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The Atp1b3 gene for Na,K-ATPasep; cross, (C57BL/6JEiI x SPRET/E))x SPRET/Ei known as Jack-
. son BSS from The Jackson Laboratory [1].
subunit maps to mouse Chromosome 9, Database deposit informationThe scorings are available on the
and a related gene Atp1b3-rs,maps to internet at the following address: http://www.jax.org/resources
mouse Chromosome 3 documents/cmdata/BSS.html.

Molecular reagents:The hybridization probe used for mapping
was the 3UTR of the Na,K-ATPase, subunit cDNA from the
EcaRl site to the end of the’® TR corresponding to nucleotides
Kresge Hearing Research Institute, Department of Otolaryngology/ 1005-1842 [2]. The probe was excised from the CDNA, isolated ir

Head-Neck Surgery, 9301E Medical Science Research Building 11, Box & low-melting-point agarose gel, and labeled by the random prim

Cagri G. Besirli, Tzy-Wen L. Gong, Margaret |I. Lomax

0648, University of Michigan Medical School, ing method [3]. The restriction fragments containing the expresse
Ann Arbor, Michigan 48109-0648, USA gene were identified by hybridization to a genomic DNA fragment
) containing only intron sequences of the Na,K-ATPggesubunit
Received: 2 July 1997 / Accepted: 30 September 1997 gene. The genomic clone was isolated from a mouse strain 1295\
SpeciesMouse genomic DNA library and characterized (unpublished data). A
Locus name:Na,K-ATPaseB, subunit gene and Na,K-ATPage 405-bp fragment. containing part of intron 6 sequences was excise
subunit related sequence. from the genomic DNA clone, isolated, and labeled by the sami
Locus symbolsAtplb3and Atplb3-rs methods.

Map position: Atp1b3is located on mouse Chromosome (Chr) 9: Allele detection:A Hincll polymorphism was detected in mouse
D9§i$12—(6.38 z 2.56)Ctsh-(3.19 + 1.81)Atp1b3—(2.1(3 i) genomic DNA between C57BL/6JEi and SPRET/Ei by Southerr

1.49)-Cappal-ps2(1.06 + 1.06)D9Bir13-(1.06 + 1.06)— blot hybridization with the 3JTR mouse cDNA probe. The most
D9HUN8-(2.13 + 1.49)D9Mit24,Dagt-(1.06 + 1.06)Camkl  Stringent post-hybridization wash was performed at 0.2 x SSC-1°
(Figure 1 A, B).Atp1b3-rsis located on mouse Chr 8xn—(2.13 ~ SDS at 65°C for 60 min. The’BTR cDNA probe hybridized to

+ 1.49)-D3Bir8,D3Mit22-(1.06 * 1.06)Atp1b3-rsEtfdh,Si-s— 6-kb and 12-kbHincll fragments in C57BL/6JEi and 3.5-kb and
(1.06 + 1.06)Npy2¢(3.19 + 1.81)Bglapl,D3Bir10(Fig. 1C, D). approx!mately 15-ka|ncII_fr_agments_ in SPRET/Ei. A mouse
Method of mapping:Both Atp1b3and Atp1b3-rswere localized ~9enomic DNA probe containing only intron sequences hybridizec

by haplot lvsis of 94 f int ific backlto the 12-kbHincll fragment of C57BL/6JEi and 3.5-kblincll
¥ haplolype analysis o progeny from an Interspectiic bac fragment of SPRET/EI, indicating that these polymorphic frag-

_ ments contained the expressed genelircll-digested panel of 94
Correspondence tou.l. Lomax progeny DNAs of an interspecific backcross of (C57BL/6JEi x
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Fig. 1. A andC: Map figures from The Jackson BSS backcross showingfigures from The Jackson BSS backcrossshowing parts of Chr 9 and Chr
parts of Chr 9 and Chr 3 respectively, and the position&\tpflb3 and respectively with loci linked toAtplb3and Atplb3-rs.Loci are listed in

Atplb3-rsin relation to several previously mapped loci. The maps areorder with the most proximal at the top. The black boxes represent thi
depicted with the centromere toward the top. A 5-cM scale bar is shown taC57BL/6JEi allele, and the white boxes the SPRET/Ei allele. The nhumbe
the left of the figure. Missing typings were inferred from surrounding data of animals with each haplotype is given at the bottom of each column o
where assignment was unambiguous. Raw data from The Jackson Labbexes. The percentage recombination (R) between adjacent loci is given to t
ratory were obtained from the World Wide Web address http:// right of the figure, with the standard error (SE) for each R. Missing typings
www.jax.org/resources/documents/cmdata/BSS.Hénand D: Haplotype were inferred from surrounding data where assignment was unambiguous.
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SPRET/EIi)F x SPRET/Ei was probed with the labeledU3R Linkage mappmg of Csrp to proxima| mouse
mouse cDNA probe by Southern blot hybridization and then

scored for the presence (BS) or absence (SS) of the 1&®4kbh3 Chromosome 3

and 6-kbAtplb3-rsgenes in C57BL/6JEi.

Previously identified homologsTwo loci that flank theAtp1b3  Cristina Alli, G. Giacomo Consalez

gene on mouse Chr ®bp1[4] and Trf [5], have been previously

localized to human 3g21-22 and 3921 respectively. A human sePepartment of Biological and Technological Research (DIBIT), San

quence-tagged site (STS), SHGC-16162 (GenBank Accession N&affaele Scientific Institute (HSR), Via Olgettina 58,

G19318), whose sequence is identical to therdd of the human 20132 Milano, ltaly

Na,K-ATPasef; subunit cDNA [6], was mapped to human Chr - .

3¢21-23 by means of the GB3 radiation hybrid mapping panelRecewed. 31 August 1997 / Accepted: 30 September 1997

(Stanford Human Genome Center, Stanford School of Medicine)SpeciesMouse

This region of human Chr 3 is syntenic to the region of mouse Chi-ocus name:Cysteine-rich protein

9 flanked byRbplandTrf that containsAtp1b3.Thus, the assign- Locus symbol:Csrp

ment of the mouse gene designateg1b3is consistent with the Map position: D3Birl—(1.15 + 1.14)-{17—(0.00 + 0.00)—

localization of its human homolog. D3Mit60-(0.00 + 0.00)€srp—(1.06 + 1.06)-Agtrlb—(7.45 +

Discussion: The Na,K-ATPase is an integral membrane protein 7.45 + 2.71)42

responsible for active transport of sodium and potassium iondlethod of mapping:Haplotype and linkage analysis of the 94-

across the cell membrane. This enzyme consists af aobunit ~ individual N, progeny of The Jackson Laboratory BSS interspe-

and ap subunit. Thex subunit contains the catalytic site for ATP cific backcross panel [(C57BL/6JEi x SPRET/Ej) ¥ SPRET/EI]

hydrolysis and the binding site for ouabain, a specific inhibitor of [1] with the marker CA19.9, corresponding to nt 122-607 of the

Na,K-ATPase. The3 subunit is a glycosylated polypeptide of Csrptranscript [N. Hashimoto, unpublished].

poorly defined function, but it appears to be involved in maturationDatabase deposit informationGenBank accession #D88793

and membrane localization of the ATPase [7]. We have recenthMolecular reagents used for mappingc:DNA CA19.9 was iso-

identified a novel mousB, subunit of Na,K-ATPase [2]. The gene lated by PCR-based differential screening in a search for develog

for the B, subunit is widely expressed. In Northern blot analysis, mentally regulated brain genes. The cDNA was excised from ar

transcripts were seen in RNA from total mouse embryos, plus &NA display gel and cloned as described [2]. A database searc

variety of adult mouse tissues including brain, heart, kidney, lungshowed that CA19.9 is 100% identical to a portion of the mouse

and spleen. In this experiment, we have localized expreBged Csrpgene (GenBank accession number D88793) [N. Hashimoto

subunit geneAtp1b3,to mouse Chr 9, and a related DNA se- unpublished]. CA19.9 was radiolabeled as described [3] and use

quence,Atp1b3-rs,to mouse Chr 3. Malik et al. [6] have previ- as a molecular probe to hybridize a DNA panel from the parenta

ously reported thaAtp1b3is located on mouse Chr 7 [6]. They strains used to generate the BSS backcross.

have identifiedMsp fragments in A/J and C57BL/J6 mice that Linkage mapping:an Xba RFLP (SPRET/Ei-specific band: 0.5

hybridized with the full-length human Na,K-ATPagg subunit ~ kb; C57BL/6JEi-specific band: 2.3 kb) was identified. Southern

cDNA probe. A 1.5-kbMspl genomic DNA fragment, hybridized blots of Xbd-digested DNA from the two parental strains and 94

with the human cDNA probe only in A/J mouse DNA, was used toN, progeny were hybridized with radiolabeled CA19.9. The re-

map 35 subunit gene by RFLP analysis. However, these investisulting strain distribution pattern was typed into the MapManage!

gators have not shown that this polymorpMep fragment con- 2.6 program [4], resulting in the unequivocal assignmenCsifp

tains the expressefl; gene. We have used an intron probe to to proximal mouse Chromosome (Chr) 3 (Fig. 1).

distinguish the expressed gene from the related DNA sequence thRfeviously identified homologsThe human CSRP gene has

hybridized with our 3UTR cDNA probe. The 6-ktHincll frag- ~ been mapped to Chr 1g24-q32 [5]. The locatioiCsfpin the BSS

ment from C57BL/6JEi, which hybridized td 3TR mouse probe map reveals a new region of synteny between mouse Chr 3 ar

but not to the genomic DNA probe, was localized to mouse Chr 3human 1g, distinct from the one previously described at a more

and designateditplb3-rsfor Na,K-ATPasep, subunit related telomeric location [6,7] (see Fig. 1b). Likely orthologs Gkrp

sequence. have also been found in the rat [8], chicken [9], and quail genome:
[10].
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Species:Mouse

Locus name:lleal sodium-dependent bile salt transporter (solute
carrier family 10, member 2)

Locus symbol:Slc10a2

Map position: Slc10a2is found to map to Chromosome (Chr) 8
with a LOD score of 25.6; centromer@8Mit155-1.1 + 1.1 cM—

i i ) i .~ Slcl0a21.1 £ 1.1 cMB8BIr3-1.1 + 1.1 cM-Sox+10.8 + 3.2
_Flg. 1. a: _Ha_pl_otype and linkage analysis 6srpand flank_lng Chr3loci  ~M—D8MiIt4 (Fig. 1A and B).

in the 94 individual N progeny of the BSS backcross. Filled squares: BS Method of mapping:Linkage analysis was performed with the

genotype; empty squares: SS genotype; stippled squares: untyped. Bel
each column are the numbers of progeny members sharing each given BSs Backcross DNA Panel (The Jackson Laboratory, Bar Harbor

haplotype. Recombination frequencies + standard errors and LOD scord¥@ine) [1]. Linkage was established with the program MapMan-
are on the rightb: Sketch of loci/marker loci independently mapped to the @ger Classic (distributed via World Wide Web, URL: http:/
BSS Chr 3 map, and genetic distances (cM) between each locus and tHecbio.med.buffalo.edu/mapmgr.html) [2].
most centromeric one in the map. Also indicated are some of the humabDatabase deposit informationMouse Genome Database Acces-
chromosomal regions syntenic to various segments of mouse Chr 3. Onlingion No. MGD-JNUM-42394.
references and information on loci mapped through the BSS panel can bgiolecular reagents:Oligonucleotide primers based on theu-
obtained from http://www.jax.org/resources/documents/cmdata/. translated region ofus musculugstrain ICR) cDNA (GenBank
Accession No. AB002693), which contains a CA repeat [(CR)
during mouse brain development (C. Alli, unpublished). Studies oiﬁ'ﬁrle lésed to argphfy genomic DNAfpu“f'g% frgrgFlanbredl_fstral_ns.
its potential function in central nervous system differentiation are ele detection:Genotyping was performed by amplification ,
currently in progress. of Slmple Sequence ITength Eolymorphlsms (SSLP) as previousl
described [3]. The primer pair with the sequencé$GBC AAT
AcknowledgmentsWe thank Lucy Rowe and Mary Barter at The Jackson GAA ATG GAC TCC AGG-3 (forward primer) and 5TAC
Laboratory for sharing the BSS backcross DNA. This work was fundedGAT CGT ACG CTC ATG TAC-3 (reverse primer) identified a
through grants from Associazione ltaliana Sclerosi Multipla and Institutopolymorphism between inbred strains C57BL/6JEi and SPRET/Ei
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Superiore di Sanito G.G. Consalez. Previously identified homologsThe assignment of mouse
Slc10a2to Chr 8 (Fig. 1B) is consistent with previous mapping of
References human SLC10A2 to the homologous region of Chr 13933 with
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etry of two sodium ions per bile salt anion, resulting in sodium- ] ) o
dependent as well as electrogenic transport [12]. Erythroid Kru”ppel-like transcription factor
Point mutations of the ileal sodium-bile salt cotransporter, e.qg. i
P290S [9], L243P, and T262M [13], can produce primary bile acid(Eklf) maps to a reglon of mouse
malabsorption in humans, a disease expressed clinically by chronfehromosome 8 syntenic with human
diarrhea, steatorrhoea, failure to thrive, as well as reduced plasm@hromosome 19
levels of cholesterol and fat-soluble vitamins, all characteristic of
interrupted enterohepatic circulation of bile salts [5]. Bile salt spill- . . 1
age into the cecum and the proximal colon can lead also to en'-\Iancy A. ‘]enkms’l Debra ‘] G”bert! 2
terohepatic cycling of unconjugated bilirubin and enterorenal deNeal G. Co_pelang, Eugenia Gruzglin,
livery of oxalic acid. The subsequent elevation of bilirubin levels James J. Biekef"
ir! bile (hyperbilirubinbilia) [14] may increase the risk f(_:)r “bIaCk,-’ Mammalian Genetics Laboratory, ABL-Basic Research Program
pigment ga"Ston.es’. compos_ed F’“”C'P.&‘”y .Of polymerlze_d CalCIU.mNCI-Frederick Cancer Researchyénd Development Center, sram
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Fig. 1. (A) EKIf maps to the central region of mouse ChERIfwas placed  in Qiagen Q Buffer) with: (1) water; (2) g human chromosomal DNA,;

on Chr 8 by interspecific backcross analysis. The segregati@kiofand (3) 1 pg mouse/human Chr 1 hybrid DNA (Coriell GM13139); (4.4
flanking genes in 81 backcross animals that were typed for all loci is showrhamster/human Chr 19 hybrid DNA (Coriell GM10012) (5).8y mouse

at thetop. For individual pairs of loci, more than 81 animals were typed. DNA; (6) 1 g hamster DNA. Lane 7 (a control for lane 3) is derived from
The shaded boxes represent the presence of a C57BL/6J allele, and whiereaction with murine EKLF intron primers with mouse/human Chr 1
boxes represent the presence ofMinspretusallele. The number of off-  DNA. Lane M contains DNA molecular weight marker V (Boehringer).
spring inheriting each type of chromosome is listed at the bottom of eaci{C) Diagram of the murine EKLF transcription unit (Genbank accession
column. A partial Chr 8 linkage map showing the location EXlf in number AF019074). Boxed areas are exons, and lines between them a
relation to linked genes is shown at thettom. Recombination distances introns. Stippled boxes indicate the proline-rich region of EKLF, diago-
in centiMorgans between loci are shown to the left of the chromosome, andally hatched boxes denote each of the three EKLF zinc fingers. The
the positions of loci in human chromosomes, where known, are shown tdocation of the transcription initiation sites are indicated by the arrow, and
the right. References for the human map positions of loci can be obtainedubsequent nucleotide (nt) numbering is based on defining the distal ini
from the Genome Data Base (a computerized database maintained by ttiation site (see [2]) as +1. Locations of translation initiation, intron/exon
Welch Medical Library, Johns Hopkins University, Baltimore, M@B) boundaries, and CAAT and GATAL1 binding sites are shown. Inclusive
PCR analysis of chromosomal DNA. Human EKLF primers within intron amino acid (aa) numbers are indicated (aa 1-358), as are their correspo
2 [9] were used in PCR reactions (1 min at 95°; 1 min at 54°; 1 min at 72°dence to the numbering in [2] (aa 19-376 in parentheses).

two loci are within 1.8 cM of each other (upper 95% confidence [6] and genetic [7,8] studies indicate that EKLF is critical for the
limit). transcriptional switch that leads to high-level adgiglobin ex-
Method of mapping:Interspecific backcross progeny were gener- pression.

ated by mating (C57BL/6J M. spretu$ F, females and C57BL/6J The map location ofEklf is in a region of homology with
males as described [1]. This interspecific backcross mapping panéluman Chr 4 and 19 (Fig. 1A); in particulaiynbmaps to 19p13.
has been typed for over 2400 loci that are well distributed amondsiven the tight linkage betweelunband EKIf in mouse, we ad-

all the autosomes as well as the X Chr. A total of 205Mce were  dressed whether human EKLF resides on Chr 19 as well. We
used to map th&klf locus. utilized rodent/human hybrid DNA samples (Coriell) that con-
Database deposit informationThe MGD accession number is tained either human chromosome 1 or 19 for PCR analysis witt
MGD-CREX-160. The Genbank accession humber is AF019074human EKLF [9] gene-specific primers within intron 2. Figure 1B
Molecular reagents:We excluded the EKLF zinc finger region demonstrates that a product of the correct size (190 bp) as th
from our hybridizations to avoid potential cross-reaction with positive control is observed only in the Chr 19-containing sample
other family members by using a probe that spans nucleotidess a result, we conclude that EKLF resides in syntenic regions o
271-841 of the EKLF cDNA sequence [2]. mouse Chr 8 and human Chr 19. Consistent with these expect:
Allele detection:The presence or absence of the 5.4kIspretus tions, and while these experiments were in progress, human EKL|
specific BanH1 fragment was followed in backcross mice (Fig. was shown to be located at 19p13 [10].

1A). A description of the probes and RFLPs for loci linked=kif To complete the molecular comparison between the human an
has been reported previously [3,4]. murine orthologs of EKLF, we determined the nucleotide sequenc:
Discussion: EKLF is a zinc finger-containing, erythroid cell- of 6350 bp surrounding the murine transcription unit, schematizec
specific transcription factor that binds to and transactivates fronin Fig. 1C. Beyond the conserved coding sequence and the loc:
the CACCC element present in the adult human and mysine tions of translation initiation, intron, and termination sites when
globin promoter [2]. Point mutations at its DNA target site, in- compared with the human transcription unit [9], the murine and
cluding those known to give rise @-thalassemia, disrupt EKLF human units contain conservett &nd 3-untranslated sequences,
binding and thus its ability to activate transcription [5]. Molecular and conserved proximal promoter sequences [11].
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Mapping of three members of the mouse 2o8 3kt s

protein disulfide isomerase family 865, 12.3 + 4.1

Véronique Briquet-Laugier, - Yu-Rong Xia,? » e \ . . a4 Erp72
Karen Rooke ' Margarete Mehrabian,? A Mty
Aldons J. Lusis?® Mark H. Doolittle 12 4/66, 6.1 %2.9
(0/66 [5.4]) —— D6Ucla2 Ghrhr/lit

ILipid Research Laboratory, West Los Angeles Veterans Administration 3/59, 5.1 £ 2.9 .
Medical Center, 11301 Wilshire Blvd, Building 113, Room 312, = Demitl7
Los Angeles, California 90073, USA
2Department of Medicine, University of California, 7/59, 11.9 + 4.2
Los Angeles, California 90095, USA
3Department of Microbiology and Molecular Genetics and Molecular —— Demits
Biology Institute, University of California, 3/66, 4.5 %2.6 A

. X Cnbpl2
Los Angeles, California 90095, USA cum = 46
Received: 29 July 1997 / Accepted: 10 October 1997 11
Species:Mouse ,
Locus namesGlucose-regulated protein 5&(p58), endoplasmic  1/61, 1.6 £ 1.6 J ( DlIMit59
reticulum protein 72Erp72), protein disulfide isomeras@®ghb. 2/62, 3.2 £ 2.2 crhr
Locus symbolsGrp58, Erp72,and P4hb. LT
Map positions: Grp58is localized on mouse Chromosome (Chr) 1/63, 1.6 + 1.6 _J[_ Pkca

2: centromereD2Mit35-(9.5 + 3.7 cM)D2Mit14-(12.7 + 4.2 ™ p11vciaz
cM)-Grp58D2Mit30-(5.7 + 3.2 cM)-D2Nds3-(1.8 = 1.8 cM)—
D2Mit19-(4.5 + 2.6 cM)-b2Uclal/D2Ucla2. Erp72is localized
on mouse Chr 6: centromer@émitl/Pon-(3.5 + 2.4 cM)-—
D6Mit48—(12.3 + 4.1)}Erp72-(3.0 £ 2.1 cM)-D6Nds4-(6.1 = A panp
2.9)-Ghrhr/lit/D6Ucla2-(5.1 + 2.9)-D6Mit17. P4hbis located on

mouse Chr 11: centromer@11Mit59-(1.6 + 1.6 cM)-€rhr—(3.2 5/56, 8.9 % 3.8
+ 2.2 cM)-Pkca-(1.6 £ 1.6)-b11Ucla2-(9.5 + 3.7)P4hb-(8.9 £

3.8 cM)-D11Mitl1 (Fig. 1).

Method of mapping:Southern blot analysis was performed on a cum = 94
panel of 67 DNA samples from a [(C57BL/6JMus spretuj1 x . Fig. 1. Mapping of Grp58, Erp72,and P4hbto mouse Chrs 2, 6, and 11
C57BL/6J] backcross typed for more than 400 markers [1]. I‘mk'regpectivelry)/pin %n inteprsp’ecifiré béckcross [(C57BL/6Mus spr’etL’J)aF1 X

age was detected with Map Manager QTb8 v2.6.5 [2]. C57BL/6J]. The chromosome is drawn to scale with the centromere at thi
Database deposit informationThe accession number f@rp58  op and the distance of the most distal marker from the centromere indi
andErp72is MGD-JNUM-40697;P4hb has the accession num- cated at the bottom (cum., in centiMorgans). The ratios of the number o
bers MGD-MRK-13114, MGD-MRK-15082. recombinants to the total number of informative mice and the recombina
Molecular reagents:cDNA probes were prepared by RT-PCR tion frequencies + standard errors (in centiMorgans), for each pair of loci
are indicated to the left of the chromosome. For pairs of loci that coseg
E— regate, the upper 95% confidence interval is shown in parenthdsés.
Correspondence tovl.H. Doolittle markers were reported in Warden et al. [1].

6/63, 9.5 % 3.7

=1~ DliMitll
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GGAGAGCGCTTGCTGAGCTCC-3[4]; P4hb, (upstream) 5 2. Map Manager Home Page, http://mcbio.med.buffalo.edu/mapmagr

GTCTTCATGTCCAGCTACTTG-3 and (downstream) '5 html

GGCTGGTCGGTAGTCCTGG-3[4]. 3. Bennet CF, Balcarek JM, Varrichio A, Crooke ST (1988) Nature 334,
Allele detection:An RFLV for Grp58 was identified withTaq|l, 268-270 . .

where fragments of 3.0 kb in CSgBLIGJ and 3.6 kiMn spre?us - Mazzarella RA, Srinivasan M, Haugejorden SM, Green M (1990) J

. : - . Biol Chem 265, 1094-1101
were used for scoring. An RFLV foErp72 was identified with 5. Pajunen L, Myllyla R, Helaakoski T, Pihlajaniemi T, Tasanen K,

Bglll, which generated fragments of 5.2 and 6.8 kb for C57BL/6J Hoyhtya M, Tryggvason K, Solomon E, Kivirikko KI (1988) Cyto-

and 5.2 and 5.8 kb foM. spretus An RFLV for P4hbwas iden- genet Cell Genet 47, 37-41
tified with Pvull, which produced a fragment of 3.5 kb for C57BL/ 6. Koivunen P, Horelli-Kuitunen N, Helaakoski T, Karvonen P, Jaakkola
6J and 3.8 kb foM. spretus. M, Palotie A, Kivirikko KI (1997) Genomics 42, 397-404

Previously identified homologsThe mouse PDI gené@¢hb) was 7. Freedman RB, Hirst TR, Tuite MF (1994) Trends Cell Biol 4, 331-336
mapped prev|0us|y to the distal reg|0n of Chr 11 with a [(CS?BL/ 8. AVraham'KB, Fletcher C, Overdier DG, Clevide.nce DE, Lai E, Costa
6J x Mus spretuyF; x C57BL/6J] interspecific cross [8]. The RH, Jenkins NA, Copeland NG (1995) Genomics 25, 388-393
human PDI gene has been mapped by somatic cell hybrids to Ch" ('\i'ggg f'é}o?(é'ﬁgﬁ{%@;’ F;ﬁ_’liagde MF, Bush KT, Sherman MY
17925 [5]. The human Grp58 is located on Chr 15q15 [6]. To dateq ,

. Haugejorden SM, Srinivasan M, Green M (1991) J Biol Chem 2686,
no homolog for mousé&rp72 has been mapped in humans. No 6015%018 (199)

known mutations are present in the regions wheddb, Erp72,  11. Noiva R, Lennarz WJ (1992) J Biol Chem 267, 3553-3556

and Grp58 are located. 12. Gunther R, Srinivasan M, Haugejorden S, Green M, Ehbrecht I-M,
Abbreviations:For discussion purposes, we designate@np58, Kuntzel H (1993) J Biol Chem 268, 7728-7732

gene product as Grp58 (glucose-regulated protein 58), although #3. Urade R, Takenaka Y, Kito M (1993) J Biol Chem 268, 22004-22009
has also been called PI-PLC, ERp57, ERp60, ERp61, and PDl-QZi.A'- Oliver JD, van der Wal FJ, Bulleid NJ, High S (1997) Science 275,
The Erp72 gene product is called ERp72 (endoplasmic reticulum 86-88

protein 72). We designate tli&thbgene product as PDI (protein

disulfide isomerase), although it has also been called ERp59. . .

Discussion: The PDI family represents a group of thioredoxin- LiNkage mapping of a3, a5, and 4 neuronal
related proteins that reside in the lumen of the ER [7]. Here wenicotinic acetylcholine receptors to rat

report the chromosomal position for three members of this family,

Grp58, Erp72,andP4hb(Fig. 1). P4hb,mapped previously in an Chromosome 8

interspecific cross identical to the one used here, placed this locus . 1 ; 12

about 12 cM distal t®°kcaon Chr 11 [8]. Figure 1 shows that this Melloni N. Cook,™ André Ramos;”

map position is very similar to ours, placimphbabout 11 cM  Héléne Courvoisier,' Marie-Pierre Moisan®

frorprrl]:’ekcsbl family is characterized by the presence of thiore_lLabO(atoire de Neurdgétique et Stress, INSERM U471 INRA, Institut
doxin-like domains containing the motif CGHC; this motif con- ggﬁg‘;’; ygggggﬁ'r ;‘;‘éecam'”e Saint-Jag 33077

tains the redox-active cysteine residues involved in the d|suIflde}Departamento de Biologia Celular, Embriologia e Gimae

isomerase activity of PDI [7,9]. The PDI family members are \j,iyersidade Federal de Santa Catarina, 88.040-900

soluble proteins that are retained within the ER by the C-terminal|oriangpolis, SC Brazil

retention signals -KDEL, -KEEL, and -QEDL for PDI, ERp72, and

Grp58 respectively [10]. PDI is the best characterized protein oReceived: 15 June 1997 / Accepted: 20 September 1997

this gene family and is well known for its function as a protein- SpeciesRat Ratt .
folding enzyme that catalyzes disulfide bond isomerization [11]. pecies:Ra '(Ra us norvegicys L .

PDI has the capacity to bind a wide variety of peptides at a domairlroCus name:a3a5 and@4 neuronal nicotinic acetylcholine re-
separate from its CGHC active site, and this domain may functio%emor gene cluster

. . ocus symbol:D8Bord1 defining Chrna3, Chrna5, Chrnb4
to target PDI to newly synthesized polypeptides as they are trang; L L )
located into the ER [11]. In addition, PDI is part of complex ap position: D8Bord1is linked t0D8Mgh4 (13, 29.9),D8Mit3

enzyme systems operating in the ER: PDI is a subunit of the(14' 217.1),Apen(32,7), D8Mgh2 (36, 6.3),DBMIt6 (52, 2.1) (cM

enzyme prolyl-4-hydroxylase, catalyzing the formation of hy- distance and pairwise Lod score).

. : ! . ._Method of mapping:Linkage analysis oD8Bordland the other
droxyprolyl residues in nascent collagen-like polypeptides; PDI is h .
also a subunit of the microsomal triacylglycerol transfer protein Chromosome (Chr) 8 markers was carried out in a 19@rsgeny

e ; ; i [ 'from SHR/N x LEW/N cross (parental strains were purchasec
Igm:stlt[)%lng in the formation of nascent, triglyceride-rich lipopro from Iffa credo, France). The Mapmaker v3.0 was used to estimat

While ERp72 and Grp58 also contain thioredoxin-like do- chglgz:i‘ljalrorce?Oenn?srllthvielStﬁPnC:rss Bigl\clie\/?/grlg%:érived from the se-
mains, they do not display PDI activity vitro [12]. Nevertheless, uence of theg enohic rg ion betweghanda3 genes [1] (Gen-
it has been shown that ERp72, but not Grp58, can replace thg 9 9 f@handa3 g

growth-essential PDI function in yeast [12]. In addition, ERp72 is ank S74125) containing sequence repeats (GTAT)N.

involved in ER-specific protein degradation [13], and Grp58 hasfonNard primer: 5CCAGATGTCATCACCCTGTG 3

S - e everse primer: B3SAACCGTGGAAGTTGATGCT 3
L%‘;%%trlznge[elz] implicated as a glycoprotein-specific rTmlecmaurl\/lethod of allele detectionThere was a 4-bp difference (probably

one repeat) betweeD8Bord1 PCR products of LEW and SHR
AcknowledgmentsV. Briquet-Laugier is a recipient of a fellowship rats. Alleles were detected on 3% agarose gel or on 6% polyacryl
awarded by the American Heart Association, Greater Los Angeles Affili- 5 i gel as previously described [2].

ate. K. Rooke is a recipient of an American Heart Association Gram'i”'Previoust identified homologsThe a3, a5, andB4 gene cluster

Aid, Greater Los Angeles Affiliate. M.H. Doolittle is an Established In-
vestigator of the American Heart Association. This work was supported b)has been mapped to human Chr 15924, (CHRNAS3, CHRNAS anc

National Institutes of Health grant HL28481. CHRNBA4, respectively) [3] and to mouse Chr Ac¢a3, Acra5,
andAcrb4 respectively) [4,5].
References Discussion:Recently, we detected a major quantitative trait locus
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Fig. 1. Genetic linkage map of rat Chr 8.
Numbers on the left side are cM distances
Apeh D8Mgh2  (Kosambi function).

for behavioral hyperactivity of WKHA/WKY rats on rat Chr 8
near theApeh (also calledAcph marker [2]. Thea3 neuronal

nicotinic acetylcholine receptor gene had been mapped close to t)g
i

Apeh marker on mouse Chr 9 [4] and thus represented a goo

positional candidate for the hyperactivity QTL since these receps

tors are present on striatal nerve terminals where they modulate t

(D8Bord)) for this a3 gene which in the rat forms a cluster with

o5 andp4 genes [7] and we have mapped this cluster >32cM from
Apeh(Fig. 1). There was no polymorphism between the WKY and

WKHA rat strains forD8Bord1; therefore, we could not test ge-

netic linkage between this locus and behavioral hyperactivity, bu
this study suggests that it is outside the hyperactivity QTL. This
study confirms the high degree of homology between rat Chr 8 ang-

mouse Chr 9. The3, o5 and B4 gene cluster is the eighth gene

Mammalian Genom®, Brief Data Reports

Tokyo 113, and Department of Pathology, The Institute of Medical
Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku,
Tokyo 108, Japan

Received: 27 August 1997 / Accepted: 9 October 1997

Species:Cat (Felis catu3

Locus name:Immunoglobulin light chain &

Locus symbol: IGL@

Map position: cat Chr D3 at band p12-p11

Method of mapping: FISH. A N phage clone, which contains
15-kb inserts hybridizing with the c&L C\ cDNA fragment (420
bp) [1], was isolated from a commercially purchased feline geno-
mic library (Lambda FIX Il library, Stratagene). The probe was
labeled with biotin-16-dUTP by nick translation and mixed with a
10-fold excess of sheared cat genomic DNA to avoid hybridization
to the repetitive sequences. The signal was detected by FITC
avidin (Boehringer) overlay as described [2]. Prometaphase chrc
mosomes were counterstained with propidium iodide and DAPI
for identification of individual chromosomes. A proposed nomen-
clature for cat karyotype [3] was adapted to localize the gene.
Data base deposit informationEuropean Patent Publication
Number of the catgL C\ gene is 0417486A.

Molecular reagents used for mapping=IGL1, a 15-kb genomic
DNA probe containing a 420-bp cigL C\ cDNA sequence, was
used in FISH analysis.

Previously identified homologsHuman and mouse homologs,
IGL @ andlgl-l, have been mapped on Chr 22q11.1-q11.2 and Ch!
B1-B5, respectively [5].

scussion: The hybridization signals were clearly located on the
roximal region of the short arm of cat Chr D3, but the doublet
gnals on both homologs of Chr D3 were observed in few meta:
f)hases (Fig. 1). Of over 30 metaphases surveyed, none of the oth
chromosomes showed significant hybridization. We therefore con
clude that the calGL @ maps to Chr D3p12-p11, with the most
likely position at p12.2. In addition, the experiments using a cat x
rodent somatic cell hybrid panel have indicatéd. @ maps to cat

chr D3 [1].

In humans, chromosome translocations involving the Ig anc
R genes are frequently found in B- and T-cell malignancies, anc

localization shared between rat Chr 8 and human Chr 15921-24————
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Program Biotechnology (PL960562). M.N. Cook is supported by a Cha-

teaubriand post-doctoral fellowship from the French government.
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Fig. 1. FISH analysis of the cdGL C\ gene(A) Arrows indicate specific
hybridization of the catgL C\ gene to Chr D3 in a normal cat prometa-
phase spreadB) A partial metaphase showing symmetrical twin spots on
both homologs of cat Chr D3C) Ideogram of the cat Chr D3. Bar
indicates thdGL @ locus.
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this may play an important role in lymphoid tumorigenesis [6,7].  Somatic cell hybrid analysis was performed with a well-
ThelGL @ locus is known to be involved in the t(8;22) chromo- characterized panel of 38 hamster—bovine hybrid clones [5].
some translocation in a variant form of Burkitt's lymphoma in Database deposit informationGenBank accession number:
which the cMYCgene is juxtaposed to the upstream region »f C L27833 [6].

gene segment of thiisSL @, thereby activating the oncogene [8]. PCR primer sequencedrorward: 3 - TTTCTCTCTGTCCCCA-
Furthermore, the locus is involved in a case of the 1(3;22) chro-CTGC-3 (SINE region). Reverse: '5BAGCCTTTCCTCCA-
mosome translocation in B-cell non-Hodgkins lymphoma in which CTTCACC-3.

the BCL6 gene is translocated to tha2l gene segment, causing Method of detection:The GenBank and EMBL database were
promotor substitution [9]. Thus, it is of interest to investigate searched for sequences homologous to seBwaltaurusSINEs
whether any particular chromosome translocations involve Ig light(Short Interspersed Nuclear Elements). Thdl&nking sequence
chain genes in cat lymphomas and leukemias because the cata$ the bovine pregnancy-associated glycoprotein 1 gene showe
being used as a model for human diseases. 85% identity in a 167-bp overlap to the SINE sequence Bov-B
(accession no. X64125; [7]). An A/T rich tract was found at the 3
end of the overlapping region, showing the {5 T(A),, repeat
motif. PCR primers were designed on the basis of the flanking
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This work was supported by a Grant-in-Aid from the Ministry of Educa-
tion, Science and Culture and a Grant-in-Aid from the Ministry of Health

and Welfare, Japan. sequence. The amplified fragment showed the expected size (2
bp), and PCR products varied in length in denaturing polyacryl-
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SIN_EVA polymorphlsm gnd mapping of t,he The PAG1B polymorphism described in this paper could be
bovine pregnancy-associated glycoprotein considered as a SINEVA (SINE variable poly(A) [10,11]). Even
1 gene though the bovine genome seems to present a minor amount ¢

SINEVA polymorphism compared with other human and domestic
species [11] and di- and trinucleotide repeats appear the mo:
frequent SINE-associated polymorphism, with a database searc
we have found several of these polymorphisms (unpublished data
Because of their presence near or inside gene sequences and tf
high degree of polymorphism, these SINEVA markers can be use
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2Laboratoire de Gedtique Biochimique et Cytogetique, INRA, for Ilnkgge mapping of conserved regions. The polymorphism re-
Domaine de Vilvert, 78352, Jouy en Josas, France ported in this work has allowed us to map &G1Bgene, show-
3CSIRO, Division of Tropical Agriculture, Level 3, Gehrmann ing that the SINEVA analysis is a useful mapping tool in the
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Economou EP, Bergen AW, Warren AC, Antonarakis SE (1990) Proderminal coding and the’3lanking regions was used for POU3F3

assignment to reduce nonspecific signals.

Discussion:The vertebrate class Ill POU transcription factors con-
sist of four members, POU3F1 (Scip/Oct-6/Tst-1), POU3F2
(Brain-2/N-Oct3), POU3F3 (Brain-1), and POU3F4 (Brain-4). The

Solinas-Toldo S, Lengauer C, Fries R (1995) Genomics 27, 489_49§hromosomal location of the four murine class 11l POU genes ha:

een determined by interspecific backcross analysis [2,3]. On th
basis of mouse—human chromosomal homologies, human POU3F
and POU3F3 are expected to map to 1p and 2q, respectively. Tt
location of POU3F1 was consistent with this prediction, mapping
to Chromosome (Chr) 1p34.1. Contrary to the prediction, however
POU3F3 was mapped to Chr 3p14.2. Chr 3p14.2 is a transloce
tional breakpoint associated with renal cell carcinoma [4,5]. The
fragile histidine triad gene, alteration of which causes lung, head
and neck cancers, has been identified at 3p14.2 [6,7]. Neithe
genes nor diseases have so far been identified at 1p34.1, but mc
mice homozygous for the mutant POU3FL1 allele die soon aftel
birth [8,9].

The human POU3F2 and POU3F4 genes have already bee
mapped to Chr 6g16 and Xq21.1, respectively [10,11]. Therefore, a
four of the human class Ill POU genes map to chromosomal location
that are different from one other. A phylogenetic tree of the class IlI
POU genes constructed with the POU domain sequences shows tt
the POU3F1, POU3F2, POU3F3, and POU3F4 genes have emerg
in a common ancestor of vertebrates [12]. Recent studies on th
genome structure of vertebrates have suggested that genome du
cation has occurred at least twice in the early stage of vertebrat
evolution; four homologous complexes such as Hox and MHC are
interspersed in the mammalian gene [13-15]. The present data sho
ing interspersed chromosomal locations of the four human class II
POU genes are consistent with this idea.

B

w (NN WD

Fig. 1. In situ hybridization of the human POU3F1 (a) and POU3F3 (b) genes to 1p34.1 and 3p14.2, respectively. Hybridization signals were detecte

HNPP on Q-banded chromosomes [1].
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The mammalian genome is made up of a mosaic of very long 4.
(more than 200 kilobases) DNA segments called isochores with
different GC contents [16]. In each isochore the GC content is 5.
fairly homogeneous [17], and GC-rich genes are located mainly on6.
special subsets of R-positive (G-negative) chromosomal bands in
mammals, whereas AT-rich genes are located on G-positive bands
[18]. The human POU3F1, POU3F2, and POU3F3 genes have’-
higher GC contents, whereas the human POU3F4 gene has a lower
GC contents [12]. Therefore, it is expected that the human
POU3F1, POU3F2, and POU3F3 genes are located on G-negative
bands, and the POU3F4 gene on a G-positive band. The chromo*"
somal assignment of the POU3F1, POU3F3, and POU3F4 genes i%
consistent with this expectation. As 6q16 is divided into three
subregions, G-positive 16.1, G-negative 16.2, and G-positive 16.3
fine mapping remains to be done for POU3F2.
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