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The important roles of homeobox genes in development of the
hindbrain and axial body are well established. More recently, it has
become clear that certain subfamilies of homeobox genes play
particularly important roles in the development of more anterior
structures. These have included thepaired gene family in the eye
(Gehring, 1996; Hanson and Van Heyningen, 1995; Macdonald
and Wilson, 1996; Wehr and Gruss, 1996), theorthodenticleand
distallessgene families in the fore- and midbrains (Acampora et
al., 1996; Acampora et al., 1995; Price et al., 1991; Simeone et al.,
1994; Williams, 1998), and theLhx gene family in the pituitary
gland (Sheng et al., 1997; Sheng et al., 1996). This review sum-
marizes the newly identifiedPitx gene family and its role in de-
velopment. This family includes three vertebrate paralogues that
have been cloned in multiple organisms, and a fly cognate. Mu-
tations in two members of this gene family lead to human disease
or birth defects affecting anterior structures.

The nomenclature for this gene family has been complicated
by the fact that members have been cloned and uniquely named by
more than one laboratory (Table 1). The first member of this
family, mousePtx1 (pituitary homeobox 1) was isolated as a tran-
scription factor involved in pro-opiomelanocortin gene transcrip-
tion in anterior pituitary corticotropes (Lamonerie et al., 1996).
However, since some pentaxin genes in mouse and human had
previously been assigned thePtx gene symbol, the gene symbols
for the three mouse paralogues for this new homeobox gene family
are Pitx1, Pitx2, and Pitx3 (Mouse Genome Database). In this
review, we have adopted the official nomenclature of the MGD
and propose that, for clarity, this nomenclature be adopted for
other organisms.

Three vertebrate paralogues,Pitx1, Pitx2,andPitx3, have all
been cloned from mouse and human (Table 1 and references
therein). Some paralogues have also been cloned from chicken
(Pitx1 and Pitx2), xenopus and zebrafish (Pitx2), and rat (Pitx3)
(Table 1 and references therein). In two reports, mousePitx1 was
cloned in functional assays: in a two-hybrid screen using Pit-1 as
bait (Szeto et al., 1996) and as noted above. HumanPITX2 was
identified by positional cloning of the Rieger Syndrome gene (Se-
mina et al., 1996). In the other reports, cloning was the result of
using degenerate PCR or low stringency hybridization to detect
expressed homeobox sequences in a variety of embryonic and
adult tissues. The difficulty in cloningPitx1 from xenopus and
zebrafish has suggested that this orthologue may not be as widely
distributed in nature asPitx2 (Kitamura et al., 1997). However, the
recent identification of a flyPitx gene during a chromosome walk
demonstrates that this gene family arose prior to the divergence of
vertebrates and invertebrates (Vorbruggen et al., 1997). Each ver-
tebrate paralogue has been mapped genetically in mouse and hu-
man (Table 1).

The Pitx proteins all belong to thebicoid-related subclass of
homeodomain proteins because they encode the defining lysine at

residue 50 within the homeodomain. This residue, at residue 9
within the recognition helix of the homeodomain, is the major
determinant of DNA binding specificity (Gehring et al., 1994;
Hanes and Brent, 1989). Several members of this small subfamily
are essential for axis and pattern formation (Ang et al., 1996).
Pitx2 expresses multiple protein isoforms as a result of alternative
splicing (Gage and Camper, 1997; Kitamura et al., 1997) and the
use of different promoters (P. Gage and E. Semina, unpublished
results) (Fig. 1). The three vertebrate paralogues are all highly
conserved at the amino acid level (Fig. 1). For example, in mouse
the Pitx2 and Pitx3 homeodomains are identical while Pitx1 differs
by only two amino acids. The paralogues are also conserved C-
terminal to the homeodomain (55–70%). In contrast, the N-termini
of these proteins are essentially unrelated. The vertebrate ortho-
logues are even more highly conserved. For example, there the
mouse and chicken Pitx2a proteins are 96% identical with only ten
amino acid substitutions between them. TheDrosophilaPitx pro-
tein shows high conservation to the vertebrate proteins within the
homeodomain (90–93%) and a short region near C-terminus that
has been termed the OAR sequence (Furukawa et al., 1997) or the
C-peptide (Kitamura et al., 1997). This sequence is present in
several homeobox genes. InPitx2, this domain appears to function
as an intrinsic inhibitor of DNA binding activity whose function
can be modulated by protein-protein interactions (Amendt et al.,
1998).

The vertebratePitx genes each have unique developmental and
tissue-specific expression patterns (Fig. 2 and Table 2). However,
there are several significant overlaps in expression pattern (Fig. 2).
The most significant may be in the eye, where bothPitx2andPitx3
are expressed in the mesenchyme and its derivatives (Semina et al.,
1998; Semina et al., 1996; Smidt et al., 1997). Demonstration in
humans that mutations toPitx2 result in Rieger’s Syndrome (Se-
mina et al., 1996) and mutations toPitx3 result in anterior segment
mesenchymal dysgenesis and dominant cataracts (Semina et al.,
1998) confirmed the importance of these genes in eye develop-
ment. These autosomal-dominant conditions each affect the devel-
opment or maintenance of anterior structures of the eye. Interest-
ingly, mousePitx3 maps nearaphakia,a recessive mutation re-
sulting in small eyes that lack lenses and fail to develop beyond 11
days of gestation (Semina et al., 1997). Rieger’s Syndrome pa-
tients frequently show defects in dental and umbilical development
in addition to their ocular defects (Feingold et al., 1969; Rieger,
1935), and subsets of patients also present with isolated growth
insufficiency (Feingold et al., 1969).

Several observations suggest thatPitx genes are also important
for the development and function of other organs. The stomodeum
is an ectoderm-derived layer of epithelium that derives from the
anterior neural ridge and forms the earliest mouth structures
(Couly and Le Douarin, 1985).Pitx1 expression defines the sto-
modeum and continues within stomodial derivatives, including the
nasal pit and Rathke’s pouch (Lanctot et al., 1997).Pitx1 is also
expressed more caudally in the posterior lateral plate and extra-Correspondence to:P.J. Gage
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embryonic mesoderm (Lanctot et al., 1997).Pitx1andPitx2are the
earliest known genetic markers for the incipient Rathke’s pouch,
the precursor to the anterior and intermediate lobes of the pituitary
gland (Gage and Camper, 1997; Lanctot et al., 1997; Muccielli et
al., 1996).Pitx1 is expressed in cell lines representing the five
anterior pituitary neuroendocine cell lineages (Tremblay et al.,
1998), whilePitx2 expression is absent only from corticotropes
(Gage and Camper, 1997; Tremblay et al., 1998). Lineage specific
expression ofPitx1 and Pitx2 protein will need to be confirmed
using highly specific antibodies in immuno-colocalization experi-
ments. The isolated growth hormone insufficiency in subsets of
Rieger’s patients is consistent with an essential role forPitx2 in the
somatotrope lineage.Pitx1 binds to and transactivates acis-acting
element required for activation ofPomc(Lamonerie et al., 1996).
Pitx1 also trans-activates several other pituitary-specific promot-
ers (Szeto et al., 1996; Tremblay et al., 1998). Importantly,Pitx1
appears to be required in cell culture for expression ofLhx3,which
is essential for pituitary development (Tremblay et al., 1998).

Roles in brain development have been proposed forPitx2 and
Pitx3 based on their expression patterns. EarlyPitx2 expression
patterns within the prosencephalon and mesencephalon are con-
sistent with the prosomeric model of fore- and midbrain develop-
ment (Kitamura et al., 1997; Muccielli et al., 1996; Rubenstein et
al., 1994). Subsequently,Pitx2 expression becomes limited to dis-
crete brain nuclei (Kitamura et al., 1997; Muccielli et al., 1996).
Pitx3 expression is even more refined within the developing mid-
brain, being expressed specifically within neurons of the mesen-
cephalic dopaminergic system (Smidt et al., 1997). Results from
analysis of these cells in Parkinson’s patients, as well as rat and

mouse models for this disease, are consistent with a role forPitx3
in the determination and maintenance of this specific neuronal
lineage (Saucedo-Cardenas et al., 1998; Smidt et al., 1997). Inter-
estingly,bicoid is required for formation of anterior structures in
the fly (Driever and Nusslein-Volhard, 1988; Driever et al., 1990),
as are the closely relatedOtx1 and −2 in both fly and vertebrates
(Ang et al., 1996).

Pitx2 has recently been identified as a gene whose expression
is down-regulated inAll1 double-knockout mouse embryonic stem
cells (Arakawa et al., 1998).ALL1, the human homologue ofDro-
sophila trithorax,is frequently rearranged in different human acute
leukemias (Gu et al., 1992; Tkachuk et al., 1992).PITX2 is ex-
pressed in normal bone marrow and expression in human acute
leukemia cell lines correlates with rearrangement ofALL1. The
ALL1 protein can bind aPitx2 promoter fragment and activates
expression of linked reporter genes. Together, these data suggest a
role for Pitx2 in ontogeny of several hematopoetic lineages (Ara-
kawa et al., 1998).

The most recent, exciting development in understanding the
function of thePitx gene family has been the demonstration that
manipulation ofPitx2 expression is sufficient to reprogram the
left/right body asymmetry in vertebrates (Harvey, 1998; Yoshioka
et al., 1988; Logan et al., 1988; Piedra et al., 1988; Ryan et al.,
1998). In early mouse development, preceding the onset of visceral
organogenesis, the normal pattern ofPitx2 expression is asymmet-
ric. The mouse mutationiv, which causes discordant reversals of
heart and visceral organ situs (heterotaxia), perturbs the pattern of
Pitx2 expression and the pattern of other genes involved in estab-
lishing left-right asymmetry likenodal and lefty-2. Manipulation

Table 1. Pitx gene family

Vertebrate Species Names Mapping Mutationsa References

Pitx1
Mouse Ptx1 13 dumpy? (Lamonerie et al., 1996)

P-OTX mdac? (Crawford et al., 1997)
Bft (Shang et al., 1997)
Brx2 (Szeto et al., 1996)

(Kitamura et al., 1997)

Human PTX1 5q31 (Crawford et al., 1997)
BFT 5q22-q31 (Shang et al., 1997)

Chicken cPtx1 (Lanctot et al., 1997)
Pitx2

Mouse Ptx2 3 (Gage and Camper, 1997)
Rieg (Semina et al., 1996)
Otlx2 (Muccielli et al., 1996)
Brx1 (Kitamura et al., 1997)
Arp1 (Arakawa et al., 1998)

Human RIEG 4q25 Rieger’s
syndrome

(Semina et al., 1996)

ARP1 (Arakawa et al., 1998)

Chicken cBrx1 (Kitamura et al., 1997)

Xenopus xBrx1 (Kitamura et al., 1997)

Zebrafish zBrx1 (Kitamura et al., 1997)
Pitx3

Mouse Pitx3 19 aphakia? (Semina et al., 1998;
Semina et al., 1997)

Rat Ptx3 (Smidt et al., 1997)

Human Pitx3 10q25 Anterior
segment
mesenchymal
dysgenesis and
Dominant
Cataracts

(Semina et al., 1998)

Nonvertebrate
Drosophila Ptx1 (Vorbruggen et al., 1997)

a (?) Indicates that gene is a candidate in mouse based on genetic mapping.
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of chick and frog embryos has provided critical mechanistic in-
formation on left-right patterning. Sonic hedgehog (Shh) becomes
restricted to the left at an early stage in the pathway through
interaction withactivinbB, and it acts upstream ofnodalandlefty-
2. Pitx2appears to be the most downstream gene in this pathway,
because blockingShhsignaling and delivery ofPitx2 on the right
side by retroviral infection causes bilateral or randomized devel-
opment. These experiments provide convincing evidence of a role
for Pitx2 in vertebrate patterning of laterality. It will be interesting
to determine whether loss ofPitx2 by gene targeting in mice in-
fluences patterning in a manner similar to that of ectopic expres-
sion in chick embryos, or whether other proteins can compensate.

Pitx2 andPitx3 mutations in humans have confirmed thatPitx
gene family members are important developmental regulators. Fur-
ther evidence suggests a broader role for these genes in the devel-
opment of specific tissues. Importantly, the human conditions de-
scribed to date are autosomal-dominant and are presumed to result
from haplo-insufficiency (Semina et al., 1998; Semina et al.,
1996). The effect of loss-of-function in these genes is likely to be
much more severe in the homozygous state, as has been observed

for other homeobox genes (e.g.,Pax6, Mitf, Pax3). Interestingly,
the lack of morphologically apparent phenotype in flyPitx1 gain-
and loss-of-function has implied a role for this gene in controlling
physiological cell functions rather than pattern formation (Vor-
bruggen et al., 1997). Thus, careful genetic dissection of these
genes in model organisms will be required to fully understand their
role in the development and maintenance of their respective tis-
sues.
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