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Abstract This paper presents an analysis of the relation-
ship between variation in the low-density lipoprotein re-
ceptor (LDLR) gene region and interindividual variation
in plasma lipid and apolipoprotein levels in a sample rep-
resentative of the adult population of Rochester, Minn.
(217 females and 187 males aged 26 to 63). Thisrelation-
ship was analyzed by estimating the average excesses of
dleles of the LDLR gene defined using RFLP markers
both singly and simultaneously. We aso used a cladistic
approach to illustrate the consequences of incorporating
evolutionary information into the analysis of genotype-
phenotype relationships. Although results from both ap-
proaches supported the inference that common variation
in the LDLR gene region associates with small effects on
plasma lipid and apolipoprotein levels, only the cladistic
approach provides direction for further work aimed at
identifying the functional DNA sequence variations re-
sponsible for the observed associations.

Introduction

One of the aims of human geneticsis to identify the DNA
sequence variations responsible for quantitative pheno-
typic variation in a particular trait. To date, most work has
concentrated on identifying rare DNA sequence variations
with large phenotypic effects in individuals with specific
diseases or hyperphenotypes. Searches for such rare vari-
ations have been very successful (e.g., Hobbs et a. 1990;
Riordan et al. 1989; Wallace et al. 1990). Once the region
of the genome containing the gene has been localized,
finding the DNA sequence responsible for an extreme
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phenotype is straightforward, although in practice it can
be hampered by technical problems and be quite labor in-
tensive. The responsible sequence variations are likely to
be identifiable because there is a Cartesian or one-to-one
relationship between genotype and phenotype. Unfortu-
nately, this strategy has not been effective in the identifi-
cation of DNA sequence variations responsible for pheno-
typic variation within the normal range (Sing et al. 1992a,
b; Sing and Reilly 1993; Strohman 1994).

| dentifying the functional DNA sequence variations re-
sponsible for variation in traits that are continuously dis-
tributed among individualsin the population at large is com-
plicated by the complex genetic architecture underlying
the observed trait distribution (Sing et al. 1992c). The ge-
netic architecture of a quantitative trait involves multiple
genes with continuously distributed sizes of allelic effects
that interact with each other and with variation in the en-
vironment to determine trait variation (Sing and Boerwinkle
1985; Sing and Moll 1989; Sing et al. 1992c, 1996; Tanksley
1993; Zerba and Sing 1993). It follows that the causal re-
lationship between a particular genotype and a particular
phenotypic value cannot be one-to-one.

We have taken the candidate gene approach to identify
genes likely to contain DNA sequence variations that in-
fluence quantitative trait variation (Lusis 1988; Sing et al.
1992c). This approach entails the study of genes whose
products are involved in the metabolism of the quantita-
tive trait of interest. Once a candidate gene has been se-
lected, the search for functional DNA sequence variations
has traditionally begun with single marker association
studies aimed at testing the null hypothesis that variation
in the gene region does not associate with interindividual
trait variation. When available, multiple markers can be
used to further resolve the genotype-phenotype relation-
ships (e.g., Aquadro et al. 1992; Kesdling et al. 1988). Al-
though such studies have proved useful in confirming the
involvement of a candidate gene in influencing variation
in aquantitative trait (Kessling et al. 1992), they offer lit-
tle information to help guide a search for functional DNA
sequence variations. The search for functional DNA se-
guence variations involves first characterizing the varia-



tion in agene region, second identifying those individuals
that carry functional variations, and last determining which
of the DNA variations are responsible for the functional
effects.

Recently, a cladistic approach for characterizing the as-
sociation between haplotype variation in a candidate gene
and phenotype variation has been developed. This analyt-
ical strategy organizes complex genic information result-
ing in increased statistical power to identify individuals
carrying haplotypes with functional sequence variations
with relatively small effects on trait levels (Haviland
1993; Haviland et al. 1995; Sing et a. 1992b; Templeton
et al. 1987, 1988, 1992; Templeton and Sing 1993). A sec-
ond advantage of the cladistic approach over traditional
approaches that do not consider evolutionary information
is the identification of those individuals that should be
compared in subsequent molecular analyses to exclude
background nonfunctional variations and hence maximize
the probability of finding functional DNA sequence vari-
ations.

This paper presents an analysis of the relationship be-
tween common variation in the low-density lipoprotein
receptor (LDLR) gene region and interindividual varia-
tion in plasma lipid and apolipoprotein levels. Although
results from both the cladistic analysis and an analysisig-
noring evolutionary information supported the inference
that common variations in the LDLR gene region are as-
sociated with small effects on plasma lipid and apolipo-
protein levels, only the cladistic approach provides direc-
tion for further work aimed at identifying the functional
DNA sequence variations responsible for the observed as-
sociations.

Materials and methods
Sample

The first phase of the Rochester Family Heart Study includes 2002
individuals in 276 multigenerational pedigrees representative of
the Caucasian population of Rochester, Minnesota (Moll et al.
1989; Turner et al. 1989). We typed 426 unrelated individuals
from the parental generation of this sample for four RFLP markers
in the LDLR gene region; unambiguous haplotypes could be de-
termined for 409 of them (genotyping and haplotyping is described
below). Fiveindividuals were removed because their plasmalevels
for one or more of the nine lipid and apolipoprotein traits (apo Al,
All, B, CllI, Clll and E, total cholesterol, HDL-C and triglycerides)
were greater than, or less than, 5 standard deviations from the gen-
der-specific mean. None of the individuals in this sample was
recorded as having a clinical diagnosis of familial hypercholes-
terolemia. Thus, the sample analyzed here consisted of 217 fe-
males (average age of 41.7 years, range 26.0 to 62.9 years) and
187 males (average age of 43.5 years, range 27.2 to 61.5 years).

Laboratory methods

All blood samples were collected in EDTA by venipuncture.
Plasmalevels of apo Al, All, B, ClIl, Clll and E were measured us-
ing radioimmunoassays (Kottke et al. 1991). Total plasma choles-
terol and triglyceride levels were measured using standard enzy-
matic methods, and plasma HDL-C was measured following the
precipitation of apo B-containing lipoproteins (1zzo et al. 1981).
Lipid and apolipoprotein values are presented here in mg/dl.
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Four RFLP markers in the LDLR gene region were typed by
DNA amplification using primers flanking the Taqgl (intron 4), Stul
(exon 8), Hincll (exon 12) and Avall (exon 13) variable restriction
sites followed by digestion of the amplification product with the
appropriate restriction endonuclease and electrophoresis in 1%
agarose gel (Leitersdorf and Hobbs 1988; Leitersdorf et al. 1989).
Grandparents and children of the parents studied here were also
typed for the purposes of error checking and haplotyping. The
computer program PATCH (Wijsman 1987) was used to search for
segregation inconsistencies in the pedigrees. All members in a
pedigree, detected by PATCH as having an inconsistency, were re-
typed to resolve typing errors. Two pedigrees were removed from
the analysis because pedigree inconsistencies could not be resolved.
PATCH was then used to construct haplotypes based on the four
RFLP markers.

Analytical methods

All analyses were done using the SAS statistical package (SAS In-
stitute 1989). The means, variances and ranges of the concomitants
(age, height and weight) and plasma lipid and apolipoprotein traits
(apo Al, All, B, CII, CIll and E, tota cholesterol, HDL-C and
triglycerides) in females and males were estimated. Homogeneity
of means between females and males was tested using the t-test
(the use of the nonparametric Wilcoxon sum rank test did not alter
the inferences, results not shown). Homogeneity of variances be-
tween the genders was tested using the F-test. The F-test is sensi-
tive to deviations from normality, so the results of the nonpara-
metric Ansari-Bradley test of homogeneity of dispersion with a
modification for unequal locations (Randles and Wolfe 1979) are
also presented. The levels of the nine plasma lipid and apolipopro-
tein traits were then adjusted by multiple regression for date of as-
say, age, age?, age®, height, height?, heights, weight, weight? and
weight3® within each gender.

The association between variation in the LDLR gene region
and adjusted phenotypic variation within each gender was then an-
alyzed. Alldic effects, where aleles were defined using each
RFLP marker singly and all four RFLP markers simultaneously,
were estimated by the average excess statistic (Templeton 1987).
Because the theoretical sampling distribution of this statistic is un-
known, we used permutation testing (Edgington 1987) to test the
null hypothesis that an average excess was equal to zero. To esti-
mate the null distribution of the average excess statistic, the phe-
notypic values were randomly permuted over the genotypes using
arandom number generator (Wichmann and Hill 1982) and the av-
erage excess calculated using the permuted data. One thousand
permutations of the data were made. The relative frequency of the
1000 permuted average excesses that exceeded the magnitude of
the average excess computed for the original data set was taken as
the estimate of the probability of observing an average excess
equal to or greater than the original average excess under the null
hypothesis.

The cladistic approach has been described fully elsewhere
(Haviland 1993; Haviland et al. 1995; Sing et al. 1992b; Templeton
et al. 1987, 1988, 1992; Templeton and Sing 1993) and is only
briefly summarized here. A cladistic analysis involves two steps.
In the first step an unrooted cladogram is built by organizing the
haplotypes, defined by the four RFLP markers, such that those hy-
pothesized to be close in evolutionary history are connected. The
method of maximum parsimony was used here (Felsenstein 1983;
Sober 1983; Stewart 1993). Rare haplotypes, haplotypeswith arel-
ative frequency less than or equal to 1% in either gender, were not
included in the cladogram. Coalescent theory has been used to
demonstrate that rare haplotypes are likely to be connected to only
one other haplotype (Crandal and Templeton 1993) so the re-
moval of the rare haplotypes should not affect the structure of the
rest of the cladogram. A scheme for testing hypotheses about the
association between haplotype and phenotype variation is defined
by nesting (i.e., grouping) the haplotypes according to the clado-
gram structure in the second step of the cladistic analysis (Templeton
et al. 1987).
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The LDLR cladogram defined pairwise contrasts between hap-
lotypes and between groups of haplotypes. Thus, rather than using
the nested sum-of-squares statistics derived by Templeton et al.
(1988), the test statistic, ai-a,, where a and g are the average ex-
cesses for the it and jt haplotypes, or groups of haplotypes, re-
spectively, was calculated. To estimate the distribution of the test
statistic under the null hypothesis, permutation testing was used
(see above).

When choosing a statistical significance level, both the type-1
and type-I1 error rates must be considered. Because the size of the
association between haplotype and trait variation was expected to
be small and this is the first such study of this type, aliberal test
criteria of 0.10 was used to minimize type-1l errors.

Table1 Haplotype frequencies by gender

Haplotype Designation? Haplotype Frequency (%)

Tagl Sul Hincll Avall Females® Males
H1 + + + - 41 (9.5) 39 (10.4)
H2 - + - + 195 (44.9) 146 (38.8)
H3 - + + + 7 (1.6) 2 (0.5
H4 - + - - 1 (0.2 0 (0.0
H5 - + + - 176 (40.6) 166 (44.7)
H6 — - + - 14 (3.2 21 (5.6)

a + denotes presence of restriction cut site, — denotes absence of
restriction cut site

b RFLP allele and haplotype frequencies were not significantly
different between females and males (results not shown)

Results

The means, standard deviations and ranges for age, height,
weight and the nine plasma lipid and apolipoprotein traits
for females and males separately are given in the Appen-
dix. The significant gender differencesin most of the con-
comitant and plasmal lipid trait distributions justified sep-
arate treatment of females and males. When the four RFLP
markers were considered simultaneously, 6 unambiguous
haplotypes, out of a possible 16, were observed. These
haplotypes were labeled H1-H6. The haplotype frequen-
cies are given in Table 1. Four haplotypes, H1, H2, H5
and H6, accounted for more than 98% of the haplotypes.

The average excesses for alleles defined by each RFLP
marker singly are given in Table 2. The null hypothesis,
average excess equal to zero, could not be rejected for al-
leles defined by any of the RFLP markers for any of the
adjusted lipid or apolipoprotein traits in females (see
Table 2). In males, the average excesses associated with
the Tagl alleles differed significantly from zero for ad-
justed apo B and apo ClI, and the average excesses asso-
ciated with the Sul alleles differed significantly from zero
for adjusted HDL-C.

The average excesses for aleles defined using all four
RFLP markers simultaneously are given in Table 3. The
average excesses associated with haplotypes H3 and H4

Table2 Average excess for the allele of each RFLP with the restriction site present (+) for each adjusted plasma lipid and apolipopro-

tein by gender
Females Males
Taql Sul Hincll Avall Taql Sul Hincll Avall
(fr(+) =0.09) (fr(+) =0.97) (fr(+) =0.55) (fr(+)=0.47) (fr(+) =0.10) (fr(+) =0.94) (fr(+)=0.61) (fr(+) =0.40)
Apo Al -1.64 -0.18 -0.43 0.30 -1.19 -0.26 0.12 -0.14
Apo All -0.28 -0.01 -0.15 0.16 -0.30 -0.05 0.01 -0.03
Apo B -0.12 -0.01 -0.15 0.32 4.73** -0.05 0.84 -1.24
Apo ClI 0.02 0.01 0.03 -0.03 0.30** —0.00 0.02 —0.02
Apo ClII —0.60 -0.01 -0.15 0.15 1.20 -0.00 0.16 -0.21
Apo E -0.26 0.01 0.03 -0.04 0.29 0.01 -0.14 0.26
T-Cholesterol —1.04 -0.11 -1.60 1.42 9.01 -0.07 0.74 -1.19
HDL-C -0.47 -0.11 -0.51 0.27 -1.87 -0.18* -0.38 0.53
Triglycerides —9.46 0.10 1.16 -1.14 20.32 0.96 0.20 1.44
* Null hypothesis of average excess equal to zero rejected at a significance level of 0.05 <P < 0.10
** Null hypothesis of average excess equal to zero rejected at a significance level of P < 0.05
Table 3 Average excess for
each adjusted lipid and 2po. Females Males
lipoprotein by haplotype and H1 H2 H5 H6 H1 H2 H5 H6
gender
Apo Al -1.64 0.49 —-0.45 5.44 -1.19 -0.18 -0.15 4.39
Apo All -0.28 0.17 -0.16 0.37 -0.30 -0.01 -0.01 0.84
Apo B -0.12 0.21 -0.32 0.23 473** 131 -0.11 0.79
* Null hypothesis of average Apo ClI 0.02 -0.03 005 -015 0.30** -0.03 -0.05 0.01
excess equal to zero rejected at Apo CllI -0.60 0.18 -0.05 0.21 120 024 -0.10 0.02
P <0.10 T-Cholesterol -1.04 1.99 -1.61 3.26 9.01 -1.15 -1.21 1.21
** Null hypothesis of average ~ HDL-C -0.47 058 050 3.21 -1.87 060 042 3.07*
excessequal to zerorejected & Tyjgiycerides = -9.46  -1.31 388 -3.12 2032 031 401 -16.22

asignificance level of P < 0.05




were not estimated because of small sample size. Defining
the allelesusing al four RFLP markers simultaneously re-
vealed information about functional DNA sequence varia-
tions that was similar to that found using each marker
singly. In fact, haplotype H1 is equivalent to the Tagl al-
lele with the restriction site present and haplotype H6 is
equivalent to the Sul alele with the restriction site ab-
sent, so the average excesses for these haplotypes were
exactly what was estimated above. As seen before, none
of the average excesses associated with any of the haplo-
types differed significantly from zero for any of the traits
in females. In males, aswith alleles defined using the Taq|
RFLP, haplotype H1 was associated with significant aver-
age excesses for adjusted apo B and apo ClI. As with a-
leles defined using the Stul RFLP, haplotype H6 was as-
sociated with a significant average excess for adjusted
HDL-C. One additional association was revealed using
the RFLP loci simultaneously that was not revealed by the
single RFLP association study: haplotype H5 associated
with a significant average excess for adjusted apo E.

The LDLR cladogram estimated in the first step of the
cladistic analysis is depicted in Fig. 1. The cladogram,
nested into one-step clades C1 (composed of H1, H5, and
H6) and C2 (composed of H2), was then used to design
the analysis of phenotypic variation in the second step of
the cladistic analysis. We first contrasted the average ex-
cesses associated with the one-step clades C1 and C2.
None of the average excesses associated with C1 and C2
were significantly different in females or males for any of
the plasmallipid or apolipoprotein traits (see Table 4). The

LDLR Cladogram
C1

H6:--+- «—> H5:-++- «—> Hl:+++-

$
cz }
H2:-+ -+

Fig. 1 Maximum parsimony cladogram of the LDLR haplotypes.
The RFLP markers are listed 5' to 3' and + and — denote cut and
uncut, respectively. The arrows represent the number of muta-
tional steps between haplotypes and haplotype groups or clades.
The one-step clades, C1 and C2, are designated by boxes
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haplotypes within the one-step clade C1 were compared
next and the results are given in Table 4. As with the
analyses described above ignoring evolutionary informa:
tion, there were no statistically significant associations in
females. In males, haplotype H1 was associated with sig-
nificantly elevated apo B and apo Cll as compared to H5.
Haplotype H6, when compared to H5, was associated
with an elevation in adjusted HDL-C. The size of al three
of these effects was approximately one-third of a standard
deviation of the mean.

Discussion

Comparison of the cladistic analysis to analyses
that did not incorporate evolutionary information

The first step in the search for functional DNA sequence
variations is to establish that a statistical relationship ex-
ists between variation in a candidate gene region and phe-
notypic variation. In this paper, both the cladistic analysis
and an analysis that did not incorporate evolutionary in-
formation established that variations in the LDLR gene
region significantly associated with variation in plasma
lipid and apolipoprotein traits, supporting the hypothesis
that the LDLR gene region contains functional variations
that influence phenotypic variation in the normal range.
Of course, this hypothesis would be even stronger if our
results were replicated in an independent sample. We fully
expect that others will replicate the finding that variation
in the LDLR gene region significantly associates with
normal variation in plasmalipid and apolipoprotein traits.
But, given that we expect most effects to be context-de-
pendent (Merry 1995; Sing et al. 1996), and that it will be
difficult if not impossible to duplicate al of the genetic
and environmental contexts that may be influencing these
effects in our sample, replication of the average allele ef-
fects found in our study may be an unrealistic expectation.

Our cladistic analysis suggests that the LDLR gene re-
gion contains at least two common functional variations
with small effects (less than one-half of 1 standard devia-
tion of the mean) that are carried on two separate haplo-
types. In general, an analysis that ignores evolutionary in-
formation will not allow one to make inferences about
how many functiona variations are present in a gene re-
gion. Without the evolutionary information, it is unclear

Table4 LDLR cladistic

anaysis of adjusted plasma Females Males

lipid and apolipoprotein levels ClvsC2 H5vsHL H5vsH6  ClvsC2 H5vsH1  H5vsH6

by gender (Relative frequency

of 1000 permuted test statistics  Apo Al 0.70 0.67 0.20 0.95 0.71 0.29

that exceeded the magnitude of - 5 ;) A 0.43 0.72 0.65 0.97 0.71 0.47

the test statistic computed for

the original data set.) Apo B 0.71 0.89 0.87 0.17 0.05 0.75
Apo ClI 0.40 0.91 0.36 0.51 0.02 0.66
Apo CllI 0.32 0.49 0.75 0.45 0.12 0.90
Apo E 0.70 0.31 0.28 0.32 0.26 0.77
T-Cholesterol 0.23 0.94 0.58 0.56 0.12 0.67
HDL-C 0.51 0.97 0.26 0.29 0.32 0.07
Triglycerides 0.75 0.21 0.69 0.93 0.12 0.54
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whether the Tagl and Sul RFLP markers are in linkage
disequilibria with the same or different functional varia-
tions. In contrast, a cladistic analysis, using evolutionary
information to construct a testing design that is indepen-
dent of phenotypic information, efficiently uses the avail-
able degrees of freedom to simultaneously test for multi-
ple functional variations. If different haplotypes in dis-
crete regions of the cladogram are found to associate with
phenotypic variation, it is likely that the haplotypes are
carrying different functional variations. It is unlikely that
the same mutation occurred more than once in the evolu-
tionary history of the gene region. So, because haplotypes
H1 and H6 were in discrete regions of the LDLR clado-
gram and were associated with effects on different plasma
lipid or apolipoprotein traits, we hypothesize that there are
different functional sequence variation(s) in each haplo-
type.

The second step in identifying variations with a high
probability of being functional involves identifying indi-
viduals hypothesized to differ for the functional varia-
tions. Results from the single RFLP and multiple RFLP
association studies suggest that there are functional DNA
sequence variations present in the LDLR gene region, but
they give little information for directing studies aimed at
identifying individuals who differ for the functional vari-
ations (Kessling et a. 1992). There are certain to be many
nucleotide differences between sequences from any two
individuals that are not functionally involved in the deter-
mination of phenotypic differences (Kimura 1983; Ohno
1972; Zuckerkandl 1992). A comparison of individuas
carrying haplotypes that are hypothesized to be close in
evolutionary history, but that associate with significantly
different trait levels, will minimize the differences in
background ‘silent’ variations in favor of candidate func-
tional DNA sequence variations. The cladistic analysis
suggests that individuas carrying haplotypes H1 and H6
should be compared to individuals carrying haplotype H5,
and not to individuals carrying haplotype H2, to maxi-
mize the chance of finding candidate DNA sequences re-
sponsible for the observed phenotypic effects.

The last step in identifying functional DNA sequence
variations involves evaluating all the identified variations
to determine those with a high probability of being func-
tiona. The traditional methods for stetistically testing for
functionality, which ignore evolutionary information, will
not unequivocally sort out which sites are functiona be-
cause the variations detected will not be independent, that
isthey will be in linkage disequilibrium. Thus, any statis-
tically significant association between a single DNA se-
guence variation and phenotypic variation may be due to
other DNA sequence variations in linkage disequilibrium
with the one under study. In contrast, as long as the sam-
ple size is sufficient, the cladistic analysis can be used it-
eratively, incorporating new candidate functiona varia-
tions as they are identified. DNA sequence variations that
are repeatedly found to differentiate clades that are signif-
icantly different phenotypically are those for which the
probability of functionality increases, while those varia-
tions that differentiate clades that are not significantly dif-

ferent are those for which the probability of functionality
decreases.

Inferences about genetic architecture

The genetic architecture of a quantitative trait is defined
as the number of genes involved in the metabolism of the
trait, the number of functional alleles at each gene and
their relative frequencies, the arrangement of these dleles
into genotypes, the impact of each of the alleles, single
gene genotypes and multigene genotypes on intra- and in-
terindividual trait variation and the impact of each of
these alleles and genotypes on the relationships between
the trait and other traits (Boerwinkle et al. 1986; Sing et
al. 1992b,c). Most research to date suggests that the LDLR
alelesthat contribute to the genetic architecture of plasma
lipid traits are rare and have large effects (greater than
3 standard deviations of the mean) on lipid metabolism
(Goldstein and Brown 1989). However, this inference is
biased because only those individuals with hyperpheno-
types or coronary artery disease (CAD) were studied and
thus those alleles in individuals in the normal range of
variation have been missed. We expect there to be many
LDLR aleles (Weiss 1996) and that the effects of most of
these alleles will be less than 1 standard deviation of the
mean. It has long been thought that the effects of such al-
leles would be difficult if not impossible to characterize
(Morton 1992). Some evidence from the literature sug-
gests that there may be common allelic variations in the
LDLR genethat have small, less than 1 standard deviation
from the mean, effects on interindividual lipid variation
(Humphries et al. 1991; Pedersen and Berg 1989; Schus-
ter et al. 1990). This study of modest size supports this hy-
pothesis, and in fact detected alele effects of less than
half of a standard deviation from the mean. But, if the al-
lele effects are context-dependent, then our inferences are
appropriate only for Rochester, Minnesota. Future studies
of other populations will be necessary to establish the in-
variant and context-dependent contributions of common
genetic variations in the LDLR gene to plasma lipid and
apolipoprotein levels (Sing et al. 1996).

Another way of characterizing the effects of genetic
variation is to ask how much phenotypic variation is ex-
plained by it. After removing individuals carrying the rare
haplotypes H3 and H4 from this sample representative of
the Rochester, Minnesota population, the nine LDLR geno-
types observed in the males explained 4.6% of the total
sum of squaresin adjusted apo B levels (4.5% of the un-
adjusted apo B levels) and 6.3% of the total sum of
squares for adjusted CllI (5.2% of the unadjusted apo ClI
levels) using a one-way analysis of variance (results not
shown). The results from the cladistic analysis suggested
that the H2 and H5 haplotypes were functionally equiva-
lent, so the one-way analysis of variance was repeated af -
ter combining the H1/H2 and H1/H5, H6/H2 and H6/H5,
and H2/H2, H2/H5, and H5/H5 genotype classes. The re-
sulting five genotype classes explained 83% of the sum of
squares explained by the nine genotype classes for ad-



justed apo B levels and 78% of the sum of sguares ex-
plained by the nine genotype classes for adjusted apo ClI
levels in this sample of males (results not shown). These
results support the inference from the cladistic analysis
that haplotypes H2 and H5 can be combined into a single
functional alele class. In summary, the LDLR gene con-
tains common functional variations with small average ef-
fects, equal to or smaller than those attributable to the apo
E polymorphism (Kaprio et al. 1991; Xhignesse et al.
1991), aswell asrarefunctional variationswith large effects.

The suggestion from our study that the contribution of
the LDLR gene to the genetic architecture of interindivid-
ual variation in plasma lipid and apolipoprotein levels can
be described as many-to-many, i.e., many haplotypes af-
fecting many traits, illustrates a major advantage of the
cladistic approach. Although the cladistic approach does
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not presently incorporate the covariance between traits
such that a truly multivariate analysis can be done, it does
provide a strategy for establishing the mapping between
multiple haplotypes and multiple traits. Such a strategy
recognizes the complexity of the relationship between ge-
netic variation and phenotypic variation that is not taken
into consideration in traditional statistical methods, which
seek to establish the relationship between a single muta-
tional change and variation in a quantitative trait.
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Appendix
Concomitant and plasma lipid and apolipoprotein trait means, standard deviations (SD), and ranges (minimum-maximum)

Females (n = 217) Males (n = 187) P-value

Mean SD Min-Max Mean SD Min-Max Mean? Variance®
Age (years) 41.7 6.3 26.0- 62.9 435 6.8 27.2- 615 0.0064 0.2373
Height (cm) 164.6 5.7 148.5-189.8 178.0 6.6 159.6-195.2 0.0001 0.0342
Weight (kg) 68.9 144 43.5-135.7 84.8 13.0 50.6-124.3 0.0001 0.1519
Apo Al (mg/dl) 1415 18.2 105.0-197.0 132.1 16.8 94.0-196.0 0.0001 0.2345¢
Apo All (mg/dl) 344 4.4 22.2- 50.1 345 5.0 18.9- 535 0.8231 0.0788
Apo B (mg/dl) 75.3 14.1 45.0-123.0 811 149 49.0-132.0 0.0001 0.4333
Apo Cll (mg/dl) 21 0.8 02— 57 26 1.0 11- 69 0.0001 0.0440
Apo ClII(mg/d!) 135 4.1 59- 284 15.3 52 5.0- 36.7 0.0002 0.0004¢
Apo E (mg/dl) 4.8 1.9 14- 135 52 31 14— 29.6 0.0657 0.0001°¢
T-Cholesterol (mg/dl) 181.7 333 101.0-333.0 194.5 39.1 99.0-387.0 0.0005 0.0245°
HDL-C (mg/dl) 50.8 12.9 20.0- 96.0 41.6 10.5 21.0- 85.0 0.0001 0.0033
Triglycerides (mg/dl)  107.3 59.5 38.0-452.0 148.0 104.6 33.0-942.0 0.0001 0.0001

a Heterogeneity of means between females and males was tested
using the t-test. Satterthwaites t-test correction was used if the
variances were significantly heterogeneous between the genders

b Heterogeneity of variance between females and males was tested
using the F-test
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