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Abstract In this paper, a ®nite element procedure to de-
termine a fracture parameter Jld is presented for welded
structures with consideration of residual stresses. The
method is based on the energy difference of two cracked
solids with slightly different crack sizes. Our computa-
tional results show that Jld and the J integral agree well for
a cracked plate without consideration of residual stresses.
When the residual stresses are considered, the values of Jld

for different contours close to the crack tip in the cracked
plate subject to remote tensile stresses are in good agree-
ment. The computational results also indicate that for the
given residual stress distribution, the values of Jld with
consideration of residual stresses are lower than those
without consideration of residual stresses for the cracked
plate subject to large remote tensile stresses.

1
Introduction
The path independent J integral proposed by Rice (1968a,
b) for deformation plasticity (nonlinear elastic) materials
has been used widely used to characterize the crack-tip
stress and strain ®elds. The j integral represents the energy
release rate for deformation plasticity (nonlinear elastic)
cracked solids. The energy release rate is de®ned as the
decrease of the potential energy per unit area of crack
advance. Begley and Landes (1972a, b) obtained the values
of J from the load-displacement curves of multiple cracked
specimens based on the concept of the energy release rate.
To compute the values of J by ®nite element methods,
Parks (1974) and Hellen (1975) proposed the virtual crack
extension method based on the change of the ®nite ele-
ment stiffness matrix with respect to the crack length for
linear elastic materials.

Parks (1977) generalized the stiffness derivative ®nite
element technique to determine the values of J for non-
linear elastic materials. The generalized method is based
on the energy difference of two cracked bodies with
slightly different crack sizes. It should be noted that this

technique requires only one nonlinear ®nite element so-
lution. deLorenzi (1982) derived an analytical expression
for the energy release rate by using the virtual crack ex-
tension method from a continuum mechanics viewpoint.
Shih et al. (1986), Moran and Shih (1987), and Nikishkov
and Atluri (1987a, b) developed the domain integral
method to evaluate the J integral. A more detailed dis-
cussion of various methods can be found in Atluri (1997).
The expression for the domain integral method is con-
sistent with that obtained by deLorenzi (1982) when the
smooth function q used in the domain integral method is
interpreted as the normalized virtual displacement. Atluri
et al. (1984) presented incremental path-independent in-
tegrals for elastic-plastic materials. Both quasi-static and
dynamic fracture conditions were considered in their
study. Brust et al. (1986) examined a fracture parameter T*
after a cycle of loading and unloading to zero load fol-
lowed by reloading. Wang et al. (1997) examined the T*
parameter in the context of stable crack growth in aircraft
structures. The results of their combined numerical and
experimental study showed that T* accurately predicted
the fracture behavior under unloading and reloading
conditions. Nakagaki et al. (1989) conducted a combined
experimental and analytical study of ductile crack growth
in tungsten inert gas (TIG) weld stainless steel specimens.
In their ®nite element analysis, they showed that J is path
dependent due to the stress and strain nonproportionality
associated with the local unloading due to crack growth,
whereas DT�p and Ĵ are path independent.

During the welding processes, weld metals and, possi-
bly, adjacent base metals are heated above the melting
temperature and then solidify. After the welding processes,
large residual stresses may develop in the welds and the
heat affected zones (HAZs) due to thermoelastic-plastic
deformation. Under service loading conditions, cracks
may be initiated and grown. When the plastic deformation
becomes extensive near the crack tips due to large service
loads, elastic-plastic fracture parameters are needed to
characterize the fracture processes near the crack tips in
these welded structures with residual stresses. Therefore,
we proposed a ®nite element procedure to determine a
potential fracture parameter Jld for welded structures with
residual stresses. The procedure is based on the concept of
the energy difference under the load-displacement curves
of the two cracked solids with slightly different crack sizes.

Speci®cally, we perform a thermoelastic-plastic ®nite
element analysis of the multi-pass welding process of two
stainless steel plates under plane strain conditions. After
the residual stresses are determined, a crack is introduced
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in the welded plate along the symmetry plane. Then re-
mote tension is applied at the far ends of the welded plate.
Because of the existence of residual stresses, the J integral
for deformation plasticity (nonlinear elastic) materials
may not be appropriate to characterize the crack-tip ®eld.

However, fracture parameters are needed to character-
ize the fracture processes near the tip. A local fracture
parameter such as the crack tip opening angle (CTOA), a
computationally convenient parameter, may be used (for
example, see Hou et al., 1996). Nevertheless, a fracture
parameter based on conveniently measurable quantities
such as the loads and displacements in experiments is
more desirable. Therefore, we compute the values of Jld by
the proposed ®nite element procedure for the cracked
plate with consideration of residual stresses and explore
the implications of Jld for characterization of the fracture
processes near the crack tip.

2
Formulation
The J integral (Rice, 1968a) for nonlinear elastic materials
can be expressed as

J �
Z

C
Wn1 ÿ t1

oui

ox1

� �
ds �1�

where C represents a counterclockwise contour around the
crack tip from the lower crack face to the upper crack face,
W is the strain energy density function, n1 is the x1

component of the unit outward normal vector to contour
C, ti are the components of the traction, ui are the com-
ponents of the displacement vector, and ds is the differ-
ential arc length of C. Here the summation convention is
adopted for repeated indices. It has also been shown by
Rice (1968b) that the J integral represents the energy re-
lease rate for deformation plasticity (nonlinear elastic)
cracked solids. As shown in Fig. 1(a), we consider a
cracked plate of unit thickness with the crack length a. In
the ®gure, P represents the load and u represents the load-
point displacement.

For nonlinear elastic materials, J can be expressed as

J � ÿ oP
oa

�2�
Where P represents the potential energy expressed as

P � U ÿ Pu : �3�
Here U is the strain energy stored in the body and is the
area under the load-displacement curve. For nonlinear
elastic materials,

P � U ÿ Pu � ÿU� �4�
where U� represents the complementary strain energy as

U� �
Z P

0

u dP : �5�

Thus, if the cracked plate is under load-controlled condi-
tions, J is given by

J � oU�

oa

� �
P

�
Z P

0

ou

oa

� �
P

dP : �6�

Now, as shown in Fig. 1(a), we consider two cracked
bodies with the identical geometry except that the crack
length of the second body is longer than that of the ®rst
one by Da. We can schematically plot the load-displace-
ment curves for the two cracked bodies in Fig. 1(b). The
shaded area DA as shown in Fig. 1(b) is the complemen-
tary strain energy difference of the two cracked bodies.

Based on the concept discussed above, we consider a
parameter Jld to represent the energy difference of two
cracked bodies, normalized by a small difference of crack
sizes, subject to the same loading history, even when the
cracked bodies have signi®cant amount of residual
stresses. Therefore, Jld for elastic-plastic materials with
residual stresses is de®ned as

Jld � lim
Da!0

DA

Da
: �7�

Our ®nite element procedure to determine Jld is based on
the principle of virtual work. In the absence of the body
force, the principle of virtual work is written asZ

V

rijd�ij dV �
Z

S

Tidui dS �8�

where rij are the stresses, d�ij are the virtual strains,
Tj�� nirij� are the components of the surface traction and
dui are the virtual displacements. Since we consider elas-
tic-plastic materials, we compute the ®nite element dis-
placement incrementally. The principle of virtual work for

Fig. 1. a Two cracked bodies with different crack lengths by
Da. b Nonlinear load-displacement curves for the two cracked
bodies
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expansion from a known equilibrium state can be written
asZ

V
�rij � Drij�d�ij dV �

Z
S
�Ti � DTi�dui dS �9�

where D( ) denotes the incremental quantity from the
known state.

Then, for ®nite element applications, Eq. (9) can be
rearranged in the matrix form as

�du�T
XMc

m�1

Z
V�m�

B�m�
h iT

C�m�ep

h i
B�m�
h i

dV�m��Du�
 

ÿ
XEc

e�1

Z
S�e�

N�e�
h iT

DT�e�
h i

dS�e�

ÿ
XEc

e�1

Z
S�e�

N�e�
h iT

T�e�
h i

dS�e�

�
XMc

m�1

Z
V�m�

B�m�
h iT

r�m�
h i

dV�m�
!

�10�

where a superscript T denotes the transpose, Mc is the
number of elements for the entire body, and Ec is the
number of elements on the traction-prescribed surface.
Here, [B] is the incremental strain-displacement matrix,
[Cep] is the elastic-plastic constitutive matrix, �Du� is the
incremental nodal displacement vector, [N] is the inter-
polation function matrix, �DT� is the incremental traction
vector, [T] is the traction vector, and �r� is the stress
matrix. Since �du�T is an arbitrary vector, the term en-
closed in the large parentheses in Eq. (10) must be zero.
This leads to

�K��Du� � �DF� � �F�res �11�
where

�K� �
XMc

m�1

Z
V�m�

�
B�m�

�T�
C�m�ep

��
B�m�

�
dV�m�

�F�res �
XEc

e�1

Z
S�e�

�
N�e�

�T�
T�e�
�
dS�e�

ÿ
XMc

m�1

Z
V�m�

�
B�m�

�T�
r�m�

�
dV�m� :

Here, �K� is the elastic-plastic stiffness matrix, �DF� is the
vector of the prescribed incremental nodal forces, and
�F�res represents the residual or the out of balance nodal
forces within the body at the end of each increment.

Suppose that an elastic-plastic ®nite element analysis
has been performed on a given body of unit thickness with
the crack length a. We have obtained the vector of incre-
mental nodal displacement �Du� at each load increment. As
shown in Fig. 2, we select a ring of ®nite elements ex-
tending from the lower crack face to the upper crack face.
The ring of elements is bounded by the inner contour C0

and the outer contour C1. Then at the end of each load
increment, we perturb the crack length by increasing the
x1 coordinates of the nodal points within and along the

inner contour C0 by da under the same loading condition.
When we perturb the crack length a, Eq. (11) becomes

o�K�
oa
�Du� � �K� o�Du�

oa
� o�DF�

oa
� o�F�res

oa
: �12�

Along the traction boundary, the applied traction is given
and the traction is zero on the cracked faces. The ®rst term
on the right hand side of Eq. (12) is zero. To obtain the
variation of the incremental nodal displacement vector
with respect to the crack length a; o�Du�=oa, at each load
increment, we assume that each material element have the
same elastic-plastic matrix before and after the perturba-
tion. Then, the variation in the load-point displacement is

o�u�
oa

� �
i

� o�u�
oa

� �
iÿ1

� o�Du�
oa

�13�

where the index i represents the ith increment. From
Eq. (12),

o�Du�
oa
� ÿ�K�ÿ1 o�K�

oa
�Du� ÿ o�F�res

oa

� �
: �14�

In Eq. (14), o�K�=oa can be evaluated directly by differ-
entiation of the elastic-plastic stiffness matrix �K� for the
elements in the ring as shown in Fig. 2, see also Atluri
(1997).

Alternatively, from a ®nite difference viewpoint,
o�Du�=oa in Eq. (14) can be calculated from o�K�=oa and
o�F�res=oa by the forward ®nite difference method.

For example,

o�K�
oa
� D�K�

Da
ÿ 1

Da
�K�a�Da ÿ �K�a
ÿ �

: �15�

When we take the ®nite difference method to compute
o�K�=oa, we need to perform two elastic-plastic computa-
tions for the cracked solid with two slightly different
cracked sizes.

Fig. 2. Perturbation of the crack length by translating da for the
nodal points within and along the inner contour C0
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3
Numerical results
To demonstrate the ®nite element procedure, we consider
a welded plate with a crack subject to remote loading
under plane strain conditions. Due to symmetry, a ®nite
element model of a half of the welded plate is shown in
Fig. 3(a). The plate has a thickness of 8.64 mm. The
shaded elements shown in Fig. 3(b) represent the welds
deposited from the four welding passes. The combination
of four 3-node triangles proposed by Nagtegaal et al.
(1974) is used in our ®nite element model to account for
the effect of incompressible or nearly incompressible be-
havior encountered in the fully plastic range. Note that the
triangular elements are combined to form compatible
quadrilateral elements. In our ®nite element analysis, the
residual stresses are computed due to the four welding
passes. A crack is then placed by releasing coupled nodal
points sequentially from the bottom of the welded plate
along the symmetry plane. The ®nal crack length is
2.16 mm which is one quarter of the plate thickness. The
numerical procedure to obtain the distribution of the re-
sidual stresses after the welding process and the intro-
duction of the crack can be found in Hou et al. (1996).
Figure 4 shows that the residual stress distribution in the R
(thickness) direction near the symmetry line �Z � 0� be-
fore the introduction of the crack. In the ®gure,
re�� �3r0ijr

0
ij=2�1=2 where r0ij are the deviatoric stresses)

represents the equivalent tensile stress, rR and rz are the
in-plane normal stresses in the R and Z directions, re-
spectively, rRZ is the in-plane shear stress, and rT repre-
sents the out-of-plane normal stress. These stresses are
obtained at the integration points of the element closest to
the symmetry line. In Fig. 4, we notice that the stress levels
of the three in-plane stresses are signi®cantly lower than
that of the out-of-plane normal stress rT which is the
highest and has a magnitude from 340 MP a to 740 MPa
through the thickness.

Three paths are selected for the computations of the J
integral for the crack as shown in Fig. 5(a). Note that the
scale in the R direction is magni®ed in Fig. 5 for the
convenience of presentation. Also three different interior
contours C0 surrounding the crack tip are selected for
determination of Jld as shown in Fig. 5(b). The procedure
outlined in the previous section is applied at each load

increment by advancing nodal points within and along
each contour.

The material properties of the base metal and the weld
metal follow those of Type 304 stainless steel in our ®nite
element modeling (Hou et al., 1996). Our thermo-plastic
behavior is based in an isotropic hardening model. The

Fig. 3. a Finite element mesh for an 8.64 mm thick plate,
b The four welding passes and the V-groove weld geometry

Fig. 4. Residual stress distribution in the R direction near the
symmetry plane

Fig. 5. a The J integral paths, b The Jld contours
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hardening model may have signi®cant effects on predic-
tion of residual stresses due to the welding processes. The
strain hardening is assumed to be linear. The yield stress
of this material at room temperature is 240 MPa.

If the residual stresses are not considered, the values of J
integral, J1; J2, and J3 for different paths 1, 2, and 3 agree
well at a given applied stress from our computations. In
Fig. 6, the value of J3 is plotted as a function of the applied
tensile stress. Based on our ®nite element procedure, J1

ld; J
2
ld

and J3
ld for different contours 1, 2, and 3 are also computed

and plotted in Fig. 6. The values of J1
ld; J

2
ld, and J3

ld agree
with each other within 3% as the applied stress increases
to 370 MPa. Thus, Jld shows path independence at the
given applied stress when the residual stresses are not
considered. It should be noted that Jld represents the en-
ergy release rate for deformation plasticity (nonlinear
elastic) materials. Thus, the values of Jld should agree with
the values of the J integral throughout the loading history.
Figure 6 shows a good agreement between the values of Jld

and the J integral at the given applied tensile stress. The
slight differences are possibly due to the different nu-
merical methods to calculate the values of Jld and J.

Figure 7 shows the values of J1
ld; J

2
ld, and J3

ld for different
contours 1, 2, and 3 as functions of the applied tensile
stress, when the residual stresses are considered. In the
®gure, the values of J2

ld show an excellent agreement with
the values of J3

ld throughout the loading history. However,
the value of J1

ld is 15 percent below the value of J3
ld when the

applied stress reaches 480 MPa. It should be noted that
contour 1 is closer to the crack tip, the stress and strain
values inferred from this contour may not be accurate.

Figure 8 shows the values of the J integral for different
paths and the value of J3

ld as functions of the applied tensile
stress, when the residual stresses are considered. When we
account for the residual stresses induced by the welding

processes and the nonproportional loading due to the in-
troduction of the crack, W in Eq. (1) is taken as the stress
work for calculation of the J integral. In fact, the values of
the J integral shown in Fig. 8 represent the increase of the J
integral from the state where the applied tensile stress is
zero. Due to the residual stresses, the path dependence of
the J integrals can be clearly seen in the ®gure. For com-
parison, J3

ld is also shown in the ®gure. The link of Jld with
consideration of residual stresses to the crack-tip param-
eters such as the crack tip opening angle (CTOA) will be
discussed later in the paper.

Fig. 6. The values of Jld for different contours and the value of
the J integral for path 3, J3, as functions of the applied tensile
stress without residual stresses

Fig. 7. The values of Jld for different contours as functions of the
applied tensile stress with residual stresses

Fig. 8. The values of the J integrals for different contours and the
value of J3

ld for contour 3 as functions of the applied tensile stress
with residual stresses
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Figure 9 shows the values of J3
ld obtained from different

methods: the ®nite difference method and the elastic-
plastic stiffness differentiation method that we present
here, when the residual stresses are considered. In the ®-
nite difference method, the size of Da used is about 10)4 of
the size of the ®nite elements near the tip. The ®gure
shows that the computed values of J3

ld obtained from the
®nite difference method and the elastic-plastic stiffness
differentiation method are almost identical. Note that the
values of J3

ld are computed by perturbing contour 3 shown
in Fig. 5(b).

Figure 10 shows the values of J3
ld, with and without

consideration of residual stresses, as functions of the ap-
plied tensile stress. In general, we can see that the values of
J3

ld with consideration of residual stresses are lower than
those without consideration of residual stresses at large
applied stresses. When the residual stresses are not con-
sidered, we see that the values of J3

ld increase substantially
near 240 MPa (the room temperature yield stress) due to
large plastic deformation. However, we should keep in
mind that the welding processes under plane strain con-
ditions induce large residual stresses in the out-of-plane
direction, as shown in Fig. 4. Then large elastic stress in-
crements must be applied to the material elements to reach
the yielding conditions following extremely nonpropor-
tional loading paths due to the applied remote in-plane
tension.

We now examine the equivalent stress history of the
element in the front of the crack tip, marked by C in
Fig. 5(b), to demonstrate the argument discussed above.
Figure 11 shows that the current equivalent yield stress ry

and the equivalent stress re of the crack tip element as
functions of the applied tensile stress. The ®gure shows
that the current equivalent yield stress ry is about 500 MPa
due to the welding processes before the tensile stress is

applied. The ®gure also shows that the applied stress ini-
tially causes further elastic unloading in the element.
When the applied tensile stress is about 320 MPa, the
equivalent stress of the element becomes equal to the
current equivalent yield stress and the element becomes
plastic again. When the applied tensile reaches 420 MPa,
our computational results indicate that the displacement
due to the applied stress becomes very large. Thus, the
value of Jld with consideration of residual stress increases
substantially near the applied stress of 420 MPa, as shown
in Fig. 10. Therefore the values of Jld with consideration of
residual stresses are lower than those of Jld without con-

Fig. 9. The values of J3
ld, from the ®nite difference method and

the stiffness differentiation method, as functions of the applied
tensile stress with residual stresses

Fig. 10. The values of J3
ld as functions of the applied tensile stress

with and without residual stresses

Fig. 11. The current equivalent yield stress ry and the equivalent
stress re of the crack tip element as functions of the applied stress
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sideration of residual stresses when the applied tensile
stresses are close to the room temperature yield stress
240 MPa. Figure 12 also shows the values of J3

ld, with and
without consideration of residual stresses, as functions of
the applied tensile stress up to 200 MPa. We can see that,
when the applied stress is between 50 and 150 MPa, the
values of J3

ld with consideration of residual stresses are
slightly larger than those without consideration of residual
stresses.

Hou et al. (1996) used the crack tip opening angle
(CTOA) as a computationally convenient parameter to
characterize the deformation near the crack tip due to both
the residual stress and the applied tensile stress. The crack
tip opening angle (CTOA) is de®ned as

CTOA � 2 tanÿ1 oe

he

� �
�16�

where de the displacement at the nodal point right behind
the crack tip, and he is the size of the element in the crack-
line direction right behind the crack tip.

Figure 13 shows the CTOAs, with and without consid-
eration of residual stresses, as functions of the applied
tensile stress. In the ®gures, a large change of the slope of
the CTOA without consideration of residual stresses is
caused by the change from the elastic response to the
plastic response for some elements around the crack tip.
When the applied stress is large, the CTOA with residual
stresses is lower than that without residual stresses. The
CTOA with residual stresses is larger than that without
residual stresses when the applied tensile stress is less than
150 MPa as shown in Fig. 13. This trend is quite similar to
that of the values of J3

ld with and without residual stresses
as shown in Figs. 10 and 12.

4
Discussions and conclusions
Most of the current computational works for fracture an-
alyses of welded structures are based on the stress inten-
sity factor K of linear elastic fracture mechanics. For
example, residual stresses from welding processes are
usually calculated by thermoelastic-plastic analyses. The
residual stresses are then used to calculate the linear elastic
stress intensity factor K without consideration of the effect
of thermoplastic deformation history. The total value of K
at the crack tip is the sum of the value of K due to the
residual stresses and the value of K due to the subsequent
applied load. Sometimes, the value of K due to the residual
stresses is evaluated by taking the value of K due to the
remote tensile stress at, say, 20% of the yield stress.

Rigorously speaking, a logical fracture parameter for
cracks in welds must be a local parameter such as the
crack tip opening angle (CTOA) or the crack tip opening
displacement (CTOD) obtained consistently with micro-
scopically signi®cant length scales to re¯ect the local and
global residual stress effects on crack tip deformation and
stresses. On the other hand, fracture parameters such as Jc

for cracks in welds and heat affected zones are determined
by experiments. From the viewpoint of consistency with
experimental data, we here present a computational
scheme to calculate a potential fracture parameter Jld (the
subscripts ld stands for load-displacement) for elastic-
plastic materials with residual stresses. The ®nite element
computational scheme is similar to the virtual crack ex-
tension method for nonlinear elastic materials (Parks,
1977). We calculate the change of the work to the cracked
structure based on the remote load-displacement curve
due to small amount of crack growth. This concept is
consistent with the determination of the experimental
values of Jc for cracks in welds and heat affected zones
from the load-displacement curves of the specimens cut
out from welded structures.

Fig. 12. The values of J3
ld as function of the applied tensile stress

with and without residual stresses

Fig. 13. The crack tip opening angles (CTOAs) as functions of
the applied tensile stress with and without residual stresses
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We have examined a case of two plates welded to-
gether by multi-pass welding processes. First, we calcu-
late the residual stresses due to the welding processes and
then we introduce a crack. Subsequently, we apply re-
mote tensile stress on the welded plate. Our numerical
results show that Jld's for different contours close to the
crack tip are in good agreement at the given applied
stresses. Thus, Jld may be considered as a potential
fracture parameter for welded structures. Our ®nite ele-
ment analyses show that the J integral is quite path de-
pendent when the residual stresses are considered. Thus,
the J integral cannot be used to characterize the crack-tip
deformation processes. The numerical results also show
that the values of Jld are lower for the welded plate at
large applied tensile stresses when the residual stresses
are considered.

Note that the trend of the local CTOA agrees well with
the trend of Jld calculated from the global load-displace-
ment curve. When we calculate Jld, we perturb the ®nite
element mesh near the crack tip and relate the change to
the remote load-displacement curve. Therefore Jld and
CTOA has the same trend. Jld reduces to J when no residual
stress is considered. When the additional plastic defor-
mation near the tip due to the applied load is large, the
crack-tip stress and deformation ®elds due to the applied
load become dominant. Then Jld regains its physical sig-
ni®cance as a regular J that controls the near-tip dominant
singular stress and strain ®elds since the residual stress
effects are washed out. However, more computational in-
vestigation is needed to understand the validity of Jld for
modeling fracture processes due to cracks in welds and
heat affected zones when the additional plastic deforma-
tion due to the applied load is moderate. Finally, Jld should
be evaluated at a contour at a length scale related to the
microstructure of materials. Further exploration of the
applicability of Jld is needed.
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