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The important roles of homeobox genes in development of theesidue 50 within the homeodomain. This residue, at residue ¢
hindbrain and axial body are well established. More recently, it hawithin the recognition helix of the homeodomain, is the major
become clear that certain subfamilies of homeobox genes plageterminant of DNA binding specificity (Gehring et al., 1994;

particularly important roles in the development of more anteriorHanes and Brent, 1989). Several members of this small subfamil
structures. These have included frared gene family in the eye  are essential for axis and pattern formation (Ang et al., 1996)
(Gehring, 1996; Hanson and Van Heyningen, 1995; Macdonalditx2 expresses multiple protein isoforms as a result of alternative
and Wilson, 1996; Wehr and Gruss, 1996), tirthodenticleand  splicing (Gage and Camper, 1997; Kitamura et al., 1997) and th
distallessgene families in the fore- and midbrains (Acampora etyse of different promoters (P. Gage and E. Semina, unpublishe
al., 1996; Acampora et al., 1995; Price et al., 1991; Simeone et alresults) (Fig. 1). The three vertebrate paralogues are all highl
1994; Williams, 1998), and thehx gene family in the pituitary  conserved at the amino acid level (Fig. 1). For example, in mous:
gland (Sheng et al., 1997; Sheng et al., 1996). This review sume pitx2 and Pitx3 homeodomains are identical while Pitx1 differs
marizes the newly identifie®itx gene family and its role in de- by only two amino acids. The paralogues are also conserved C
velopment. This family includes three vertebrate paralogues thafgyminal to the homeodomain (55-70%). In contrast, the N-termini
have been cloned in multiple organisms, and a fly cognate. Muyt these proteins are essentially unrelated. The vertebrate orthe
tations in two members of this gene family lead to human d'seasfogues are even more highly conserved. For example, there tr
or birth defects affecting anterior structures. . ouse and chicken Pitx2a proteins are 96% identical with only ter

The nomenclature for this gene family has been complicate mino acid substitutions between them. D@sophilaPitx pro-

by the fact that members have been cloned and uniquely named Qi s,\us high conservation to the vertebrate proteins within th
more than one Iabqra_tory (Table 1). The f|r§t member of thIShomeodomain (90-93%) and a short region near C-terminus the
fa”?"Y' m?usth?(l (ﬁltugqry homeqbox Il) was |§olated as atran- has been termed the OAR sequence (Furukawa et al., 1997) or tl
scription factor involved in pro-opiomelanocortin gene transcrlp-C . : . :
T : . } ; -peptide (Kitamura et al., 1997). This sequence is present ii
tion in anterior pituitary corticotropes (Lamonerie et al., 1996)'58\F/)erpal horfweobox genes. Mitx2 thi)s domain gppears to frl)mction

However, since some pentaxin genes in mouse and human h as an intrinsic inhibitor of DNA binding activity whose function
previously been assigned thRix gene symbol, the gene symbols an be modulated by protein-protein interactions (Amendt et al.

for the three mouse paralogues for this new homeobox gene famil 998)

are Pitx1, Pitx2, and Pitx3 (Mouse Genome Database). In this . .
review, we have adopted the official nomenclature of the MGD . Th_e vertgbrat@ltx genes each ha"? unique developmental anc
and propose that, for clarity, this nomenclature be adopted fo{'Ssue specific expression patterns (Fig. 2 and Table 2). Howeve
other organisms here are several significant overlaps in expression pattern (Fig. 2
Three vertebrate paralogudgitx1, Pitx2,and Pitx3, have all 1€ mostsignificant may be in the eye, where toitx2 andPitx3
' . ' %%re expressed in the mesenchyme and its derivatives (Semina et ¢

been cloned from mouse and human (Table 1 and referenc ’ X } ; N
therein). Some paralogues have also been cloned from chick Sgwsénsset?:zi\?erlnitt;li.(l) nlsgtlga?t,xgrpelgfjlftinalﬁi 61332 &?}rg%nnﬁgag's%n I
Pitx1 Pitx2 fistPifx2 i . ] . ) . -
(Pitx1 and Pitx2), xenopus and zebrafistPix2), and rat Pix3) mina et al., 1996) and mutationsRitx3 result in anterior segment

(Table 1 and references therein). In two reports, mdribel was h | d 8 d domi Semi .
cloned in functional assays: in a two-hybrid screen using Pit-1 agneésenchymal dysgenesis and dominant cataracts (Semina et :
998) confirmed the importance of these genes in eye develor

bait (Szeto et al., 1996) and as noted above. HUREX2 was Th -domi dit h aff he d
identified by positional cloning of the Rieger Syndrome gene (Se-MeNt: These autosomal-dominant conditions each affect the deve

mina et al., 1996). In the other reports, cloning was the result oPpTe%ngg'i?gn;gci ?lfezrgeiqgliiZtgj?eucrgsss?\fethrﬁuetgttai'orlwntreer-es
using degenerate PCR or low stringency hybridization to detedng?tiyn' in small eyes tf?at lack Ignses z;md fail to develop beyond 1:
expressed homeobox sequences in a varity of embryonc arghy 15t estaion (Semina et . 1097). Riegers Synarome p:
adult tissues. The difficulty in cloningitx1 from xenopus an 4 A : -
e hs uggested e s ol may ot o s il eshent shv et el deylonen
distributed in nature aitx2 (Kitamura et al., 1997). However, the 1935), and subsets of patients also present with isolated growt
recent identification of a flPitx gene during a chromosome walk - % | Fenaold pt L1069 P 9
demonstrates that this gene family arose prior to the divergence d?séé(\:/l:rgcl%l()sgr?/%zong S?Jg.;‘gest tlﬁ)?ak genes are also important
vet:tebrates ?nd |n\;]erte8rates (Vorb:juggen et Eﬁ'" 1997). EaCthﬁ{(;)r the development and function of other organs. The stomodeur
r r nm n nm n - ; s -
:;]aana?_ar;;ealc;g.;ue as been mapped genetically In mouse a IS an ectoderm-derived layer of epithelium that derives from the
The Pitx proteins all belong to theicoid-related subclass of anterior neural ridge and forms the earliest mouth structure:

homeodomain proteins because they encode the defining lysine &r0uly and Le Douarin, 1985pitx1 expression defines the sto-
modeum and continues within stomodial derivatives, including the

_ nasal pit and Rathke’s pouch (Lanctot et al., 19%i)x1 is also
Correspondence toP.J. Gage expressed more caudally in the posterior lateral plate and extre
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Table 1. Pitx gene family

Vertebrate Species Names Mapping Mutatfons References
Pitx1
Mouse Ptx1 13 dumpy? (Lamonerie et al., 1996)
P-OTX mdac? (Crawford et al., 1997)
Bft (Shang et al., 1997)
Brx2 (Szeto et al., 1996)
(Kitamura et al., 1997)
Human PTX1 5q31 (Crawford et al., 1997)
BFT 5q22-q31 (Shang et al., 1997)
Chicken cPtx1 (Lanctot et al., 1997)
Pitx2
Mouse Ptx2 3 (Gage and Camper, 1997)
Rieg (Semina et al., 1996)
Otlx2 (Muccielli et al., 1996)
Brx1 (Kitamura et al., 1997)
Arpl (Arakawa et al., 1998)
Human RIEG 4925 Rieger's (Semina et al., 1996)
syndrome
ARP1 (Arakawa et al., 1998)
Chicken cBrx1 (Kitamura et al., 1997)
Xenopus xBrx1 (Kitamura et al., 1997)
Zebrafish zBrx1 (Kitamura et al., 1997)
Pitx3
Mouse Pitx3 19 aphakia? (Semina et al., 1998;
Semina et al., 1997)
Rat Ptx3 (Smidt et al., 1997)
Human Pitx3 1025 Anterior (Semina et al., 1998)
segment
mesenchymal
dysgenesis and
Dominant
Cataracts
Nonvertebrate
Drosophila Ptx1 (Vorbruggen et al., 1997)

2(?) Indicates that gene is a candidate in mouse based on genetic mapping.

embryonic mesoderm (Lanctot et al., 199Fitx1 andPitx2are the  mouse models for this disease, are consistent with a rolRifg8
earliest known genetic markers for the incipient Rathke’s pouchjn the determination and maintenance of this specific neurona
the precursor to the anterior and intermediate lobes of the pituitarjineage (Saucedo-Cardenas et al., 1998; Smidt et al., 1997). Inte
gland (Gage and Camper, 1997; Lanctot et al., 1997; Muccielli eestingly,bicoid is required for formation of anterior structures in
al., 1996).Pitx1 is expressed in cell lines representing the five the fly (Driever and Nusslein-Volhard, 1988; Driever et al., 1990),
anterior pituitary neuroendocine cell lineages (Tremblay et al.as are the closely relatgdtx1 and -2 in both fly and vertebrates
1998), while Pitx2 expression is absent only from corticotropes (Ang et al., 1996).

(Gage and Camper, 1997; Tremblay et al., 1998). Lineage specific Pitx2 has recently been identified as a gene whose expressio
expression ofPitx1 and Pitx2 protein will need to be confirmed is down-regulated ir\lI1 double-knockout mouse embryonic stem
using highly specific antibodies in immuno-colocalization experi- cells (Arakawa et al., 1998ALL1, the human homologue @ro-
ments. The isolated growth hormone insufficiency in subsets ofophila trithorax,is frequently rearranged in different human acute
Rieger’s patients is consistent with an essential rol®fo2inthe  leukemias (Gu et al., 1992; Tkachuk et al., 19R)TX2 is ex-
somatotrope lineag®itx1 binds to and transactivatesa-acting pressed in normal bone marrow and expression in human acu
element required for activation &fomc(Lamonerie et al., 1996). leukemia cell lines correlates with rearrangementAdt.1. The
Pitx1 alsotrans-activates several other pituitary-specific promot- ALL1 protein can bind aPitx2 promoter fragment and activates
ers (Szeto et al., 1996; Tremblay et al., 1998). Importaiixl expression of linked reporter genes. Together, these data sugges
appears to be required in cell culture for expressiobnhod3, which role for Pitx2 in ontogeny of several hematopoetic lineages (Ara-
is essential for pituitary development (Tremblay et al., 1998). kawa et al., 1998).

Roles in brain development have been proposedPftx2 and The most recent, exciting development in understanding the
Pitx3 based on their expression patterns. E&lix2 expression  function of thePitx gene family has been the demonstration that
patterns within the prosencephalon and mesencephalon are comanipulation ofPitx2 expression is sufficient to reprogram the
sistent with the prosomeric model of fore- and midbrain develop-eft/right body asymmetry in vertebrates (Harvey, 1998; Yoshioka
ment (Kitamura et al., 1997; Muccielli et al., 1996; Rubenstein etet al., 1988; Logan et al., 1988; Piedra et al., 1988; Ryan et al.
al., 1994). SubsequentlRjtx2 expression becomes limited to dis- 1998). In early mouse development, preceding the onset of viscer:
crete brain nuclei (Kitamura et al., 1997; Muccielli et al., 1996). organogenesis, the normal patterrPitik2 expression is asymmet-
Pitx3 expression is even more refined within the developing mid-ric. The mouse mutatioiv, which causes discordant reversals of
brain, being expressed specifically within neurons of the mesenheart and visceral organ situs (heterotaxia), perturbs the pattern
cephalic dopaminergic system (Smidt et al., 1997). Results fronPitx2 expression and the pattern of other genes involved in estak
analysis of these cells in Parkinson’s patients, as well as rat anlishing left-right asymmetry likenodal and lefty-2. Manipulation



P.J. Gage et al.: Pitx gene family 199

Pitx1 |
Pitx2a [
18 70
Pitx2b | Fig. 1. Percent identity among mouse Pitx
21 70 paralogues. Numbers represent the percent
. identity relative to Pitx1 within the
Pitx2e | 3 7o homeodomains (stippled), as well as the
regions N- and C-terminal to the
Pitx3 [ | 2% homeodomain. The position of the OAR
30 97 55 domain is also indicated (shading).
Major sites of developmental expression Table 2. Additional sites of developmental expression
Tissue Pitx1 Pitx2 Pitx3
Branchial arches + + Vertebrate
Eye + + Pitx1
Stomodeum
Pituitary + + First branchial arch
) Tongue
Forebrain + Palate
Midbrain " 4 Olfacto_ry system
Posterior lateral plate mesoderm
Teeth + + Body wall muscle
Bladder
Heart + Stomach
Forelimb mesenchye + Hindgut
Pancreas
Hindlimb mesenchyme + + Pitx2
Tongue
Maxillary and mandibular epithelia
Umbilicus
Kidney
Bone marrow
Lung
Pitx3
Mesencephalic dopaminergic neurons of midbrain
Tongue
Mesenchyme around spinal column and sternum
Nonvertebrate
Pitx1

Developing midgut and malpighian tubes
Developing CNS

Brain

Head sensory organs

Pitx1 Pitxz Pitx3 Subset of somatic muscle precursors to ventral larval muscles

Fig. 2. Summary of major sites of developmental expression. Idealized
expression patterns at e13.5.

for other homeobox genes (e.@ax6, Mitf, Pax3. Interestingly,

) ) . ~_ thelack of morphologically apparent phenotype inRligx1 gain-
of chick and frog embryos has provided critical mechanistic in-and loss-of-function has implied a role for this gene in controlling
formation on left-right patterning. Sonic hedgeh@&hl) becomes  physiological cell functions rather than pattern formation (Vor-
restricted to the left at an early stage in the pathway througthruggen et al., 1997). Thus, careful genetic dissection of thes
interaction withactivinBB, and it acts upstream olodalandlefty-  genes in model organisms will be required to fully understand thei

2. Pitx2appears to be the most downstream gene in this pathwayole in the development and maintenance of their respective tis

because blockinGhhsignaling and delivery oPitx2 on the right  gyes.

side by retroviral infection causes bilateral or randomized devel-

opment. These experiments provide convincing evidence of a role

for Pitx2 in vertebrate patterning of laterality. It will be interesting References
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