
Digital image-based modeling applied to the homogenization analysis
of composite materials

K. Terada, T. Miura, N. Kikuchi

Absract The systematic methodologies to derive accurate
microstructural models are developed for studying the
mechanical behaviors of composite materials. Since the
geometric information of a microstructure is often given by
an image or a set of images, the direct interpretation of the
geometry is possibly by digitizing it. By identifying each
pixel or voxel with a ®nite element (FE) and accompanying
appropriate image processing, an FE model can be auto-
matically generated. It is also emphasized that the digitized
models can be suitable for solving the FE equations by
utilizing the uniformity of the FE mesh. The ®nite element
analysis (FEA) with the homogenization method enables
the prediction the thermo-mechanical behavior of the pe-
riodic microstructure (unit cell) as well as the global me-
chanical response of a structural component, while we are
taking into account the speci®c effect of the geometric
structural con®guration of the microstructure through
digitization. Several kinds of the digitizing techniques are
presented to illustrate the potential of digital image-based
(DIB) FE modeling of the unit cell. Keeping the micro-
structural design in mind, the modi®cation of the plane
image is introduced and the virtual realization of the unit
cell geometry is presented so that a microstructural analysis
utilizing the homogenization method would be realistic.

1
Introduction
The mathematical theory of homogenization has its basis
on the method of two-scale asymptotic expansion and has
been applied to various kind of systems of governing
equations for composite materials which are assumed to
be formed by spatial repetition of unit cells, see, e.g.,
Sanchez-Palencia (1980). The asymptotic homogenization
method provides both micro and macroscopic boundary
value problems so that the effective properties can be
derived and the micro-mechanical behaviors can be eval-
uated from an overall structural response; these processes
are called homogenization and localization, respectively.
The global-local nature of the method was utilized to
successfully analyze the mechanical behavior of a com-
posite material in linear elasticity together with the ®nite
element method (FEM) (Lene (1982), Guedes and Kikuchi
(1991)) and extended to three-dimensional elasto-plastic
problems by Terada and Kikuchi (1995). However, the
things to be emphasized are not only such a global-local
nature but also its capability of handling almost any kind
of heterogeneities. That is, its continuum-based formula-
tion does not impose any restriction on the geometric
con®guration of the microstructure as far as the locally
periodic distribution of unit cells is assumed. Therefore, it
is possible to study the mechanical behavior of a complex
microstructure by the FEM if an FE mesh can be generated
properly so that the homogenization with FEM can capture
the effects of the original geometric con®guration.

However, it is not straightforward to make a FE mesh of
a unit cell even if the complete geometry is identi®able and
if an automatic mesh generator or/and solid modeler is
available. In fact, it is not always the case the micro-
structures have simple geometry and, in some cases, the
microstructural geometry may be too complex to be
identi®ed. Although conventional FE modeling inevitably
idealizes the geometry, there may not be suf®cient amount
of geometric information in the idealized model and, es-
pecially for naturally formed composites such as geo-
materials or bio-tissues. Such idealization itself seems not
to make sense because the irregular con®guration features
such materials. Therefore, we need to develop a systematic
way to construct an accurate microstructural model so that
the homogenization results can re¯ect the actual geometry
of the microstructure.

Several approaches to deal with accurate geometry
modeling exist in the literature. For example, Ghosh and
Moorthy (1995) modeled the microstructure using a net-
work of multi-sided convex Voronoi polygons using an
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automated image analysis system for micrographs. By
combining the Voronoi cell ®nite element method with the
asymptotic homogenization method, they made it possible
to qualitatively characterize a random feature of the het-
erogeneities of a certain kind of metal matrix composites.
Yet it seems that both the modeling and formulation are
somewhat complicated and may have dif®culties when
concerning natural composite materials such as human
bone. Another approach introduced by Berryman (1987)
combined digital image processing and statistical data
handling. He utilized n-point correlation functions from
digitized binary data of an actual specimen to character-
ized the geometry and then estimated parameters for a
certain empirical relationship of derive a Darcy's constant
of bedrock. Although the statistical argument and the
empirical relation to estimate effective moduli are used
instead of the homogenization method, its geometrical
representation by digital images is direct and automated.
Noticing the potential of the digital images, Hollister and
Kikuchi (1994) also utilized the digital imaging technique
to recognize the microstructural geometry in order to
analyze the bone tissue by the asymptotic homogenization
method with FEM. Complete three-dimensional images of
an actual bone microstructure were obtained from micro-
CT scanner. After an appropriate thresholding, they
identi®ed each volume element (voxel) with a ®nite ele-
ment to make a stress/deformation analysis of a bone
structure. Although they reported some disadvantages,
their approach, namely the digital image-based (DIB)
modeling with the homogenization method, seems to be
unique and indicates the possibility of various kinds of
applications in computational mechanics. In this context,
some of the advantages and the applications should be
studied for two-dimensionally captured images since most
of the microstructures have such a ®ne scale that we
cannot capture it utilizing micro-CT scanner. Especially
for industrial (or manufactured) composite materials, the
geometric information of the microstructure is given only
by a micrograph in most cases.

In this paper, we will present several types of geometric
modeling techniques based on digital images in conjunc-
tion with RVE analysis by the asymptotic homogenization
method. First, we will brie¯y review the theory of ho-
mogenization method for linear thermo-elasticity. Second,
the digital image processing techniques are described
based on the plane image of a metal matrix composite
(MMC), aiming at the DIB-FE modeling which has not
been studied very throughly. Third, the FE procedure
based on the digitized and processed images is summa-
rized, focussing on actual data handling, and then the
feasibility of the FE approximation is examined by an il-
lustrative numerical example. Fourth, we will verify the
validity of RVE homogenization analysis using micro-
graphs of MMC with the systematic DIB modeling. In the
last section, we will present two examples of 3D DIB-FE
modeling when the available information is one captured
plane image by introducing several image manipulations
according to requests. One of the examples is the analysis
of thermal stress, in which we illustrate how to change the
volume fraction of constituents by image manipulation
and will be found to be related to microstructural design of

a composite. The other example concerns the method of
estimating the 3D con®guration of the microstructure,
which is used in 3D stress analysis, from limited geometry
information. In order to achieve such a virtual geometry,
we propose a sort of triangulation technique for two di-
mensional images. The novel geometry and FE modeling
method in this paper could be helpful for analysis, design,
manufacturing and others. Thus, our objective is to show
the potential of digital images by presenting some of the
applications and to provide insight into their use in
computational engineering.

2
The asymptotic homogenization method
Let us consider a general composite structure which is
composed of several different materials. The heteroge-
neous mechanical characteristics of the structure come
from its microstructures, which are assumed to be linearly
elastic solids. We assume that an microstructure can be
chosen to be a representative volume element (RVE) and
that it is spatially distributed in locally periodic manner.
This microstructure is usually called a unit cell since it can
reproduce a local region by repeating the unit. We recall
that the homogenization theory for linear elasticity con-
siders such a composite structure with a unit cell of a
characteristic length e which relates a microscopic scale y
and macroscopic one x such that y � x=e. Indicating the
dependency of the deformation on the heterogeneity of the
microstructure by the superscript e, we relate the Cauchy
stress, re

ij�x�, to an in®nitesimal strain, ekh�ue�x��, and a
thermal strain by the following relation:

re
ij � ae

ijkh�ekh�ue� ÿ DTae
kh� � ae

ijkhekh ÿ DTbe
ij �1�

where ue is the displacement, ae
ijkh�x=e� � aijkh� y� is the

elasticity tensor, DT is the temperature change, and ae
kh�x�

is the thermal expansion coef®cient (CTE) tensor. Here ekh

and be
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ekh�ue� � 1

2

oue
k

oxh
� oue

h

oxk

� �
�2�

and

be
ij � ae

ijkha
e
kh �3�

Then, the variational formulation of a boundary value
problem for the structure is given by:Z
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where t̂i is the traction vector, be

i is the body force vector
and ve

i is the virtual displacement ®eld. Following the
method of two-scale asymptotic expansion, we expand the
displacement and virtual ®elds as follows:

ue � u0�x; y� � eu1�x; y� � e2u2�x; y� � � � �
ve � v0�x; y� � ev1�x; y� � e2m2�x; y� � � � � �5�

�
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Then the theory assures that, as e goes to zero, the dis-
placement ®eld, ue, tends to the average displacement ®eld,
u0, which is independent of y. That is, if the domain were
occupied by some homogenized medium, then u0 satisfy
the following macroscopic problem:Z

X
aH

ijkh

ou0
k

oxh

ov0
i

oxj
dx �

Z
X

DTaH
ijkha

H
kh

ov0
i

oxj
dx

�
Z

X
bH

i v0
i dx�

Z
Cl

t̂iv
0
i dC 8v0 �6�

where aH
ijkh is the homogenized elasticity tensor, aH

kh is the
homogenized thermal expansion coef®cient tensor, bH

i is
the homogenized body force vector. These homogenized
values are calculated using the characteristic deformations
vkh

i � y� and w� y�, which are the solutions of the following
governing equation, respectively:Z

Y

aijlm
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dy �
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Y

aijlm
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Z
Y
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where the characteristic deformations and the virtual
displacement wi are de®ned within a unit cell region Y .
After solving these equations subjected to the periodic
boundary conditions, the homogenized values are com-
puted by the formulae

aH
ijkh �

1

Y

Z
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aijkh ÿ aijlm
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Y
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Here jYj indicates the volume of the unit cell and cH
lmij is

the compliance tensor de®ned by the inverse of the elas-
ticity tensor, i.e., cH

lmij �
ÿ
aH

lmij

�ÿ1
.

The microscopic deformation is recognized as the
®rst-order term of the expanded displacement by the
following relation:

u1
i �x; y� � w1

i �x; y� � ~u1
i �x� �12�

where ~u1
i �x� is a constant within a unit cell and the

w1
i �x; y� represents the deformation of the unit cell and is

de®ned as

w1
i �x; y� � ÿvkh

i � y�
ou0

k�x�
oxh

� DT�x�wi� y� : �13�

Therefore, once the macroscope problem (6) is solved for
the average displacement, u0

k�x� and DT�x� is given, these
values are localized to give the micromechanical response
of the unit cell. Since the asymptotic expansion of Cauchy
stress deduced from (1) as

re
ij � r0

ij�x; y� � er1
ij�x; y� � � � � ; �14�

the microscopic stress is de®ned by

r0
ij � aijlm e0

lm�w1� ÿ DTaij

� �
� aijkh ÿ aijlm

ovkh
l

oym

� �
ou0

k

oxh
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�15�

while e0
lm�w1� is the microscopic strain.

We have skipped the several steps in the formulation
and omitted some explanations and will not be involved
much in quantitative discussion of homogenization re-
sults, since they are not relevant to our present interest.
One can refer to literature, for example, Guedes and
Kikuchi (1991) or Duvaut (1983) for the detailed deriva-
tion of the homogenization formulae. Instead, our focus in
this paper is to illustrate FE modeling techniques for the
unit cell by using systematic operations of digital images.
In the next section, the utilization of the digital images in
the FE modeling will be described.

3
Digital imaging of microstructure

3.1
Introductory remarks
``An image is a spatial representation of an object.'', Ha-
ralick and Shapiro (1994). Necessary information in me-
chanics is usually given by an image or a set of several
images that is obtained in a measurement or experimental
procedure. The information is eventually converted into a
screen image on a cathode ray tube (CRT) of a digital
computer. Now the idea is that we directly convert the bit-
map information on the computer into a geometry model
for a numerical analysis such as Finite Element Analysis
(FEA). This digital image-based (DIB) FEM was originated
by Hollister and Kikuchi (1994) for studying a bone mi-
crostructure by the homogenization method. Although we
basically follow their procedure, we shall focus our atten-
tion on data structure and its handling operations on
computers.

The method presented here utilizes both hardware and
software capability available. Indeed, most of the processes
in digital image processing have been performed using
commercial software on personal computers; for example,
Adobe PhotoshopTM of ÓAdobe Systems, Incorporated or
by NIH Image (PDS) of National Institute of Health on the
ÓMacintosh series of ÓApple Computer, Inc. or on ÓIBM
PC series with MS-WindowsTM of ÓMicrosoft Corpora-
tion. Although there are many operations in image pro-
cessing such as ®ltering, blurring, distorting, and etc.
(Dougherty 1994), we need only a few of them for the
present purpose, i.e., the computational or FE modeling.
For FEA, we have developed computer programs for the
homogenization analyses by FORTRAN language on UNIX
Engineering Workstations (EWS). Also, the FORTRAN
language is utilized to manipulate the data for other pur-
poses, which will be introduced in the applications in the
DIB modeling.

The whole procedure can be divided into major four
parts. The ®rst step consists of capture and sampling,
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which are usually assumed to have been done. Selecting
and thresholding, which are probably the most important
operations, in the second step are the operations directly
related to the FEM in the homogenization analysis. The
third step contains exporting and, it necessary, adjusting.
While the ®rst three are involved in the pre-processing of
FEA, the last process includes both the main part and post-
processing of the FEA of the homogenization method,
details of which will be discussed in the next section. Prior
to or during the FEA, the stacking may be processed using
the exported data to construct the three-dimensional
structure. Focusing the attention on the second and the
third operations and the stacking technique, we describe
each process below in order.

3.2
Capture
At the very beginning, prior to digitization, an image must
be captured by a sensor which is chosen dependent on the
desired formation modality. Typical sensors may be op-
tical devices such as scanning electron microscopes (SEM)
or micro-CT scanners. Using those devices, the image
formation process must be carefully done by an operator
so that the necessary information would be contained in
the image. Since the details seem to be beyond the extent
of our present discussion, let us assume that we have
obtained appropriate images of the microstructure of a
composite; there is little noise and distinctive phases can
be identi®ed in the image. Even if noise was present, it can
be eliminated by thresholding later. Figure 1 shows a
micrograph of a metal matrix composite (MMC) com-
posed of NiAl-matrix and Cr-®ber from SEM which is
obtained in this capture process.

3.3
Sampling (digitization and quantization)
Once an image has been captured, the next stage is the
sampling which is a process where the image is converted
into numerical form in digital computers. The sampling
consists of two sequential processes; (spatial) digitization
and quantization. The digitization is accomplished by
partitioning the area of the image into a ®nite two-
dimensional array composed of small uniform cells (res-

olution cells). In the quantization process, a representative
image value is assigned to each cell so that the image is
converted into a functional form f �x�, where x is a discrete
picture element (pixel) in the grid and f �x� is a discrete
value, and is sometime called the image matrix, see
Dougherty (1994). The digital image takes one of the fol-
lowing three formats: binary (1 bit), multiple levels of gray
(for instance, 8 bits), or color, which indicates the amount
of information from the physical analog image.

Since the sampling can be automated to some extent by
electrical devices and computers in capturing, the main
part of our digital image processing related to geometry
modeling starts with a sampled (digitized and quantized)
image stored in a computer. In the description below, we
will con®ne ourselves to the gray scale image which con-
tains 256 pseudo-gray shades (8-bits) which values ranging
from 0(white) to 255(black).

3.4
Selecting
Since the homogenization analysis requires the prepara-
tion of the numerical model of a unit cell that is a repre-
sentative of the microstructure, an appropriate rectangular
area of the image on the computer screen must be chosen.
This area is regarded as a surface of the FE model of a unit
cell and each pixel contained in it corresponds to a ®nite
element in the surface. Therefore, the size of the area we
can choose is dependent of the machine capability in
which the FE analyses are made. We must carefully select
the area section to be a desired model size by observing
the number of pixels. The rectangular region selected this
way is sometimes called the working image, see Berryman
(1985). The region can be expanded or shrunk using a
drawing software, e.g., CanvasTM by Deneba Software, if
necessary, in order for it to contain the desired number of
pixels. Although the true scale of this working image (e.g.,
microns/pixel) can be computed using functions in the
software, e.g., the scale reference bar of the scanning
electron microscopy (SEM), we do not use the scale since
the microscopic problem does not require the physical
scale. Figure 2 shows the selected digital image (400-by-
400 pixels, no scaling) of MMC using NIH image on a
Macintosh personal computer. In the ®gure, there are
some intermediate pixel values depending on the pro-
portion of black and white in resolution cell and perhaps
on the software we are using. The distribution of pixel
values can be identi®ed by a histogram of these values for
the image. For instance, NIH image provides the function
that constructs the histogram as shown in Fig. 3 for the
present example. Using such information, we threshold the
digital image data so that we would have a ®nal con®gu-
ration of the microstructure.

3.5
Thresholding
The thresholding is de®ned as ``an image operation which
produces a binary image from a gray scale image'' in
Haralick and Shapiro (1994). Furthermore, ``the thresh-
olding can produce a binary one on the output digital
image whenever a pixel value on the input digital image is
below a speci®ed threshold level. A binary zero is pro-Fig. 1. Micrograph of MMC by SEM (Captured Image)
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duced otherwise.'' Although a composite material is not
always composed of two phases, we shall consider two-
phase composites for simplicity. Nonetheless, the de®ni-
tion can be easily extended by increasing the number of
thresholding values.

The threshold values may be determined interactively
by the operator. While the video display affords direct
comparison of the thresholded image with the working
image, the software enables us to modify or ®x the
thresholded images. Sine we have assumed that the phases
of the composite could be distinctive in the original image,
the thresholding is done by referring to the histogram on
the video screen. If the original image has enough reso-
lution and little noise, then the histogram can provide
most of the information needed to choose the threshold
value required for generating approximated geometry.
Furthermore, if the volume fraction of each phase in the
two dimensional image is given, the software may provide
a function to calculate the ratio between pixel values, by
which the threshold value is determined. On the other
hand, if there is some noise, e.g., due to bad resolution of

the captured image, it have to be eliminated manually by
the drawing function in the software so that the desired
geometry can be obtained. This additional operation is
called adjusting.

Once a threshold value has been chosen, it is easy to
convert the selected image into a binary image. If the
obtained image does not seem to be a satisfactory repre-
sentation of the original, new threshold values may be
chosen until we are satis®ed with the binary image. Fig-
ure 4 is the ®nal form of the binary image mapping of the
previous example.

3.6
Exporting and stacking
Now each pixel has either a binary zero or binary one in a
digital computer and the binary data are exported into an
ASCII ®le and transferred into a UNIX platform so that
our computer program can read and recognize the data.
This set of data is actually the prototype of our FE model,
which is either 2D or 3D. If the analysis is two-dimen-
sional, further operations are unnecessary and therefore it
is passed to the FE analysis programs directly. If the
analysis is three-dimensional, then each pixel is recog-
nized as a volume element (voxel) and a necessary number
of two dimensional ASCII ®les must be generated follow-
ing the same procedure so that the totality can construct
three dimensional unit cell. Here, the distance between
successive two-dimensional images must be the same or-
der as one pixel because the intermediate region is simply
made by extruding one of these images. This step is called
the stacking, the set of ASCII ®les that de®nes a 3D
structure is called stack sequence, and can be incorporated
into the computer program for the FEA. Figure 5 illus-
trates the stacking process schematically and Fig. 6 shows

Fig. 2. Selection process for the
unit cell model

Fig. 3. Histogram of pixel values
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the ¯ow chart of DIB-FE modeling. Here we note that the
order of the selecting and the thresholding can be changed
depending on circumstances.

We will use the digital information in the FORTRAN
programs written for geometry modi®cation and the ma-
terial pre-/post-processing in the homogenization method.
To this end, the thresholding can alternatively be operated
in the computer program which thresholds the digital
image after the raw selected image is converted into ASCII

format; our computer program having those functions was
named THOLDER. This program can also compute the
volume fraction of each constituent for a given micro-
structural FE model by counting the voxels. A slight
modi®cation makes it possible to change the volume
fraction of each constituent arbitrarily. The program
having this function was named VFCHG. These operations
will be discussed latter in the application of DIB-FE
modeling.

4
Digital image-based finite element method

4.1
Finite element procedure
The ASCII ®les obtained by the series of image processes is
the direct interpretation of the analog images which are
two-dimensionally presented pictures of real composite
materials. In fact, this is a great advantage because the
procedure does not include any meshing manipulation
such as de®ning coordinates and element connectivities,
applying periodic boundary conditions and others, all of
which are usually tedious tasks in FE geometric modeling.
Here, let us explain how the digital images are utilized in
FEA con®ning ourselves to three-dimensional cases.
Throughout the descriptions, we assume that we have had
a proper set of material constants necessary for the ana-
lyses since they must have been obtained prior to the FE
modeling.

The ®rst step in DIB FEA is to recognize each voxel,
which is actually a pixel in an image, as a ®nite element,
accompanied by the stacking process of ASCII ®les. In an
input ®le for a certain FORTRAN program, we specify the
dimension, the model size, material properties, their ID's,
and the number of ASCII ®les which de®ne all the sections

Fig. 4. Binary image after
thresholding (and adjusting)

Fig. 5. Stacking process for 3D structure

Fig. 6. Whole procedure of DIB modeling
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of 3D unit cell structure. Once the numbers of voxels in
three coordinate axis directions are counted in the pro-
gram, the size of one element in each direction is deter-
mined. This means that the geometry information of a
hexahedoral FE mesh, e.g., the numbers of nodes and el-
ements, element connectivities, can be automatically de-
®ned since all the element have the same size. Furthermore,
even the periodic boundary condition can be automatically
determined because the position of each boundary nodes
is ®xed. Also, each voxel value, which has been obtained
by thresholding, is identi®ed with the material ID's by
specifying their correspondence in an input ®le. This in-
dicates that each voxel value determines the corresponding
type of material.

Although these are indeed all the processes of FE mesh
generation, it is worthwhile to note that we do not need to
store the element connectivity and coordinate values while
running the program. That is, the information can be
evaluated only if necessary since the size of an element is
®xed. This feature not only saves great amounts of mem-
ory but is also advantageous in the FE algorithm that will
be explained below.

Since all the elements have the same size, the number of
element stiffness matrices that we actually need is reduced
to the number of materials. Together with the automated
evaluation of coordinates and connectivity, we can utilize
the so-called element-by element (EBE) FEM with pre-
conditioned conjugate gradient (PCG) method of node-by-
node-type, see, e.g., Carey and Jiang (1986) for the basic
idea. That is, we do not need the global stiffness matrix
and, moreover, the element stiffness matrices, the number
of which is equal to that of materials, are evaluated prior to
the computation in PCG-routine. Each element stiffness
matrix contributes to the force and direction vectors of
PCG method during the iterations for convergence. Al-
though these vectors with solution vectors still give a re-
striction on the FE model size, this method can handle a
much larger number of elements than usual methods when
we try to analyze one particular microstructure. The FE
model used in the previous section has been read in
HyperMesh of Altair Software, in which one can hardly
observe each element, see Fig. 7.

In the DIB-FE modeling, we use much more elements
than usual. This leads to some dif®culties in storing and

editing the result ®les of DIB-FEA, though this might not
be the case if a supercomputer is utilized. Here, we con-
sider ASCII data handling when using a UNIX EWS with
ordinary memory and disk size. Once the material pre-
processing part of the homogenization method is done by
the DIB-FEM program, the results are written in an ASCII
®le, which contains the nodal values of characteristic de-
formation. As can be seen from the formulation of the
microscopic problem, there are at least seven load cases
for a 3D thermo-elasticity problem; six for mechanical
strains and one for strain due to thermal expansion. As the
number of elements is increased, the ®le size sometimes
becomes so huge that storing the data may be impossible
because of a lack of disk space and editing may be un-
manageable in a screen text editor because of a lack of
system memory. Therefore, we must store the data very
carefully so that further editing is unnecessary and keep
enough disk space available prior to the homogenization
analysis by DIB-FEM to avoid the failure in storing. In
order to reduce the ®le size, it may be helpful to store the
result for each load case into one ®le. The features are also
true for material post-processing (localization process)
because we may have to handle the result ®les of the mi-
croscopic deformation/stress at several points in an overall
structure, the size of which may also be huge.

4.2
Effects of resolution of captured images
When the digitized FE mesh is used in the homogenization
analysis, the results may not be realistic because an actual
material boundary does not have such a zigzag shape as in
Fig. 7, in which each particle is an assembly of cubic-
shaped elements. This irrelevant FE meshing is directly
related to the resolution of the captured images since the
FE model made in the DIB modeling is dependent on
them. The purpose of this subsection is to investigate the
effects of the resolution of captured images in conjunction
with the FE approximation. It is expected that the unit cell
model in the DIB modeling will provide more accurate
estimation on both macro and microscopic variables if the
resolution of captured image is improved.

In the investigation, we shall use an epoxy composite
reinforced by glass ®ber �Vf � 26:8%�, each of whose
material constants is given as follows: for epoxy, Young's
modulus; Em � 4 GPa, Poisson's ratio; mm � 3:8, and for
glass, Ef � 76 GPa, mf � 0:2. As for the unit cell geometry,
the basic structural element containing a single ®ber is
used because it is enough to justify the convergence of the
microscopic variables with increasing the resolution, i.e.,
the order of FE approximation, in the IDB modeling. Thus,
the analysis here will not lose the consistency with our
purpose in this paper.

The stress values were calculated by applying (a) simple
tension and (b) shear macroscopic strains (0.1%), res-
pectively, with DT � 0 C°. As Hollister et al. (1993) re-
ported, there exist artifacts in numerical results obtained
by the DIB-FEM, i.e., the stress concentration at the
boundary between dissimilar materials, The stress con-
tours in Fig. 9 also give such feature. In fact, the maximum
stress, when using 25� 25-pixel model, was 40% higher
than that obtained by using the usual meshing althoughFig. 7. FE model generated from digital image
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the homogenized elasticity constants were almost the
same.

Since it is dif®cult to discuss about the effect of reso-
lution from Fig. 9, let us see the convergence trend of the
microscopic variables. Figure 8 (a) and (b) show the
variations of the microscopic maximum stress and the
standard deviation in the contour images (Fig. 9), res-
pectively, as the resolution is improved. From these ®g-
ures, the microscopic variables become close to certain
values as the number of elements increases. This fact

justi®es the following argument: if the resolution of the
captured image is good enough to represent the accurate
geometry of the inclusions, then the microscopic variables
and also the macroscopic variables are accurately evalu-
ated by the digitized mesh using the DIB modeling. In this
particular material con®guration, one-hundred pixels or
above in xy-plane are needed for accuracy.

In conclusion, the resolution of the captured image
must be as good as possible. However, the better the res-
olution, the larger the number of ®nite elements, and
therefore much larger memory size of a computer is re-
quired to store the solution vector, which is used for nodal
values of characteristic functions. Nonetheless, this mod-
eling technique is extensively utilized for all the simula-
tions by the homogenization method in this paper.

5
Justification for RVE analysis

5.1
RVE analysis
The introduction of a representative volume element
(RVE) is the ®rst step in the RVE analysis (Bear (1967)),
which implies that we adopt the continuum approach as a
mathematical modeling method, prior to the numerical
modeling. The RVE analysis assumes the capability to pass
from the microscopic level, at which each phase is re-
garded as a continuum, to macroscopic one, at which
volume averaged quantities, i.e., effective material prop-
erties capture macroscopic phenomena in the vicinity at
any point. Therefore, the construction of a continuum
model of a composite material imposes certain restrictions
on the size of the RVE. Foremost is the requirement that
the values of all effective material properties at any point
in the overall structural domain be single values functions
of that position and of time only, independent of the size
of the RVE. Since the asymptotic homogenization method
also takes the concept of RVE analysis in general sense, we
shall justify the feasibility of the present DIB modeling and
also clarify the advantage of it in this context.

In the DIB modeling, this study is related to the capture
and selection process described above. Denoting the
characteristic dimension of the captured domain by l, (say

Fig. 8. Variation of microscopic stress with increasing number of
voxels

Fig. 9. Microscopic von-Mises
stress distribution. a Case 1,
b Case 2
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edge length of a micrograph), and the length characteriz-
ing the microscopic structure of each constituents by d
(say, the ®ber diameter for ®ber-reinforced composites),
there is the following relationship:

l � d �16�
where d actually sets a lower limit to the size of RVE,
under which a basic structural con®guration cannot be a
representative one. Also, denoting a characteristic length
for a macroscopic domain for a composite material by L,
we postulate the following relation so that the RVE can be
meaningful:

L� l �17�
where L is the upper limit, over which averaged quantities
does not make sense. Thus the characteristic length e of
the selected domain, namely RVE (unit cell) domain, must
be comparable with l and is bounded by these upper and
lower bounds as follows:

L� l � e � d �18�

5.2
Justification of DIB modeling
Here we shall present the results from the material
pre-\post-processing of the homogenization analysis in
order to show how DIB modeling ®ts to the microme-
chanical RVE analysis. Given a micrograph of a MMC
together with material properties of each constituent
(which are the same as in the previous 3), we select the
unit cell from a sampled image as presented in Fig. 10 and
assume the material constants as shown in Table 1. We
may expect that we will obtain the same effective (ho-
mogenized) material properties when the arbitrary size of
RVE (unit cell) is selected from appropriate regions, A, B,

or C in the ®gure. Since we have only one captured image,
let us assume here that the ®bers are straight and aligned
perpendicular to the image so that the three dimensional
geometry could be constructed by extrusion. Although
numerical models of defects shown in the ®gure can also
be made by the DIB modeling technique, we will not
consider these issues since they seem to be beyond the
present discussion.

Choosing the region A in Fig. 10, let us assume that the
thresholding has been successfully done for the whole
region. Then different selections of unit cells give different
FE models and therefore different sets of homogenized
properties by the material pre-processing, i.e., the ho-
mogenizing. It should be noted that one ®ber of each
model has the same numbers of voxels, although each
selected image contains a different number of voxels. This
guarantees the equivalency in the orders of FE approxi-
mation by digital images and makes the comparison
meaningful. Table 2 compares each of the homogenized
material properties to the others in the form of engineer-
ing constants and shows that the differences appear to be
small. As can be seen from the table, all the unit cell
models are equivalent in the sense that they provide al-
most the same values of effective (homogenized) material
properties, independent of the size of the selected area.

Fig. 10. Sampled image with several areas to be selected

Table 1. Material properties for MMC (NiAl-Cr)

Young's
modulus (GPa)

Poisson's
ratio

CTE
(´10e-5/°C)

NiAl-Matrix 177 0.30 1.60
Cr-Fiber 255 0.30 0.94

Table 2. Homogenized material properties of MMC (NiAl-Cr) for different selected areas

** 25*25 50*50 100*100 200*200 idealized analytical***

E1 197.58 197.54 197.48 197.42 197.43 195.91
E2 197.39 197.37 197.26 197.26 197.43 195.91
E3 200.46 200.40 200.39 200.38 200.41 200.40
G23 75.97 75.99 75.95 75.95 75.90 75.35
G31 76.07 76.02 76.06 76.06 75.90 75.35
G12 75.65 75.65 75.66 75.67 75.42 75.35
a11 1.3946E)5 1.3952E)5 1.3957E)5 1.3968E)5 1.4007E)5 1.4794E)5
a22 1.3980E)5 1.3983E)5 1.3988E)5 1.3993E)5 1.4007E)5 1.4794E)5
a33 1.3475E)5 1.3481E)5 1.3482E)5 1.3843E)5 1.3480E)5 1.1920E)5

* GPa; for elasticity constants, /°C; for CTE
** The number of voxels in xy-plane
*** Analytical Results implies: the results obtained by Halpin-Tsai equation (emperical parameter = 0.3) for engineering elasticity
constants and the relation of Schapery for CTE (Halpin 1992)
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Thus we can conclude that the DIB modeling is feasible
enough to evaluate the effective material properties.

It is worthwhile to see the differences in homogenized
properties between the FE models made by DIB modeling
and an idealizing FE model, see Fig. 11. Table 2 also
compares the homogenized material properties of those
two kinds of models together with the analytical estimates
(Halpin 1992). As can be seen from the table, they are
slightly different. This difference may be caused by the
random nature of the models made by the DIB modeling
and is related to the mophology in the unit cells. In ad-
dition, although the orthotropy was enforced in Table 2,
the homogenized elasticity constants did reveal an aniso-
tropic nature due to coupling between the transverse
stiffnesses while the structural con®guration of the ide-
alized one gives an orthotropic one. Although this result
may not be applied to whole domain of the composite, we
can say that it is true atleast for the local region where this
image is captured. In contrast, the coupling between lon-
gitudinal stiffnesses is not observed, since we have as-
sumed that the ®bers were aligned perpendicular to the
given two-dimensional image. This arti®cial de-coupling is
induced by the captured images. The dependence on
captured image is disscussed in the next subsection from
another viewpoint.

Furthermore, as can be seen from Fig. 12 we can ®nd
considerable differences in the microscopic stress ®elds
obtained in the material post-process, i.e., the localization,
when comparing the results from the idealized model and
those obtained from the DIB modeling �100� 100 voxels).
Here these two results were obtained by applying the same
average strain ®eld whose components are given by

e�u0� �
1400 2:5 0:0
2:5 1400 0:0
0:0 0:0 1400

24 35� 10ÿ6 �19�

and the temperature change DT � ÿ100�C in equation
(15). It is obvious that the stress distribution in the model
generated by the DIB modeling technique is more realistic
though the orders of FE approximation are different be-
cause the model approximates the actual ®ber alignment.
Therefore, a qualitative and quantitative study of the
micromechanical behavior of composite materials is pos-

sible. Although the presence of some disadvantages has
been pointed out, some of which are reported by Hollister
et al. (1994), e.g., ¯uctuating stress values near the boun-
dary of dissimilar materials, the numerical example pre-
sented in subsection 4.2 suggests one of the solutions.

As a ®nal note of this section, the localization results
can be converted into images, namely collections of
discrete pixel values and analyzed by utilizing the func-
tions in image processing software. In fact, the stress result
in Fig. 12 (a) was an image in Adobe Photoshop and
modi®ed so that the element boundaries are blurred. An
example of an image analysis in the software is given in
Fig. 13. Using such functions in image processing soft-
ware, we can carry out the pixel based evaluation of the
stress analyses.

5.3
Comment on dependence on captured images
It is apparent that if we use different images captured from
the same camera-angle, the models by DIB-FE modeling
are different, but the homogenized material properties
obtained from them should be the same if the fabrication

Fig. 11. DIB model and idealized FE model of MMC. a Digitized
(100� 100� 4 voxels) model, b Idealized (384 HEXA8 elements)
model

Fig. 12. Localization results of DIB model and idealized model.
a von-Mises stress (MPa), b von-Mises stress (MPa)
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is performed in the same way. However, when the mi-
crograph of the same MMC shown in Fig. 14 is given, what
would become of the homogenization results by DIB-FEM?
We shall comment on this issue.

In order to examine the in¯uence of the orientation in
which the capture is processed, we shall ®rst explain how
to make the FE model from this kind of image. The only
difference from the previous example lies in the thresh-
olding process in the DIB modeling. Although it seems
dif®cult to make a three-dimensional structure from the
given plane image, it is relatively easy if we assume the
®bers have circular cross sections because the original
image has 256-scales which enables the perspective
thresholding technique. That is, a unit cell FE model which
contains several circular ®bers can be tailored by gener-
ating several two-dimensional digital images, each of
which has an individual threshold value. The FE model
made in this way is shown in Fig. 15 and the homogenized
properties are given in Table 3. The major components of
the elasticity constants almost coincide with those ob-
tained from the models in Fig. 10. It might be possible to

combine those two results to obtain a more accurate es-
timation of the homogenized stiffness. Note here that the
coincidence of the results was brought about by proper
images and that this is not always the case. In fact, the DIB
modeling strongly depends on the captured image and
must require more images which can lead to a 3D struc-
ture, in most of the cases.

6
Applications of DIB modeling to micromechanical studies

6.1
Introductory remarks
The objective of this section is to illustrate how digital
image processing is applied to the 3D micromechanical
studies of composites by the homogenization method.
Since the digital images yield ASCII ®les, each of which
represents a two-dimensional section of the FEA model,
changing the microstructural geometry con®guration im-
plies changing the voxel values. This simple formula
provides a signi®cant convenience in modifying the FE
model of a unit cell and therefore in the design process.
We shall introduce here two examples of digital image
manipulations; one is for the technique to change vlolume
fractions and other is for the technique to virtually con-
struct a three-dimensional FE model of a unit cell. In both

Fig. 13. Image processing and analysis in post-process of
DIB-FEM

Fig. 14. Micrograph of different view

Fig. 15. Digitized FE model obtained from micrograph of
different view

Table 3. Homogenized engineering constants. GPa; for elastictiy
constants, /°C; for CTE

E1 E2 E3 G23 G31 G12 a11 a22 a33

198 200 198 76.1 75.5 76.1 1.39E)5 1.35E)5 1.39E)5
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examples, a metal matrix composite (MMC) which is
composed of MoSi2-matrix and SiC-inclusion. Figure 16
shows the thresholded and adjusted binary image along
with the sampled image, which has 400� 400 pixels. The
material properties of these constituents are given in
Table 4.

6.2
Simulation of changing volume fractions
When we are considering the mechanical behavior of
composite materials and eventually the microstructural
design, the geometric con®guration of the FE model of a
unite cell is subject to change. In this context, we may have
to prepare different specimens of different volume frac-
tions in order to ®nd the mechanical characteristics of the
composite as a function of the volume fraction of the in-
clusion. However, not only it cost much but also the
consistency in microstructural geometry con®gurations
between the specimens is questionable because, as can be
seen Fig. 16, the reinforcement (inclusion) is scattered in a
random manner which comes from its fabrication meth-
ods such as solid or liquid state processing and deposition.
Therefore, these random nature cannot be neglected by
idealizing the geometric con®gurations in the micro-
structure. The original FE model of the unit cell has to be
appropriately modi®ed, keeping the original geometry

con®gurations as much as possible. We present below the
technique to change the volume fractions of the inclusion
in conjunction with the microstructural design according
to the thermal mismatch in microscopic stresses.

The outline of the technique is as follows: we ®rst as-
sume that the image (100 � 100 pixels) has been selected
and exported into an binary ASCII ®le (binary one for SiC
and zero for MoSi2) of the unit cell. Here the same image is
used to construct the three-dimensional structure by ex-
trusion. It is also assumed that the additional particles of
SiC always come to the interface with MoSi2 if more in-
clusions are scattered so that volume fraction of SiC is
increased. Then the modi®cation of the unit cell geometry
is straightforward using the computer program, namely
VFCHG, and the ASCII ®le. First we read the ASCII ®le as
an input, recognize each voxels as a ®nite element and tell
the program our desired value of volume fraction of SiC.
Secondly a pseudo-random number from a seed value is
generated in VFCHG and then the value is identi®ed with
the spatial position of a voxel in the unit cell model.
Thirdly, according to the voxel value and neighboring
voxel values, we check if it is on the boundary of the two
dissimilar materials or not; then if it is so, voxels sur-
rounding that pixel is set to binary one (which corre-
sponds to inclusion, SiC, in this case). If the voxel is not on
the boundary, a new pseudo random is generated follow-
ing the same procedure up to this stage. In the last step,
the volume fraction of the inclusion is re-calculated and
the value is compared to the input-value of volume frac-
tion. The whole procedure is repeated until the re-calcu-
lated value is equal or the error set by the user is close
enough to the desired value. The procedure is presented
schematically in Fig. 17 It should be noted that the seed
value depends on the operating system (OS) on which the
program (VFCHG is running and therefore so does the

Table 4. Material Properties for MoSi2±SiC composite

Young's
modulus (GPa)

Poisson's
ratio

CTE
(´10e-6/°C)

MoSiO2-matrix 400 0.25 5.0
SiC-inclusion 450 0.20 8.1

Fig. 16. Sampled and selected
images of MMC (MoSi2±SiC)
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random value. Although the resulting microstructure may
differ from the one that was generated on a different OS or
different occasion on the same OS, it is reasonable to ex-
pect that the geometrical con®guration is almost the same
so that the homogenization analysis makes sense.

The systematic modeling technique by digital imaging
made these estimates possible without any dif®culty.
Figure 18 shows the unit cell models that were obtained by
this procedure. The localization results are presented by
applying the temperature change DT � ÿ300C� and no
global strain. These models also provide three charts
shown in Fig. 19 and 20 that relate homogenized elasticity

constants and thermal expansion coef®cients to the vol-
ume fraction of SiC, and Fig. 21 shows the thermal stresses
averaged in each phase and the thermal mismatch between
two phases versus the volume fraction of SiC. Note that the
former is related to macroscopic responses and the latter
to microscopic ones. Therefore, we are interested in the
optimal volume fraction referring to both the homoge-
nized properties and the thermal mismatch, both of which

Fig. 17. Flow chart for changing volume fractional proportion

Fig. 18. FE models (10, 15, 20% inclusion) generated by digital image with VFCHG

Fig. 19. Volume fraction (of SiC) vs. homogenized elasticity
constants

Fig. 20. Volume fraction (of SiC) vs. homogenized CTE
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can be the objective functions of our design optimization
problem. Since we are now concerned with the DIB
modeling, we do not discuss this issue in detail and leave it
for a later opportunity. It should also be noted that the
simulation is reliable enough in the sense that we had a
similar geometric con®guration, i.e., a similar pattern of
inclusion scattering.

6.3
Virtual realization of three-dimensional microstructure
All the three-dimensional (3D) FE models of unit cells that
we have used so far were obtained from a plane image by
extruding in the direction perpendicular to the image ex-
cept in the example shown in Subsect. 5.3. As mentioned
before, the sequential stacking of two-dimensional (2D)
images can construct the actual 3D unit cell. That is, as a
premise of generating a 3D structure by DIB modeling, we
have to have enough data concerning the 3D geometric
information. However, regarding the given composite that
has a random nature, we have only one captured image. It
is not only costly but almost impossible to prepare such a
set of additional captured images which section the actual
3D structure because the required thickness of one section
is too thin to capture. Although the sectioning devices
such as CT-scanners are the most promising, another al-
ternative way must be found in order to investigate the
true 3D characteristics of the microstructure. We now
propose a novel methodology below although the idea it-
self is quite simple.

Using the 2D geometric information, the idea of trian-
gulation in the digital image processing is utilized. It is
quite natural to assume that each projection of the 3D
structure into the three coordinate planes is identical to
the given 2D image. The we can determine all the 3D
spatial positions by taking product of each voxel value in
the projected images so that we can virtually attain the 3D
image. Since we have assumed that the image data
contain only binary ones or zeroes, the mutual multipli-
cation also gives binary ones and zeroes. This multipli-
cation serves as a function to change to attribute of a

certain voxel value to the other. Denoting f ��; �; 0� by the
pixel value of each projected image, the functional form is
de®ned as follows:

F�x1; x2; x3� � f �x2; x3; 0� � f �x3; x1; 0� � f �x1; x2; 0�
�20�

where �x1; x2; x3� is the position of a voxel and F is a voxel
value of the virtual 3D image. Let us assume that we have
stored the ASCII binary data of the 2D image into an array
mv1(*,*,1). Then, denoting the number of pixels in the
coordinate axis directions by npix, npiy, and npiz, res-
pectively, the image product de®ned by (20) can be stored
into a new array mv2(*,*,*) by the following FORTRAN
program:

do n3 = 1, npiz
do n2 = 1, npiy

do n1 = 1, npix
mv2(n1, n2, n3)

& =mv1(n2, n3, 1) *mv1(n3, n1, 1)
*mv1(n1, n2, 1)

enddo
enddo

enddo

If we used 8-bit format ®le as an input, a new distri-
bution of 24-bit map would be obtained. Then the
thresholding technique enables the creation of several
different 3D images. Moreover, if we replace the last two
functions in formula (20) by the vector I whose compo-
nents are all ones, the extruding of a 2D image is also
represented by a functional form such that

F�x1; x2; x3� � f �x1; x2; 0� � I�x3� �21�
by which the extruded 3D image is derived.

If the procedure is done so that the volume fraction of
the inclusion would be almost equal to the known value,
the model can be recognized as a 3D realization of the
actual microstructure of composite. However, there is no
guarantee that the resulting 3D structure has the same
volume fraction as the original. Therefore, we have to
adjust it by using the VFCHG again. The unit cell derived
in this way is presented in Fig. 22 along with the local-
ization result whose stress computed by applying no strain
and temperature change ÿ300C�. Although it is virtual, the
results can simulate the mechanical behavior of the unit
cell. If we have three mutually perpendicular 2D images,
the result would be more realistic.

6.4
Additional comments on the applications
Recall that we are looking for the realistic geometry model
by utilizing the digital image processing and eventually the
micromechanical characteristics of composite materials
along with the homogenization method. Although the
applications presented here appear unrealistic, we assert
that they are realistic, because the real 2D images, to which
the image operations were applied, were used to derive the
3D geometry models. The models presented here can be
the candidates of real unit cells, which elucidate the me-
chanical behavior of microstructure. We cannot prove
this, but there is no way to deny it.

Fig. 21. Volume fraction (of SiC) vs. mismatch in microscopic
thermal stress (Stress values are averaged within the same ma-
terial)
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Although we have emphasized the usefulness of the
digital images in numerical modeling it seems worthwhile
to discuss the role of digital images from another view-
point. Indeed, it is quite meaningful that we can determine
3D geometric con®guration of the microstructure in the
quantized form. In the formula (20) or (21), we recall that
the quantization described in Subsect. 3.3 provides an
image matrix f ��; �; 0� which corresponds to the pixel
value of the 2D image. The necessary operation is to ®ll the
x3-component to form the 3D structure and/or to change
the pixel values. If we think of the inverse of digital images
processing, it is possible to obtain the real composite
media from the image. That is, given desired material
characteristics, we determine the geometric con®guration
of the microstructure by the homogenization method, see,
for example Terada et al. (1996). The unit cell derived by

this inverse problem can be visualized and stored in our
computers by some morphological operations. By the ap-
propriate manufacturing technique, the digital images can
be converted into an actual media, which is no longer
virtual. This kind of approach seems to provide a new area
in computational mechanics.

As a ®nal comment, the present development seems to
be suitable to the future computing environment. Since
most of the software and hardware is designed based on
the conventional computational methodologies, they are
not necessarily relevant to the DIB computing. In other
words, while the ®nite element method provides solution
to the given problem, we always meet dif®culties with the
memory and storage capacity of computers. In fact, only
linear problems are amenable to the present development
of DIB-FE modeling. The nonlinear computation for a fully
3D structure is most often a formidable task even if we
utilize a supercomputer. It is therefore natural to long for
the novel computational method as well as the evolution of
computer technologies and science.

7
Conclusions
We described why and how the digital image processing is
used to make the microstructural FE model for the ho-
mogenization analysis. We also examined the DIB mod-
eling from the technical and computational points of view.
Here the ``technical'' means that the modeling techniques
presented involve various kinds of manipulations for the
digital images which are sampled, selected, thresholded or
exported. Also, the homogenization analysis with the DIB
modeling technique was found to feasible as RVE analysis.
Moreover, the transition of volume fractional proportion
and three-dimensional geometry of the microstructure was
the virtually realized by manipulating the digital images.
Although there were some uncertain factors in modeling,
the microstructure seemed realistic. In summary, the DIB
modeling with the asymptotic homogenization method is
found to be the rigorous tool to study the complex
micromechanical characteristics of composite materials.

At this end, it should be emphasized that we used only a
few of digital image processing techniques. Considering
the rate at which image science is presently developing, the
authors strongly believe that digital images will change the
conventional way of thinking. It seems to be time to draw
our attention to applying digital images to computational
mechanics ®eld.
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