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Four members of the Transcriptional Enhancer Factor (TEF) fam-  Analysis of this sequence indicates that Ffead3gene com-
ily of transcription factors have been identified in human andprises 13 exons (the smallest is 12 bp) and 12 introns (from 91 bp
mouse (TEF-1, TEF-3, TEF-4, and TEF-5; approved gene symbolt 3582 bp; Fig. 1A). All of the intron-exon junctions conform
TEAD1, TEAD4, TEAD2, and TEADS respectively; Yasunami et with the GT/AG rule. The TEA DBD is encoded by three exons
al. 1995, 1996; Jacquemin et al. 1996, 1997; Yockey et al. 1996¢|1-1VA), each coding for one of the three putativehelices. In
Hsu et al. 1996; Kaneko et al. 1997; reviewed in Jacquemin an@hicken (c) twoTead3isoforms have been characterized with dif-
Davidson 1997). These factors possess the TEA DNA bindinderences in the C-terminal-helix of the TEA DBD encoded by
domain which recognizes degenerate sites in the enhancers aaston V. These isoforms may be generated by differential use of a
promoters of several viral and cellular genes. The TEFs comprisguplication of this exon. Indeed, downstream of exon IVA, we
a short variable N-terminal region preceding the highly conservedound a variant copy of this exon (IVB, Fig. 1B). So far only exon
TEA domain, a variable hydrophobic region immediately after thejya has been found in mammalian Tead3 cDNAs. In contrast, in
TEA domain, and a large, well-conserved C-terminal domain (segrEaAD1, only exon IVB has been found (Fig. 1B). However, in one
Fig. 1A). _ o . exceptional case a TEAD1 cDNA from Hela cells that we char-
Expression of the murine (m)Tead factors is differentially 4cterized previously contained a duplicated region at the end of the
regulated during development, the principal sites of expressioRga gomain corresponding to a splice variant in which both exons
being mitotic neuroblasts, skeletal and cardiac muscle, the plan/a and VB were present (our unpublished data and see Fig. 1B).
centa, lung, and several other viscera (see Jacquemin and Davighis TEAD1 variant was still able to specifically bind DNA in
son 1997). Insertional mutagenesis showed Treaidis essential oo c4rophoretic mobility shift assays (our unpublished data).

e et e it o0 . gt s ML pling f e our amino aids encoded by evon
P y 9 P \Fwas also observed. This exon was present in all the isolated

cells, and expression persists in the giant cells and labyrinthine - X
; . ? ouse or human TEAD3 cDNAs, but was variable in TEAD1.
region of the placenta throughout gestation (Jacquemin et af" Comparison of tharead3locus with that ofTead2(Suzuki et

1998). Tead3expression is limited to the extraembryonic layers L .
until )around 9.5p days post coitum, when further el;pressign inaI. 1996) showed that the overall organization of the genes is

epithelia and developing viscera is also observed conserved. The location of the intron-exon junctions T@ad3
As gene targeting experiments will be required to further de__relatlve to the pepiide sequence is shown in Fig. 2A. All the

fine the role ofTead3in placental development, we report here as/UNctions are in analogous position to thoseTaad2with the
afirst step the isolation and characterization of fead3gene and ~ €XCeption of the upstream and downstream borders of exon VII. A
the determination of its chromosomal location. comparison of the exon VII frontiers faread2and-3 is shown in

A NEMBL3 mouse genomic DNA library (kindly provided by Fig. 2B. Th_is exon encodes part of the most variable region of the
J.-M. Garnier) was screened with a mix of the cDNAs encodingT EAD family. . o
the Tead1, -2, -3 and -4 TEA domains as probes. After isolation, .We fur_ther determlned the chromosomal localizatioit @&d3,
phages containing Tead3 were identified by PCR usiegd3 using an interspecific backcross DNA panel (The Jackson Labo-
specific primers, and their DNA was analyzed by Southern blottingatory; Bar Harbor, Me; Rowe et al. 1994). The panel was gener-
with the full-lengthTead3cDNA. Following digestion witfPvul,  ated by using DNA from 94 backcross animals from the reciprocal
4 hybridizing fragments ranging from 1.1 to 3.2 kb were cloned.cross (C57BL/6JEi x SPRET/Ej SPRET/Ei (“Jackson BSS”
These fragments were entirely sequenced and comparison with t&ckeross panel). Southern blot analysis with a Tead3 cDNA probe
Tead3 cDNA allowed identification of the introns and exons. Junc-detected a restriction fragment length variation (RFLV) between
tions between the fragments, and sequences upstream and dowNAs of the C57BL/6J andiA. spretusThe probe detected a 2-kb
stream of the coding region were obtained by direct sequencing oBamH! fragment in C57BL/6 DNA and a 5-kb fragment M.

the phage DNA. A totaj Sequence of 12’622 base pairs (bp) WagpretUSDNA (data not ShOWI’l). Therefore, the RFLV |dentlf|ed
obtained. was used to follow the segregation of tiiead3locus in the

Jackson BSS backcross panel.
— 5 _ The resulting data show tha@ead3is 1.1 centimorgans (cM)
*Present addressUnité HORM, UCL-ICP, 75 Av. Hippocrate, B-1200  djstal to theD17WSU92éocus, 2.1 ¢cM and 3.2 cM proximal to the

Bruxelles, Belgique. T3 (intestinal trefoil factor 3) oiD17Mitl6 locus respectively,
The nucleotide sequence described in this manuscript has been assigned tiear the proximal end of Chr 17 (Fig. 3). TRkbp5gene (FK506
accession number AJ131526 in the EMBL database. binding protein 5) is also present in this region of Chr 17. In fact,

Correspondence td: Davidson Tead3co-segregates withkbp5gene in all 94 animals. Thus, we
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Fig. 1. (A) Genomic structure ofead3.Complete
exon-intron organization ofead3gene relative to

the amino acid (aa) sequence is indicated. The three
putativea-helices of the TEA DNA-binding domain
are shown(B) Comparisons of the sequences of the
alternative exons encoding the putativénhelix 3 of

the TEA domains of chicken (c) and mouse (m)
Tead3and human TEAD1.

Fig. 2. (A) Location of the different exons on the
Tead3amino acid sequence. Transition between the
different exons is indicatedB) Comparison of the
exon VIl frontiers forTead3and Tead2.Exon VII

is located in the most variable region between the
different Teads.
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