational convex
polyhedral cone C C Mg with vertex in {0}. For convenience of notations, we
use elements x € P as indices and denote by C, the face of C corresponding
to x € P, in particular, we have Cy = {0}, C; = C, and p(x) = dim C,. The
dual Eulerian poset P* can be identified with the poset of faces C; of the dual
cone C C Nr.

Definition 3.3 A4 d-dimensional cone C (d = 1) as in 3.1 is called Gorenstein
if there exists an element nc € N such that {(z,nc) > 0 for any nonzero
z € C, and all vertices of the (d — 1)-dimensional convex polyhedron

AC)={z € C:(znc) = 1}

belong to M. This polyhedron will be called the supporting polyhedron of C.
For convenience, we consider {0} as a O-dimensional Gorenstein cone with
the supporting polyhedron A({0}):=0. For any m € C N M, we define the
degree of m as

degm = (m,nc) .

Remark 3.4 1t is clear that any face C, of a Gorenstein cone is again a
Gorenstein cone with the supporting polyhedron

A(C)={z € C: (z,nc) =1}.

Now we recall standard facts from the theory of toric varieties [9, 11, 26]
and fix our notations:

Let P(C) be the (d — 1)-dimensional projective toric variety associated
with a Gorenstein cone C. By definition,

P(C) = Proj C[C N M]
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where C[C N M] is a graded semigroup algebra over C of lattice points
m € CNM. Each face Cy C C of positive dimension defines an irreducible
projective toric subvariety

P(C,) = Proj C[C, " M] C P(C)
which is a compactification of a (p(x) — 1)-dimensional algebraic torus
T, = Spec C[Mv] 5

where M, C M is the subgroup of all lattice points m € (—C, + C;)NM
such that (m,nc) = 0. Moreover, the multiplicative group law on T, extends
to a regular action of T, on P(C,) so that one has the natural
stratification

P(CH)= U T,

f)<y§x

by T,-orbits T,. We denote by Up(c)(1) the ample tautological sheaf on P(C).
In particular, lattice points in 4(C) can be identified with a torus invariant basis
of the space of global sections of Upc)(1). We denote by Z the set of zeros
of a generic global section of Up(c)(1) and set

Z.=ZNT, 0<x<1).
Thus we have the natural stratification:

Z= U Z,

6<x§i

where each Z, is a smooth affine hypersurface in T, defined by a generic
Laurent polynomial with the Newton polyhedron A(C,).

Definition 3.5 Define two functions

S(Cmt) = (1 7[)‘0()‘) Z tdEgm

meCyNM
and

T(Cyot) = (1 —)P™ 3 pdeem

mée Int(Cy)NM

where Int(Cy) denotes the relative interior of C, C C.
The following statement is a consequence of the Serre duality (see [10, 1]):
Proposition 3.6 S(C,,t) and T(Cx,t) are polynomials satisfying the relation

S(Cy,t) = tT(Cy,t ™).
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Definition 3.7 [10] Let X be a quasi-projective algebraic variety over C. For
each pair of integers (p,q), one defines the following generalization of Euler
characteristic:
ePIX) = 3 (=D (HEX)).,
k
where hP9(HN(X)) is the dimension of the (p,q)-component of the mixed
Hodge structure of HY(X) [12]. The sum

E(X;u,v) =) eP (X )uv?
P.a

is called E-polynomial of X.

Next statement is also due to Danilov and Khovanskii (see [10] Sect. 4, or
another approach in [1]):

Proposition 3.8 We set E(Zy;1,1) :=(t — 1)~'. Then

(t = DO+ (=1)PIS(Cr, 1)

Jor p(x) =z 0.

The purpose of this section is to give an explicit formula for E-polynomials
of affine hypersurfaces Z, C T,. Following the method of Denef and Loeser
[13] combined with ideas of Danilov and Khovanskii [10], we compute
E(Z,;u,v) using intersection cohomology (with the middle perversity) intro-
duced by Goresky and MacPherson [17]. Recall that intersection cohomology
IH*(X) of a quasi-projective algebraic variety X of pure dimension n over
an algebraically closed field K can be defined as hypercohomology of the so
called intersection complex ICy which is uniquely determined as an object
of the derived category DP(X). In the case char K > 0 the intersection com-
plex ICy with [-adic coefficients carries a natural weight filtration which has
been studied by Beilinson, Bernstein, Deligne and Gabber using the theory of
perverse sheaves [8]. There exists the following explicit construction of /C%
proposed by Deligne:

Let X=2°22'527*>..-2527"> 7" = () be an irreducible stratified
complex algebraic variety of dimension #; i.e., Z¥ are closed subvarieties, the
strata S = ZK\Z¥*1 are smooth complex algebraic locally closed subvarieties
of codimension & in X, and the open subset S° is dense in X. Denote by
a constant sheaf on S° with coefficients in some field F (the field F is usually
one of the following: Q,Q;, R, or C). Then the intersection complex /C3(F)
with coefficients in F can be defined as

IC;((F) = ‘L'<,7Ri’7 e ‘L'<1Ri197 ,

where i 1 X \Zk —X \Z"+1 is the open inclusion and 7 truncates sheaf co-
homology in degrees = k. The cohomology #(ICy(F)) are constructible
sheaves which do not depend on the choice of a stratification. Without lost
of generality we can often assume that the sheaves #7/(ICy(F)) are locally
constant along all connected components X} of strata S*.
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Definition 3.9 Let X be a quasi-projective algebraic variety over K,X = J; X;
a stratification of X by pairwise disjoint smooth irreducible locally closed
strata X; such that the cohomology sheaf #7(IC(F)) is locally constant
along X; for every j = 0. Assume that for every stratum X; we have:

(i) A7UCY(F))|x, = 0 for all odd values of j,

(ii) the Tate twisted sheaves #**j(ICY(F))(—k)|x, are direct sums of
copies of the constant sheaf F on X;.

In this situation, we define for every stratum X; C X the polynomial

Gine(Xiyt) := 3 dimp#* (ICH(F))st"
k=0

where H*(ICL(F)); is the stalk of #**(ICy(F)) over some closed point
s € X,.

Remark 3.10 1t follows immediately from the construction of Deligne that
deg Gint(X;, 1) < codim X;/2 .

The mixed Hodge structure on intersection cohomology of algebraic vari-
eties over C has been introduced by M. Saito using the theory of mixed Hodge
modules [28, 29, 30]. In particular, one has the following property:

Theorem 3.11 Let X =, X; be a stratified quasi-projective algebraic variety
over C. Then the hypercohomology groups with compact supports of ICy and
its restrictions to strata X; C X have natural mixed Hodge structures.

Definition 3.12 Let X = J; X; a stratified quasi-projective variety. We call
the polynomial

En(X;u,0) = S (=D nPI(IH (X ))uP v
k

the intersection cohomology E-polynomial of X.
Let IH?(X/X;) the hypercohomology of the restriction of ICy to X;. We
call the polynomial

Eind(X/Xiu,0) := 32 (=1) WP IIH XX ) uP v
k

the intersection cohomology E-polynomial of the stratum X; C X.
From M. Saito’s theory, one immediatelly obtains:

Theorem 3.13 Let X = J, X; be a stratified quasi-projective algebraic variety
over C. Then
Eint(X; u, U) = Z Elnt(X/)(la u, U) .

Moreover, if the stratification of X satisfies the conditions (i),(ii) in 3.9,
then
En(X;u,0) = 3 E(Xi;u,0) » Gine( Xy uv) .
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Following ideas in [8, 16] for the /-adic version of the intersection coho-
mology of algebraic varieties over K in the case char K > 0, M. Saito has
proved the following purity theorem for varieties over C (see a generalized
version of the purity theorem for links in [14]):

Theorem 3.14 Let X be a projective algebraic variety over C. Then the mixed
Hodge structure in IH/(X) is pure of weight j.

Corollary 3.15 Let X be a projective algebraic variety. Then
hPAIHP (X)) = (=1)P el (X)),

where the numbers el (X)) are the coefficients of the intersection cohomology
E-polynomial
En(X;u,0) =Y el I(X)uPv? .
P.q
The following statement has been discovered by Bernstein, Khovanskii and
MacPherson (see two independent proofs in [13] and [15]):

Theorem 3.16 Let
P(CO)= U T.
O<x=1
be a projective toric variety with the natural stratification by the torus orbits
T,.. Then this stratification satisfies the condition (i), (ii) in 3.9 and

Gin(Te 1) = G([x,11,1).
In particular, one has

En(P(Clu,v) = Y (uv— 1)PO71G([x, 1], uv) = H(P,uv).

6<x§i

Corollary 3.17 Let W C P(C) be a hypersurface that meets transversally
all toric strata T, C P(C) that it intersects (W is not assumed to be
ample). Then

Em(Wsu,0) = S E(Wyu,0)G([x, 1], uv),

ﬁ<x§i
where W, = W N T, (6 <x = i).

Proof. Let ICp ¢ (resp. IC;V) be the intersection complex which is obtained
by the construction of Deligne applied to the natural stratification of P(C)
by T, (resp. of W by W,). Since the stratification of P(C) by T, is locally
isomorphic in analytic topology to the stratification of W x Al by W, x Al,
the restriction of ICIS(C) to W coincides with IC;V, and the restrictions of the
cohomology sheaves #(ICp ) to W coincide with %i(ICV'V). By 3.16, IC;,
satisfies the conditions (i), (ii) in 3.9 with respect to the stratification by W,
and
Gim(WXat) = Gint(Tx,t) .

Now the statement follows from 3.13.
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Applying 3.8, we obtain:
Corollary 3.18

En(Z;t,1) =

6<x§i

<(t = 1P 4 (= D)POIS(C, 1)

) ) G([x,11,1) .

Definition 3.19 Define Hy.¢(P,t) to be the polynomial of degree (d — 2) with
the following properties:

(1) HLef(P9t) = td_zHLef(P9t_l);

(i) T<@-2)2HLet (P, 1) = T<@—2)2H(P,1).

Proposition 3.20
Hie(P,t) = (1 = )G, 1) — 'GP, 17 ")).

Proof. Let us set
OP,t) = (1 —t)"{(G(P,1) — t“7'G(P,t7")).

We check that the properties 3.19(i)—(ii) are satisfied for Q(P,¢). Indeed
3.19(i) follows immediately from the definition of Q(P,t). If

HP,t)= Y. Mt

0<i<d—1
and 4
GP,t)=ho+ > (hi—hi_)t',
1<i<d/2

then

_d—1 (i gd—1-i

O(P,t) = ho + > (hi—hi_y)
1 —¢ 1<i<d)2 1 —¢

This shows (ii) and the fact that Q(P,¢) is a polynomial.
Proposition 3.21 Define EP"™(Z;u,v) to be the polynomial

nt

ED™(Z;,0) := Ein(Z;11,0) — Hiep(P,uv) .

nt

Then EP"™(Z;u,v) is a homogeneous polynomial of degree (d — 2).

nt

Proof. By the Lefschetz theorem for intersection cohomology [18], we have
isomorphisms _ _
IHP(C)=ZIH'(Z), (0=i<d-2)

and the short exact sequence

0 — [HX(P(C)) — IH"%(Z) — IH**(Z) — 0,

prim

d—2 c . . . .
where IH (Z) denotes the primitive part of intersection cohomology of Z in

degree (d — 2). By purity Theorem 3.14, the Hodge structure of IH]fr;nz(Z ) is
pure. On the other hand, it follows from the Poincaré duality for intersection

cohomology that EP"™(Z;u,v) is the E-polynomial of this Hodge structure.

nt
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Theorem 3.22 We set E(Zyu,v) := (uv — 1)~'. Then E-polynomials E(Z,;
u,v) of affine toric hypersurfaces satisfy the following recursive relation

S (E(Zgu,v) — (uv) ™ (uw — 1)P™=1G([x, 1], uv)

0<x<i

=2 (o) (= 1)PIS(Cr v )G ([, 1], uv™ ).

0<x=i

Proof. By 3.18 and 3.20, we have

ER™Z3,1) = Eqn(Z31,1) — Hyer(P,1)

mt

= Y (= DT (—1)PIS(C )G 1T, 1)

6<x§i
(1 =07 (G(P,1) =t G(P,1 1)) .
Using 2.6, we obtain

S = DG 1L ) = e - DTGP Y — G 1)) .

6<x§i
This yields

Eprim(z; L= 3 ;—1(—1)”(X)S(Cx,Z)G([xai]at)- )

nt . .
0=x=1
On the other hand, by 3.17 and 3.20, we have

EP™(Z;u,v) = Ei(Z;u,v) — Hyer(P,uv)
= Z E(Zx’u’ U)G([xsi]a MU)
6<x§i
—(1 - uv)’l(G(P, uv) — (uv)d*IG(P, (uv)*l)) .
Using 2.6, we obtain

S (o) v — DPOTG([x, 1], uv) = (uo) ™ (w — 1) G(P, (uv) ).

O<x<i
This yields

ER™Z;uv) = Y (E(Ziu,v) — ()™ (uo — 1" )G([x, 1], uv) .
0=<x=1 (10)

By 3.21, we have

EP™(Z u,v) = vd_inffim(Z; w= ' 1).

nt t

It remains to combine (9) and (10).
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Definition 3.23 Let m be a lattice point in CNM. We denote by x(m) the
minimal element among x € P such that the face Cy C C contains m. The
interval [x(m),1] C P parametrizes the set of all faces of C containing m.
We identify the dual interval [x(m),11* with the Eulerian poset of all faces
C*  C such that (m,z) =0 for all z € C?.

Theorem 3.24 Let us set Z := 7. Then there exists the following explicit
Sformula for E(Z;u,v) in terms of B-polynomials:
(uv — 1)1
uv

(—l)d m P u\ degm
o megM(v—u)ﬂ<< DB([x(m), 1] ,u,v)(v) .

E(Z;u,v)=

Proof. By induction, E-polynomials are uniquely determined from the recur-
sive formula 3.22. Therefore, it suffices to show that the functions

(uv — 1P~ N (—1)rP® S (0 — w) U B([x(m), x]*; u, v) (

u ) degm
uv uv meC: NM v

satisfy the same recursive formula as polynomials E(Z;;u,v). Indeed, let us
substitute these functions instead of E-polynomials in the left hand side of
3.22 and expand

(—l)p(x)S(Cx,uv_l) = (1; — l)p(X) MECZOM (IZ)degm

on the right hand side of 3.22. Now we choose a lattice point m € C N M,
collect terms containing (u/v)%¢™ in right and left hand sides, and use the
equality (2.6)

> (U- 1)’”) ([, 1w

x(m)<x<1
p(x(m)) d—p(x(m)) A
== () G([x(m), 1] u~"v)
v v
on the right hand side. By the duality (2.13)

B([x(m),x]*;u,v) = (fu)p(x)*p(’"(x))B([x(m),x]; u 'l v),

it remains to establish the recursive relation:

(v — u)Ptm) "
> (=D (=) B([x(m), <] u v)G([x, 1], uv)

x(m)=x= i

p(x(m)) pd—1 d—p(x(m)) A
(5= () G(ix(m), i}u"v)
v u 1%

uv

which is equivalent to the recursive relation in 2.7 after the substitution z~!

instead of wu.
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4 Mirror duality

Let M and N = Hom(N, Z) be dual to each other free abelian groups of rank
d, Mg and Ny the real scalar extensions of M and N, (x,%) : M xN — Z
the natural pairing.

Definition 4.1 [4] Let C C My be a d-dimensional Gorenstein cone. The cone
C is called reflexive if the dual cone C C Ng is also Gorenstein; i.e., there
exists a lattice element mx € M such that all vertices of the supporting poly-
hedron A(C)={z € C: (ms,z) = 1} are contained in M. In this case, we
call r = (mg,nc) the index of C.

Definition 4.2 [2] Let M be a free abelian group of rank d. A d-dimensional
polyhedron in My with vertices in M is called reflexive if it can be iden-
tified with a supporting polyhedron of some (d + 1)-dimensional reflexive
Gorenstein cone of index 1.

Recall the definition of string-theoretic Hodge numbers of an algebraic
variety X with at most Gorenstein toroidal singularities [6]:

Definition 4.3 [6] Let X =, ., X; be a k-dimensional stratified algebraic
variety over C with at most Gorenstein toroidal singularities such that for
any i € I the singularities of X along the stratum X; of codimension k; are
defined by a k;-dimensional finite rational polyhedral cone a;; i.e., X is locally
isomorphic to

ck % U,

at each point x € X; where Uy, is a k;-dimensional affine toric variety which
is associated with the cone a; (see [9]). Then the polynomial

Eq(X;u,v) := > E(X;;u,v) - S(o;,uv)
=

is called the string-theoretic E-polynomial of X. If we write Ey(X;u,v) in
form
Eq(X;u,0) = a, u‘v?,
X
then the numbers hi9(X):=(—1)P"a pq are called the string-theoretic
Hodge numbers of X.

Remark 4.4 Comparing with 3.13,3.16 and 3.17, the definition of the string-
theoretic Hodge numbers looks as if there were a complex STy whose hyper-
cohomology groups have natural Hodge structure which assumed to be pure
if X is compact. We remark that the construction of such a complex STy (an
analog of the intersection complex) is still an open problem.

Let V=DyN---ND, be a generic Calabi—Yau complete intersection of
r semi-ample divisors Dy,...,D, in a d-dimensional Gorenstein toric Fano
variety X (k = r). According to [4], there exists a d-dimensional reflexive
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polyhedron 4 and its decomposition into a Minkowski sum
A=A+ + 4,

where each lattice polyhedron A4; is the supporting polyhedron for global sec-
tions of a semi-ample invertible sheaf ¥; = Ox(D;) (i =1,...,r).

Definition 4.5 [7] Denote by E,...,E; the closures of (d — 1)-dimensional
torus orbits in X and set I :={1,...,k}. A decompostion into a Minkowski
sum A= 41+ ---+ A, as above is called a nef-partition if there exists a
decomposition of 1 into a disjoint union of r subsets I; CI (j=1,...,r)
such that

D) =0 (Z E1>, (j=1,....r)

1€l

Now we put M =Z" &M, d =d + r, and define the d-dimensional cone
C C My as

C:= {(/11,...,2,,/1121 + - —|—/lr2r) EMRg: A€ R;o, zi €A, i= 1,...,1"}.
We extend the pairing (-, ) : M x N — Z to the pairing between M and
N :=7" & N by the formula

r

<(Cl1,...,ar,m),(bl,...,br,n)>: aibi+<m7n>-

i=1
Theorem 4.6 [7, 4] Let A = A, + - -- + A, be a nef-partition. Then it defines
canonically a d-dimensional reflexive polyhedron VV C Ny and a nef-partition
V=Vi+4---+ V, which are uniquely determined by the property that
C:={Ctseeisspzi+-+4z)ENR: 4 ERs, 2 €V, i=1,...,7}
is the dual reflexive Gorenstein cone C C Ng.

Definition 4.7 [7] The nef-partition V =V +---+V, as in 4.6 is called
the dual nef-partition.

We set
Y=PZ D --0Y%).

Recall the standard construction of the reduction of complete intersection
V C X to a hypersurface V' C Y [4]. Let © be the canonical projection Y — X
and Oy(—1) the tautological Grothendieck sheaf on Y. Since

nOy(1) =% &0 Y%,
we obtain the isomorphism
H(Y,0x() 2 H' X, 2 )@ - @ H'(X, Z,).

Assume that D; is the set of zeros of a global section s; € H)(X, %))
(1 £i £ r). We define V as the zero set of the global section s € H(Y, Oy)
which corresponds to the r-tuple (si,...,s,) under above isomorphism. Our
main interest is the following standard property ([4]):
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Proposition 4.8 The restriction of © on Y\V is a locally trivial C"~"'-bundle
in Zariski topology over X\V.

Let us set

P = Proj @ H°(Y, Oy(i)).

iz0

The following statement is contained in [4]:

Proposition 4.9 The tautological sheaf Oy(1) is semi-ample and the natural
toric morphism
0:Y—P

is crepant. Moreover, Oy(r) is the anticanonical sheaf of Y, P is a Gorenstein
toric Fano variety, and Z = oa(V') is an ample hypersurface in P.

There is the following explicit formula for E¢(V; u,v) in terms of Egx(P; u,v)
and Eq(Z;u,v):

Theorem 4.10
Eq(V;iu,0) = ((uv — D)((uv)" — 1) DEG(P;u,v) — (uv) " E¢(P\Z; u,v) .

Proof. Since V is transversal to all toric strata in X we have:
Eq(V;u,v) = Eq(X;u,0) — Ex(X\V;u,v) .
Using the CP"~'-bundle structure of Y over X, we obtain:
Eq(X;u,v) = ()" — 1) (v — DEG(Y; u,v).
By 4.8, we also have
E,(X\V;u,v) = (uv)I*’Est(Y\ Viu,v).

Since birational crepant toric morphisms do not change string-theoretic Hodge
numbers (see [6]), by 4.9, we conclude

ESt(Y; u, U) = Est(Py u, U): ESt(Y\ 17’ u, U) = Est(P\Zs u, U) .

Definition 4.11 Let C C My be a reflexive Gorenstein cone, C C Ng the dual
reflexive Gorenstein cone. We define

AC,Cy:={(mn)eMaN :meC, neC, and (mn) =0} .

Definition 4.12 Let (m,n) be an element of A(C,C). We define the
Eulerian poset Py n) as the subset of all faces Cy C C such that C, con-
tains m and (z,n) = 0 for all z € Cy. We denote by p(x*(n)) the dimension
of the intersection of C with the hyperplane (z,n) = 0.

Remark 4.13 The dual Eulerian poset P/ | can be identified with the subset

(m,n)

of all faces C* C C such that C* contains n and (m,z) = 0 for all z € C*.
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Theorem 4.14 Let us set d = d +r and

(—1)PL"(m)

b — w)PEIBPE o — 1)dAE )
(uv)r ( ) ( (m,n) )( )

A(m,n)(ua U) =

Then
degn

degm 1
Ea(Viu,v) = 2 (:) g A 0) (uv>

(m,n)EA(C,C)

Proof. By Definition 4.3,

EqP;u,v) = > (uv— l)p(x)_IS(Cx*,uU)
6<x§f
= > (uv— 1)’y — 1)4=POT(CE, (uv) ™)

6<x§i

= (uo — 1! Z( )y (uv)deg">

O<xxi n€lnt(Cr) NN

=@ -1 Y (uv)deen,

nedCN N

where 0C = C‘\Int(é‘) is the boundary of C. Since NNInt(C)= p+NnNC
and deg p = r, we conclude:

Eq(P;u,v) = (1 — (uo) 7" Yuv — 1)4=1 3 (uv)~deer
neCNN
= ((uo)" — D(uo — D=1 3 (uv)~deen,

n€nt(C)NN

On the other hand,
Eq(P\Z;u,v) = Ex(P;u,v) — E«(Z;u,v).

By Definition 4.3 and Theorem 3.24,

ESt(Z;uav)
— 1)rx)-1
= ¥ ((uv ) )S(C;‘,uv)
d<x<i uv

o (x) cg m
+ 3 <( DS o B (), x] ) @dg )S(C;’uv)

d<x<i U econm

= (uv) " Eq(P;u,v)

+ 2 <(_1)p(X) 2 (v—u)"“‘""”B([x(m),x]*;“’“)(Z)degm>s(6;,uv)-

O<x<i uv meC,NM
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By 4.10,

Eq(V;u,v)
= ((uv — 1)((uv)" = 1)~" = (uv)'=" + (uv) " )Ex(P,u,v)

s (HW) > <v—u>p<x<m>>3<[x<m>,x1*;w(Z‘)degm> e

benei\ (@O) Ty

=)o -1y 3 (uv)~de”

n€t(C)NN

s (MW) > <v—u)ﬂ(ﬂm»B([xcm),x]*suav>@degm)S(c:,uw

e N C10) [

-5 ((_1)% > (v—u)ﬂ(“m”B([x(m),xl*;u»v>(Z)degm>S<C;,uv>.

berei\ (W0) meC,NM

It remains to use the formula
S(Crauv)= (o — 1?0 T ) G <x<)

n € nt(Cy)NN

and notice that p(x) = p(x*(n)) if n is an interior lattice point of C}
(see 4.12).

Theorem 4.15 Let V be a (d — r)-dimensional Calabi-Yau complete intersec-
tion defined by a nef-partition A=A, +---+ A,, W a (d — r)-dimensional
Calabi-Yau complete intersection defined by the dual nef-partition V =
Vi+---+ V. Then

Est(V; u, U) = (_u)d_rESt(W; u_la U) >

Le.,

WAVY=K""PIW) 0< pg<d—r.

Proof. If we wuse the duality between two d-dimensional reflexive
Gorenstein cones C C My and CcN R 4.6, then the statement of Theorem
follows immediatelly from the explicit formula in 4.14 and from the duality
for B-polynomials 2.13.
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