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Abstract. Content-based image retrieval (CBIR) has been an
active research area in the last ten years, and a variety of tech-
niques have been developed. However, retrieving images on
the basis of low-level features has proven unsatisfactory, and
new techniques are needed to support high-level queries. Re-
search efforts are needed to bridge the gap between high-level
semantics and low-level features. In this paper, we present a
novel approach to support semantics-based image retrieval.
Our approach is based on the monotonic tree, a derivation of
the contour tree for use with discrete data. The structural el-
ements of an image are modeled as branches (or subtrees) of
the monotonic tree. These structural elements are classified
and clustered on the basis of such properties as color, spa-
tial location, harshness and shape. Each cluster corresponds
to some semantic feature. This scheme is applied to the anal-
ysis and retrieval of scenery images. Comparisons of experi-
mental results of this approach with conventional techniques
using low-level features demonstrate the effectiveness of our
approach.

Keywords: Content-based image retrieval – Image feature
extraction – Annotation – Semantics retrieval – Monotonic
tree

1 Introduction

With the enormous growth of image databases, there is an ur-
gent need to build efficient and effective image retrieval sys-
tems. Content-based image retrieval (CBIR) offers a promis-
ing technology to address this need, and a variety of CBIR
techniques have been developed. In particular, content-based
image retrieval using low-level features such as color [42,37,
26], texture [21,36,35,41,20], shape [43,22,12,23,24,13,9,
15,47,48,34,44,33] and others [28,37,2,14,7] has been well
studied. Various image-querying systems, including QBIC
[10], VisualSeek [37], PhotoBook [27], Netra [18], and Vi-
rage [5], have been built, using low-level features for general
or specific image-retrieval tasks.

However, retrieving images via low-level features has
proven to be unsatisfactory. Effective and precise image re-
trieval by semantics still remains an open problem because of

the extreme difficulty of fully characterizing images. Theories
and approaches for querying and browsing images based on
image semantics become increasingly critical as web-based
information retrieval grows in popularity. In recognizing the
existing problems in the CBIR field, we believe that research
efforts are needed to bridge the gap between the high-level
semantics of interest to users and the low-level features which
can be efficiently extracted.

J. P. Eakins [8] classified image features into three levels,
ranging from the highly concrete to the very abstract. For our
purpose, we classify image features in three levels, as follows:

• Primitive level: primitive features include color, texture,
shape, and the spatial location of image elements.

• Local semantic level: local semantic features describe the
presence of individual objects in images. Two examples of
queries by local semantic features are “find pictures with
a bridge” (object of a given type) and “find pictures with
sky and trees” (combination of objects).

• Thematic level (or global semantic level): thematic fea-
tures describe the global meanings or topics of images.
Two examples of queries at this level are “find pictures of
a Chinese garden” and “find pictures of an earthquake.”
The thematic features of an image are based on all objects
in the image along with their spatial relationships. High-
level reasoning is needed to derive the global meaning of
all objects in the scene, and to determine the topic of the
image.

Most existing CBIR systems are based on primitive fea-
tures [10,27,37,18]. Although some approaches [11,45,4]
have been proposed for image retrieval by semantic features,
there is currently no CBIR system which works effectively
with semantic features. Due to the difficulty of detection and
recognition of general objects, there is a long way to go before
we can have a CBIR system which can extract general seman-
tic features from images. However, if we restrain ourselves to
specific domains, we can achieve quick success.

In this paper, we focus on scenery images, a popular
testbed for semantics extraction. For several reasons, scenery
images are easier to analyze than general images. First, scenery
images contain a limited range of object types. Common
scenery object types include sky, tree, building, mountain,
lawn, water, and snow. Secondly, shape features, which are
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difficult to characterize and match, are less important than
other low-level features in analyzing scenery images. Finally,
scenery images often fall into a small number of typical pat-
terns, such as those shown in Fig. 1. These typical patterns
greatly simplify scene interpretation for scenery images.

In outdoor pictures, scenery features such as sky, trees,
ground, and water are common types of background objects.
Locating and interpreting background objects is essential to
object recognition and image understanding. Among all ob-
jects in a natural image, it is quite common that a foreground
object (or a group of foreground objects) indicates the theme
of the image, while the background objects provide contextual
and complementary information. Needless to say, successfully
recognizing background objects in an image is a necessary step
in determining the theme of the image. In addition, the contex-
tual information provided by background objects helps, and
in many cases is necessary, in recognizing foreground objects
in two aspects:

• it can narrow down the possible types of foreground ob-
jects and make foreground object recognition more effi-
cient; and

• it can be used to resolve the ambiguity in recognizing fore-
ground objects.

Thus, finding effective ways to recognize common back-
ground objects will be a milestone in solving the problem
of image understanding.

In this paper, we present a novel approach to support
semantics-based image retrieval. This approach is based on

the concept of the monotonic tree [39], a derivation of the con-
tour tree for use with discrete data. The structural elements of
an image are modeled as branches (or subtrees) of the mono-
tonic tree of the image. These structural elements are classified
and clustered on the basis of such properties as color, spatial
location, harshness, and shape. Each cluster corresponds to
some semantic feature. Following these steps, images can be
automatically annotated with category keywords, including
sky, building, tree, wave, lawn, water, snow, and ground, thus
facilitating high-level (semantics-based) image querying and
browsing.

A scenery-querying system, termed SceneryAnalyzer, has
been built to demonstrate the effectiveness of this approach.
SceneryAnalyzer handles six types of scenery features: sky,
building, tree, water wave, placid water, and ground. The vi-
sual properties of water wave and placid water are structurally
different, and they are therefore treated as separate types. The
ground feature in images can be further split into snow, lawn,
and other subtypes.

The process of generating the semantic keywords which
support high-level scenery querying is shown in Fig. 2. Feature
extraction is the central and unique component of this system.
The extraction of features is accomplished off-line; each image
is processed to extract semantic features, which are then stored
in a feature vector. These semantic features are automatically
annotated onto a gray copy of the original image. All feature
vectors are stored in a feature base.
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Fig. 3. a An outward-falling monotonic line (solid line), b a set of
monotonic lines, c the monotonic tree, and d the topological mono-
tonic tree

The body of this paper will be devoted to a presentation
of the details of the approach to semantic feature extraction,
including experimental results. Sect. 2 introduces the concept
of the monotonic tree. In Sect. 3, techniques for extracting se-
mantic features are described. Section 4 presents case studies
of scenery features, while Sect. 5 offers a performance eval-
uation of the proposed approach. A summary and concluding
remarks appear in Sect. 6.

2 Monotonic tree

2.1 Introduction to the monotonic tree

Contour trees [25,32,46] have been used in geographic infor-
mation systems (GIS) and medical imaging to display scalar
data. For example, elevation in the landscape can be modeled
by scalar data over the plane, and a contour (also called an
isoline) is a line along which the elevation function assumes a
constant value. Contours are defined only for continuous func-
tions. For an image represented by discrete data, a continuous
function is first defined through interpolation of the data. The
contour tree is then defined on this continuous function.

In earlier work [39] we introduced a new concept, the
monotonic line, which is defined directly on discrete data.
An outward-falling/climbing monotonic line for a gray im-
age is a boundary within the image which is characterized by
higher/lower pixel values just inside the boundary than just
outside. All monotonic lines in an image form a rooted tree,
called a monotonic tree. A maximal sequence of uniquely-
enclosing monotonic lines is called a monotonic slope. All
monotonic slopes in an image form a topological monotonic
tree. A monotonic slope is called outward-falling/climbing if
all its monotonic lines are outward-falling/climbing. Figure 3
illustrates these concepts. For a color image, the monotonic
tree and topological monotonic tree are constructed on its gray
copy.

2.2 Reduced monotonic tree

The process presented in this paper employs a reduced mono-
tonic tree, rather than the topological monotonic tree, because
the reduced monotonic tree can be constructed recursively. In
the monotonic tree of a gray image, the leaf nodes correspond
to the boundaries of the local maximum/minimum regions in
the image. Starting from the leaf nodes in the monotonic tree,
we find the monotonic slopes which contain these leaf nodes.
These monotonic slopes are the leaf nodes in the topological
monotonic tree, which are called the slopes at level one. By re-
moving these monotonic slopes, we produce a smoothed gray
image. We then apply the same process to the smoothed im-
age to generate the slopes at level two. The process is repeated
recursively to produce a hierarchy of slopes. Together, these
slopes form a reduced monotonic tree.1

Figures 4–6 illustrate an algorithm for the generation of a
reduced monotonic tree. The algorithm consists of the follow-
ing steps:

(1) Transfer the image to the hexagonal grid2 (as shown in
Fig. 4). Denote the image on the hexagonal grid as I =
(f, Ω), where Ω is the domain of the image and f is a
function from Ω to R. Let fE be the extended function
of f to the whole plane, which is equal to f on Ω, and
assumes −∞ out of Ω.

(2) Find simply-connected regions3 where fE assumes local
minimum or maximum values, as shown in Fig. 5a.

(3) For each local minimum/maximum, simply-connected re-
gion X , find the slope including ∂X4, where a slope is a
sequence of monotonic lines with each line uniquely and
directly enclosing the next, as shown in Fig. 5b. The pro-
cedure for finding the slope including ∂X is as follows:
(a) let Y = X and S = {∂Y };
(b) if Y = Ω, output S and stop;
(c) if ∂Y is outward-falling/climbing, let v be the high-

est/lowest value assumed by pixels5 adjacent to Y ;
(d) let {Zi}n

i=1 be the set of maximal connected regions
such that (i) each Zi is adjacent to Y , and (ii) fE as-
sumes the constant value v over each Zi. Let Z =⋃n

i=1 Zi;
(e) if ∂(Y

⋃
Z) is not a monotonic line, output S and stop;

(f) let Y = Y
⋃

Z and S = S
⋃

{∂Y }; go to step (b).
All these slopes are nodes of the reduced monotonic tree,
as shown in Fig. 6a.

(4) If only one slope is found in step (3) and it covers the whole
image, stop. Otherwise, smooth the image by removing
all the slopes found in step (3). Let {Xi}n

i=1 be the set
of regions covered by those slopes, respectively. For each

1 The parent-child relation in the reduced monotonic tree is defined
in a similar manner to that for the topological monotonic tree.

2 Our theoretical definition of a monotonic tree is based on the
hexagonal grid, which avoids the contiguity paradoxes of the square
grid. A detailed discussion of the advantages of the hexagonal grid
over the square one can be found in Snyder et al. [38].

3 A simply-connected region is a connected region whose bound-
ary is also connected. A finite connected region is simply-connected
iff it has no hole.

4 ∂X is the boundary of X .
5 Here, by “a pixel assumes value v”, we mean that fE assumes v

over this pixel.
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Xi, let vi be the highest/lowest value assumed by pixels
adjacent to Xi if ∂Xi is outward-falling/climbing. The
smoothed image is a function f̃ : Ω → R such that:

f̃(x) =
{

vi if x ∈ Xi for some i;
f(x) otherwise.

Figure 6b shows the smoothed image for our example. Let
f = f̃ and fE be the extended function of f . Go to step
(2).

After the reduced monotonic tree is generated, it is trans-
lated back to a square grid. For the example image given in
Fig. 7a, its reduced monotonic tree is represented by its el-
ements (nodes) at levels from 1–7, which are visually repre-
sented in Fig. 7b–h, respectively. In these pictures, an outward-
falling/climbing monotonic slope is shown by the white/black
area which is enclosed by this slope. The blank area is shown
in gray. The root node of the reduced monotonic tree of this
example is at level 8. The root node covers the whole image.

Compared with other hierarchical or multiscale models,
such as a wavelet [19,40], scale space [17], and peaks & ridges
[6], the monotonic tree model has the following advantages:

(1) The monotonic tree retrieves and represents the structures
of an image at all scales. In addition, these structures are
organized hierarchically as a tree, allowing easier analysis
of the relationships between different levels.

(2) The monotonic tree retrieves the structures of an image
directly and maintains their original shapes.

(3) Image structures are classified by their low-level features,
then organized into clusters. Semantic features are drawn
from the features of the clusters. The monotonic tree pro-
vides a vehicle for combining primitive features to char-
acterize and capture semantic features.

3 Extraction of semantic features

The feature extraction scheme used here is based on reduced
monotonic trees. We use the branches of the reduced mono-
tonic tree to model the basic structures in an image, which
are termed structural elements. Structural elements have low-
level features such as color, shape, and spatial location. They
are clustered to form high-level features.

Feature extraction consists of three consecutive steps:

(a) classifying structural elements;
(b) clustering structural elements; and
(c) rendering semantic regions.

Figure 8 shows the relationships among the steps given above.
The features of a given image are extracted and stored in

a feature vector. A feature vector is an array which records
the qualifying scores for all semantic features. The qualifying
score of an image with respect to a feature indicates the degree
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that the image can be considered to have this feature. Figure 9
illustrates the data structure of a feature vector.

3.1 Classifying structural elements

Each branch (or subtree) of a reduced monotonic tree is
called a structural element if the image area it covers does
not exceed an area threshold. A structural element is con-
sidered positive/negative if its root (i.e. the root of the sub-
tree) is outward-falling/climbing, as shown in Fig. 10a. Posi-
tive/negative elements are like peaks/valleys. The altitude of
a positive/negative element is defined as the absolute value
of the average altitude of all its pixels above/below the high-
est/lowest pixels adjacent to the structural element, as shown
in Fig. 10b. The harshness of a structural element is deter-
mined by the number, area, and altitude of its sub-elements.6

We define the harshness of an element t by

Harshness(t) =
Σb∈SubElementSet(t)Altitude(b) ∗ Area(b)

Area(t)
,

where SubElementSet(t) is the set of sub-elements of t,
Altitude(b) is the altitude of b, and Area(b) is the area of the
region covered by b.

A structural element can be classified by its:

(1) color (the average color of all pixels in this element);
(2) altitude;
(3) harshness; and
(4) shape (the shape of its covered region).

For example, we can classify the structural elements by
shape as:

(a) bars;
(b) polygons;
(c) irregular elements;
(d) smooth-boundary elements; and

6 An element is a branch of the reduced monotonic tree. All sub-
branches of this branch are sub-elements.

(e) other shapes.

A bar element is characterized by its high length-to-
width ratio, while a polygonal element is a structural element
whose boundary consists mainly of line segments. A smooth-
boundary element has a boundary which forms a smooth curve.
Irregular elements are those with irregular boundaries. Figure
11 shows structural elements of different shapes.

The semantic features of scenery images are characterized
by categories of structural elements which are clustered in
the images. Three examples of the categories are polygonal
elements (for buildings), horizontal bar elements (for waves),
and green harsh irregular elements (for trees), as shown in
Figs. 12 and 13.

3.2 Clustering structural elements

Once the structural elements of an image have been classified,
algorithms are applied to identify clusters of elements. First,
the set of qualified (i.e. “belong-to”) elements must be deter-
mined for each category. If two qualified elements overlap,
the one with the lower qualifying score7 is eliminated from
the category. This process is called element sifting. The sift-
ing process reduces the multi-level elements of the image to
single-level elements, all belonging to the given category. The
elements after sifting form an element pattern in the 2D plane.

Next, as shown in Fig. 14, the Delaunay graph of the el-
ement pattern is constructed; this is the neighboring graph of
the element pattern. We then apply clustering algorithms to
the neighboring graph to find the clusters in the element pat-
tern. Here, the clustering algorithm is based on the minimal
spanning tree of the neighboring graph. Briefly, the process
of clustering by minimal spanning tree is as follows. Let V
be the vertex set of the graph and D be the distance thresh-
old. Then V is grouped into disjoint sets by joining all edges
in the minimal spanning tree whose lengths (or weights) are
less than or equal to D. Each set thus obtained is said to be a
cluster at level D. Further background on pattern processing
by neighboring graphs can be found elsewhere [1,3]. Refer-
ences on clustering by minimal spanning tree can be found in
Zahn [49].

3.3 Rendering semantic regions

The process of rendering semantic regions from a cluster
of structural elements consists of three steps: (1) element-
connecting; (2) hole-filling; and (3) boundary-smoothing. In
the first step, all elements in the cluster are connected by line
segments of lengths within a threshold. The second step in-
volves filling all holes which are smaller than a given area
threshold. Finally, the boundary of the region is smoothed by
removing irregular angles and branches. These steps are illus-
trated in Fig. 15.

7 For a given category, the qualifying score of an element indicates
the degree that the element can be considered “qualified” to belong
to this category. The process of arriving at a qualifying score will be
discussed later.
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3.4 Qualifying scores

Qualifying scores must be established for structural elements,
regions, and images. The qualifying score of a structural ele-
ment measures the degree to which the element is considered
to belong to a given category of elements. Qualifying scores
for different element categories are determined in different
ways. Formulas for computing the qualifying scores for var-
ious scenery-feature element categories will be presented in
Sect. 4.

Similarly, the qualifying score of a region with a seman-
tic feature measures the degree that the region manifests this
particular feature. For a region generated from a cluster, its
qualifying score is determined by the qualifying scores of the
elements in the cluster and the area of the region. For exam-
ple, a wave region is rendered from a cluster of horizontal bar
elements. Let the input image be defined on the domain Ω and
R be a wave region generated from a cluster S of horizontal
bar elements. The qualifying score for R with respect to wave
is defined as

Scorewave(R) =
Σt∈SScorehbar(t)

αwave
∗ Area(R)

Area(Ω)
,

where Scorehbar(t) is the qualifying score for t to be a hor-
izontal bar element, and αwave is a parameter to scale the
qualifying score. Scorehbar(t) is defined in the next section.

In contrast, sky and ground regions are not generated from
clusters. As will be discussed in the next section, we assume
that these regions are smooth. Coarse regions are identified

first; the smooth regions are then the complement of the coarse
regions. The qualifying score of a smooth region is determined
by the smoothness, color, and area of the region. As with the
harshness of a structural element, the smoothness of a region is
determined by the area and altitude of the structural elements
intersecting this region:

Smoothness(R) =
Area(R)

Σt∈ElementSetAltitude(t) ∗ Area(Region(t)
⋂

R)
,

where ElementSet is the set of all structural elements of the
input image and Region(t) is the region covered by t. The
qualifying score for a region R to be considered a sky region
is defined as8

Scoresky(R) =
Smoothness(R)

αsky
∗ Area(R)

Area(Ω)
∗ SkyColorRatio(R),

where αsky is a parameter to scale the qualifying score and
SkyColorRatio(R) is the ratio of sky-colored pixels in R.9

The qualifying scores for ground and placid-water regions are
defined similarly.

8 Region R should first be examined to ascertain that it satisfies
our assumptions about sky regions.

9 We assume that the sky color is either blue or gray (the color of
clouds). These assumptions will be discussed in the next section.
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Fig. 12. An image and its polygonal elements (shown
in black and white)

Fig. 13.An image and its green harsh irregular elements
(shown in green or dark green) as well as its horizontal
bar elements (shown in black and white)

a b

Fig. 14. a An element pattern, and b the neighboring graph of the
pattern

An input image may have several regions which manifest
a specific feature. The qualifying score for the input image
with respect to this feature is defined as the sum of qualifying
scores of these regions. For example, let I be the input image
and R1, R2, ..., Rn be the tree regions found in this image.
The qualifying score of I with respect to “tree” is

Scoretree(I) = Σn
i=1Scoretree(Ri).

If an input image contains no regions which manifest a specific
feature, then the qualifying score for the image with respect
to this feature is zero.

4 Case study of semantic features

The previous section described a general scheme for the ex-
traction of semantic features. In this section, we present meth-

Fig. 15. a A cluster of structural elements, b element connecting, c
hole filling, and d boundary smoothing

ods for defining the categories of structural elements and iden-
tifying the regions with scenery features.

The following discussion is predicated upon some simple
assumptions about the colors of scenery features. For exam-
ple, trees are assumed to be green and water to be blue. More
comprehensive color patterns for scenery features can be in-
tegrated into our system, though this is not the focus of this
paper.

We first briefly introduce our approach to color modeling.
A pixel is a gray pixel if none of its red, green, and blue
components is dominant, i.e.

max(r, g, b) − min(r, g, b) ≤ T g, (1)

where r, g, and b are the red, green, and blue components of
the pixel, respectively, and T g is a threshold. A pixel is red,
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green, or blue if

r > max(g, b) + T g, g > max(r, b)
+ T g, or b > max(r, g) + T g, (2)

respectively. A pixel is white if it is gray and

(3 ∗ r + 10 ∗ g + b)/10 ≥ T w, (3)

where (3 ∗ r + 10 ∗ g + b)/10 is the brightness of the pixel
and T w is a threshold. A region is red (green, blue, gray, or
white) if the ratio of red (green, blue, gray, or white) pixels in
the region is greater than or equal to a threshold.

We also make assumptions about the location of sky and
ground regions in images. For a region R in an image I , its
location is modeled by its top, bottom, left, and right posi-
tions:10

TopPos(R) = min{y|∃x, (x, y) ∈ R}, (4)

BottomPos(R) = max{y|∃x, (x, y) ∈ R}, (5)

LeftPos(R) = min{x|∃y, (x, y) ∈ R}, (6)

RightPos(R) = max{x|∃y, (x, y) ∈ R}. (7)

Suppose the domain of image I is {0, 1, ..., N − 1} ×
{0, 1, ..., M − 1}. We say that a region R is in the lower part
of the image if TopPos(R)

M is greater than a threshold; we say

that a region occupies an upper part of the image if TopPos(R)
M

is less than a threshold.

4.1 Sky

The sky is a kind of background. Without clouds, a sky region
is a homogeneous region consisting of blue pixels. Due to
their physical properties, clouds in an image tend to change
smoothly at the pixel level. From a location’s stand point, there
is usually no other object above a sky region. To retrieve sky
regions, we make three simple assumptions:

• (sky.a1) a sky region is smooth;
• (sky.a2) a sky region occupies an upper part of the image;

and
• (sky.a3) the color of sky regions is either blue or the color

of clouds.

For our current implementation, we assume that the color
of clouds is gray. To find the sky regions, we first identify
the smooth regions in the image. The smooth regions are the
complement of the harsh regions, which are characterized by
peaks and valleys in intensity. Within the monotonic tree, these
peaks and valleys are modeled as small structural elements
with high altitudes. Thus, the harsh regions of the image are
detected by clustering these small, high-altitude elements, as
discussed in the last section. Identification of the harsh regions
automatically distinguishes the smooth regions as well. These
smooth regions are then checked for location and color to find
the sky regions.

10 Here, we assume the monitor coordinate system: the x-axis is
pointing right and the y-axis is pointing down.

4.2 Ground and placid water

We make three assumptions about ground regions:

• (ground.a1) a ground region is smooth;
• (ground.a2) a ground region is in the lower part of the

image; and
• (ground.a3) in a ground region, structural elements are

more horizontal than vertical.

When scenery images are taken, the direction of the pro-
jection is usually horizontal or nearly horizontal. Thus, as the
natural scene is projected onto the image plane, ground-level
structures appear more horizontal than vertical, leading to the
third assumption above.

Let us first discuss methods for modeling the horizontality
of a structural element. For a region X on the square grid Z

2

and some x0 ∈ Z, we define the height of X at x0 to be the
number of pixels in the intersection between X and the vertical
line crossing (x0, 0). Formally,

Height(X, x0) = |{(x0, y)|(x0, y) ∈ X}|, (8)

where | • | gives the number of elements in a set. Similarly,
we define the width of X at y0 as

Width(X, y0) = |{(x, y0)|(x, y0) ∈ X}|. (9)

Now we define the horizontal and vertical ratios of X to be

HorizontalRatio(X) =√
Σy∈Z(Width(X, y))2

Σx∈Z(Height(X, x))2
; and (10)

V erticalRatio(X) =
1

HorizontalRatio(X)
. (11)

For a rectangle {0, 1, ..., N − 1}×{0, 1, ..., M − 1}, its hori-
zontal ratio is N

M . A structural element is said to be horizontal
(or vertical) if the horizontal (or vertical) ratio of its covered
region is greater than a given threshold.

As with the detection of sky regions, the identification of
ground and placid-water regions starts with finding the smooth
regions in the image. Then, for each smooth region, we check
the validity of assumptions (ground.a2) and (ground.a3). To
test (ground.a3), we count the horizontal and vertical elements
in the smooth region. The last assumption holds if the hori-
zontal elements exceed the vertical elements in the region.

A ground region identified by this method could be lawn,
snow, or other ground subtypes. These region subtypes are
distinguished by color. For example, we assume that lawn
regions are green and snow regions are white.

Identification of placid-water regions is based upon four
assumptions. The first three are the same as those used for
ground identification. In addition, we assume that the color of
placid water is blue.

4.3 Wave

Small water waves are characterized by very regular patterns
which appear as horizontal bars in a horizontally-projected
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Fig. 16. An example of an image with breaking waves and
its annotation

length

thickness BarRatio = length/thickness

Fig. 17. The bar ratio of an ellipse

image, such as that shown in Fig. 13. Breaking waves have
complicated structures. However, images with breaking waves
usually contain an area of water surface which consists of
parallel bar structures, as in the image shown in Fig. 16.

We define a wave region as a region consisting of horizon-
tal bar elements. A bar is characterized by its high length-to-
thickness ratio. For a 2D region X , we define its length and
thickness as

Length(X) = max
x,y∈X

‖ X − Y ‖, (12)

Thickness(X) = min
v∈R2

max
x,y∈X

(x − y) • v

‖ v ‖ , (13)

respectively, where (x − y) • v is the inner product of vectors
x − y and v, and ‖ v ‖ is the length of the vector v. We define
the bar ratio of a region X as

BarRatio(X) =
Length(X)

Thickness(X)
. (14)

This situation is illustrated in Fig. 17. A structural element is
considered to be a bar element if the bar ratio of its covered
region is higher than a given threshold. The qualifying score of
a structural element to be a horizontal bar element is defined as
the product of the bar ratio and horizontal ratio of its covered
region:

Scorehbar(t) = BarRatio(Region(t))
∗ HorizontalRatio(Region(t)). (15)

Wave regions are identified by clustering horizontal bar ele-
ments in the image.

4.4 Green tree

A careful examination of the tree region in Fig. 13 reveals that
the micro-structures in the region are very irregular. Based
on this observation, we assume that a tree region is a region
consisting of green harsh irregular elements. The tree regions
in an image are found by clustering the green harsh irregular
elements in the image.

For a connected region X , let ConvexHullLength(X)
be the length of its convex hull and Length(∂X) be the length

of its boundary. We define the irregularity of X by

Irregularity(X) =
Length(∂X)

ConvexHullLength(X)
. (16)

The qualifying score of a structural element to be a tree
element is defined as the product of its harshness and the ir-
regularity of its covered region:

ScoretreeElement(t) = Harshness(t)
∗ Irregularity(Region(t)). (17)

4.5 Building

The shapes of most buildings are characterized by the line seg-
ments they contain. We assume that a building region in an im-
age is a region consisting of polygonal elements. To ascertain
whether a structural element is polygonal, we first partition
its boundary into line segments and other kinds of segments.
A structural element is polygonal if its boundary mainly con-
sists of line segments. References on curve partitioning can be
found elsewhere [29–31].

For a connected region X , let L(∂X) be the length of
its boundary and LLS(∂X) be the total length of the line
segments detected in its boundary. We define the polygon ratio
of X by

PolygonRatio(X) =
LLS(∂X)

L(∂X)
. (18)

The qualifying score of a structural element to be a polyg-
onal element is defined as the polygon ratio of its covered
region.

5 Experiments

Comprehensive experiments were conducted to demonstrate
the effectiveness of the proposed approach; these experiments
employed our SceneryAnalyzer system.11 First, performance
comparisons using COREL images were made between the
proposed approach and some traditional CBIR techniques.
These comparisons were based on the precision-recall for indi-
vidual scenery features. We then conducted experiments using
PhotoDisc images to verify that the performance of our ap-
proach is not source-sensitive. Finally, the proposed approach
was applied to both COREL and PhotoDisc images to ex-
plore its effectiveness with different combinations of scenery
features. Examples of some of these images and their copies
annotated by SceneryAnalyzer are provided at the end of this
section.

11 The system can be accessed at http://monet.cse.buffalo.edu:
8888/.
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Fig. 18. Performance of a SceneryAnalyzer, b keyblock model, c color coherent vector, d color histogram, e Daubechies wavelet, and f Haar
wavelet on COREL images
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Fig. 19. a Average precision-recall for six features: sky, building, tree, wave, ground, and placid water; b average precision-recall for five
features: sky, building, tree, ground, and placid water
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Fig. 20. a Performance of SceneryAnalyzer on PhotoDisc database with respect to sky, building, tree, placid water, and ground; b performance
of SceneryAnalyzer on PhotoDisc database with respect to snow, water, lawn, and other kind of ground; c performance of SceneryAnalyzer on
COREL database with respect to sky, building, tree, wave, placid water, and ground; d performance of SceneryAnalyzer on COREL database
with respect to snow, lawn, and other kind of ground
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Fig. 21. Some examples of scenery images and
their annotated copies

5.1 Experiment setup

In our implementation, we used many parameters for extract-
ing features from images. These parameters were selected
manually: we tested the system with about 100 images from
different sources and with different types of scenery features,
and selected the parameters such that the system had the best
performance on these images. In future work, machine learn-
ing techniques will be used for automatic optimization of pa-
rameters. The system was implemented in a Sun Ultra 10.
For an image of size 384 × 256, an average time for off-line
processing is about two minutes.

Two image databases were employed in these experiments.
The first image database, COREL, consists of 6776 color
images from CD7 and CD8 of COREL Gallery 1,300,000.
These photos are stored in JPEG format and are sized at either
256 × 384 or 384 × 256. The COREL database includes both
scenery and non-scenery images. There are 4125 scenery pic-
tures taken at globally diverse locations, along with 2651 non-
scenery images covering a wide variety of subjects, including
fish, molecules, space scenes, insects, and other topics. The
second image database, PhotoDisc, consists of 1444 images
from PhotoDisc Comping Discs 3 and 4. These images fall
into five categories: (1) homes and gardens, (2) international

sports, (3) nature scenes, (4) panoramic landscapes, and (5)
people, lifestyles, and vacations. Table 1 shows a breakdown
of these two image databases by scenery features.

For each scenery feature, the precision-recall of Scenery-
Analyzer was calculated and plotted. Let RETRIEVELIST be
the list of n images retrieved with a given feature, which is
sorted in descending order by qualifying scores. We calculate
the precision and recall for each of the first n

30 , 2n
30 , 3n

30 , . . . ,
and n images in RETRIEVELIST. The precision and recall
figures were then plotted to demonstrate the performance of
SceneryAnalyzer.

In Sect. 5.2, performance with the COREL database will be
used to compare SceneryAnalyzer with the keyblock model
[16], traditional color histogram [42], color coherent vector
[26], and wavelet (Daubechies and Haar) texture techniques
[36,40]. All these methods accept only queries by exam-
ples. The process of selecting query sets and calculating the
precision-recall for these methods can be illustrated with a typ-
ical case, where the sky feature is queried using the keyblock
approach. There are 2369 COREL images with sky regions.
Each sky image is used as a keyblock query on the COREL
database; the top 100 images are thus determined, and the
number of sky images in this retrieved set is counted. The
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Fig. 22. Some examples of scenery images and
their annotated copies

Table 1. Breakdown by scenery features of images in COREL and PhotoDisc databases

Feature Sky Building Tree Wave Placid ground
Water Lawn Snow Other

COREL images
with the feature 2369 1920 1479 161 882 298 68 659
PhotoDisc images
with the feature 455 156 382 6 219 57 59 261

2369 sky images are then sorted in descending order by the
number of sky images in their corresponding retrieved sets.
The sorted list is denoted as SKYLIST. The first 5% (i.e. 118
of images from SKYLIST) are then selected as the query set
and denoted as QUERYSET. For each COREL image I , we
calculate its distance to QUERYSET-{I} using the keyblock
approach.12, 13 The COREL images are then sorted in ascend-
ing order by this distance. The top 2369 (i.e. the number of

12 The distance from an image to a set of images is the shortest
distance from this image to the images in the set.

13 If we retrieve by the distances of images to QUERYSET, the
images in QUERYSET will have distance zero.Thus, the query images
will automatically be retrieved as the top 5% images, which provides
an unfair comparison.

images with sky) COREL images are retrieved. Using the im-
ages retrieved by the keyblock model, we then calculate and
plot the precision-recall of the keyblock model for the sky
feature.

Section 5.4 compares the performance of SceneryAna-
lyzer with the traditional CBIR techniques on combinations
of scenery features. For this comparison, these techniques are
used to retrieve the top 20 images which have the specified
combination of scenery features. Query sets are selected and
images retrieved in the manner described above.
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5.2 Comparison using COREL database

Experiments were conducted using 6776 COREL images to
compare SceneryAnalyzer with the keyblock approach [16],
traditional color histogram [42], color coherent vector [26],
and wavelet (Haar and Daubechies) texture techniques [36,
40]. The precision-recall of these techniques was compared
for six scenery features: sky, building, tree, wave, ground, and
placid water.

The precision-recall of each method was calculated for
each scenery feature listed; these results appear in Fig. 18.
The five traditional CBIR methods all performed poorly with
the wave feature. This can be partially explained by the small
number of wave images in the COREL database, which makes
these methods easily misidentify other images as wave images.
Furthermore, these methods did not capture the structures of
waves.

A comparison of the graphs in Fig. 18 shows that our
method outperforms all the others for each scenery feature
type. To further clarify the comparison, we calculated the av-
erage precision-recall over all six scenery features, which is
shown in Fig. 19a. The average precision-recall of the five tra-
ditional methods suffers particularly from their poor perfor-
mance with the wave feature, as discussed above. To exclude
this effect, we also calculated the average precision-recall over
the five remaining scenery feature types (sky, building, tree,
ground, and placid water); this is shown in Fig. 19b. These
comparisons indicate that our proposed method provides much
better precision-recall of scenery features than the traditional
techniques.

5.3 Experiments using PhotoDisc database

We also conducted experiments on 1444 PhotoDisc images.
The performance of SceneryAnalyzer with this PhotoDisc
database is shown in Fig. 20a and b. Since the PhotoDisc
database included only six images with waves, a precision-
recall curve could not be plotted for the wave feature. Thus,
Fig. 20a shows only five precision-recall curves. It is worth
noting, however, that when queried for wave images on
this database, SceneryAnalyzer retrieved three images, all
with waves. Therefore, the precision of these queries was
100%, with a 50% recall. As a comparison, the performance
of SceneryAnalyzer with the COREL database is shown in
Fig. 20c and d. These experiments show that SceneryAnalyzer
works effectively with both COREL and PhotoDisc images.

With both the COREL and PhotoDisc databases, the per-
formance of SceneryAnalyzer is relatively poor with respect
to the snow subtype of ground. In our implementation, we
have assumed that the ground is smooth and the snow ground
is white. However, the snow ground in natural images may not
be smooth, and may vary in color. In addition, many other ob-
jects in natural images appear to be white and smooth. These
factors negatively impact upon the performance with respect
to snow ground.

5.4 Experiments on combinations of scenery features

Experiments were conducted to demonstrate the effectiveness
of SceneryAnalyzer with combinations of scenery features.

The experiments involved all the images in the COREL and
PhotoDisc databases. The top 20 images for each combination
of scenery features were retrieved, and the precision and recall
calculated; results are given in Table 2. In this table, for each
combination of scenery features, F denotes the set of images
with the stipulated features, and R denotes the set of images
retrieved. For a set X , |X| denotes the number of elements in
X . As a comparison, the performance of the five traditional
CBIR techniques is given inTable 3, where the keyblock model
is abbreviated as kb, the color histogram technique as ch, the
color coherent vector as ccv, the Daubechies texture technique
as daub, and the Haar texture technique as haar.

Table 2 demonstrates that the SceneryAnalyzer system
is effective for the feature combinations listed. In contrast,
Table 3 shows that traditional CBIR techniques are not sat-
isfactory when handling combinations of semantic features.
SceneryAnalyzer thus provides a new, semantics-based ap-
proach to handle queries for images.

Figures 21 and 22 provide sample images and their copies
as annotated by SceneryAnalyzer.

6 Conclusion and discussion

In this paper, we have introduced the concept of the monotonic
tree as a means to model high-level scenery features. Based on
the monotonic tree representation, primitive elements of low-
level features such as color, shape, and spatial location can be
easily identified, clustered, and combined to form semantically
meaningful regions (or features) for images. Thus, images can
be automatically annotated with category keywords, includ-
ing sky, building, tree, wave, lawn, water, snow, and ground.
With this annotation, high-level (semantics-based) querying
and browsing of images can be supported.

We made simple assumptions about the color, location,
harshness, and shape of scenery features. Despite these sim-
ple assumptions, the proposed method achieved better re-
sults (as measured by precision-recall) than traditional CBIR
techniques. These assumptions embody the domain knowl-
edge about scenery images. If we combine the monotonic tree
model with more complex domain knowledge, the accuracy
of the system in extracting semantic features can be increased.

The reduced monotonic tree captures only the topological
structure of the monotonic lines in an image. We may further
define a differential slope and differential monotonic tree to
capture differential information. A differential slope may be
defined as a sequence of monotonic lines where the gradient
is smooth. The differential monotonic tree constructed from
these slopes will be capable of incorporating general domain
knowledge. Thus, we may use the differential monotonic tree
for general semantics extraction.

In future work, we intend to extend the proposed approach
to categories other than scenery images. It may be cumber-
some to provide a hand-crafted strategy for the identification
of structural elements for each semantic feature. It will there-
fore be necessary for us to use machine-learning techniques
to assist in the process of identifying structural elements for
general semantic features.
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Table 2. Performance of SceneryAnalyzer on combinations of features

Sky Sky Tree Tree Sky Sky Sky Tree Sky
Features Tree Wave Building Ground Building Tree Tree Water Snow

Lawn Ground Building
Lawn

|F| 987 92 571 458 100 262 43 363 78
|R| 20 20 20 20 20 20 5 20 20
|F ⋂

R| 17 17 18 18 18 18 5 11 8
Precision 85% 85% 90% 90% 90% 90% 100% 55% 40%
Recall 1.7% 18% 3.1% 3.9% 18% 6.9% 12% 3% 10%

Table 3. Performance of the five traditional CBIR techniques on combinations of features

Sky Sky Tree Tree Sky Sky Sky Tree Sky
Features Tree Wave Building Ground Building Tree Tree Water Snow

Lawn Ground Building
Lawn

|F| 987 92 571 458 100 262 43 363 78
|Rkb| 20 20 20 20 20 20 20 20 20
|F ⋂

Rkb| 7 5 8 3 5 3 0 3 1
Precision 35% 25% 40% 15% 25% 15% 0% 15% 5%
Recall 0.7% 5.4% 1.4% 0.7% 5% 1.1% 0% 0.8% 1.3%
|Rch| 20 20 20 20 20 20 20 20 20
|F ⋂

Rch| 10 2 4 1 3 2 1 5 5
Precision 50% 10% 20% 5% 15% 10% 5% 25% 25%
Recall 1% 2.2% 0.7% 0.2% 3% 0.8% 2.3% 1.4% 6.4%
|Rccv| 20 20 20 20 20 20 20 20 20
|F ⋂

Rccv| 10 1 8 5 0 2 0 7 0
Precision 50% 5% 40% 25% 0% 10% 0% 35% 0%
Recall 1% 1.1% 1.4% 1.1% 0% 0.8% 0% 1.9% 0%
|Rdaub| 20 20 20 20 20 20 20 20 20
|F ⋂

Rdaub| 7 1 1 2 3 1 1 3 1
Precision 35% 5% 5% 10% 15% 5% 5% 15% 5%
Recall 0.7% 1.1% 0.2% 0.4% 3% 0.4% 2.3% 0.8% 1.3%
|Rhaar| 20 20 20 20 20 20 20 20 20
|F ⋂

Rhaar| 7 3 5 2 1 2 1 7 1
Precision 35% 15% 25% 10% 5% 10% 5% 35% 5%
Recall 0.7% 3.3% 0.9% 0.4% 1% 0.8% 2.3% 1.9% 1.3%
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