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1. Introduction

The purpose of this paper is to present a theory for the hedging of American
Contingent Claims (ACCs), under constraints on portfolio-choice which include

(i) prohibition of (or constraints on) borrowing,
(i) prohibition of (or constraints on) short-selling of stocks,
(iii) prohibition of investment in some particular stocks (i.e., incomplete markets),

as well as in the presence of a higher interest rate for borrowing than for saving.
“American” Contingent Claims, such as American call- or put-options, differ
from their “European” counterparts in that they can be exercised by their holder
at any time 0< t < T during a given horizon [0T], where T is the so-
called “maturity” of the claim; in contrast, “European” contingent claims can be
exercised only at maturityt & T). It is this extra feature that makes the valuation
problem for the ACCs more interesting and, of course, more challenging.

The hedging problem for European Contingent Claims (ECCs), in a complete
market andwithout constraintson portfolio choice, is by now well-understood,;
its theory begins with the seminal papers of Black and Scholes (1973) and Merton
(1973), and “matures” with the work of Ross (1976), Harrison and Kreps (1979),
Harrison and Pliska (1981, 1983) through which the connections with arbitrage
and with the equivalent martingale measure are made explicit. The pricing of
ECCsunder constraint®n portfolio choice (which include incomplete markets as
a special case) was developed by Cvitamnd Karatzas (1993) and by Karatzas
and Kou (1996) through a mixture of probabilistic and analytical techniques.
Related work by Ansel and Stricker (1992), Bergman (1995), El Karoui and
Quenez (1991, 1995), Jouini and Kallal (1993), Korn (1992), Naik and Uppal
(1994), Blimer and Kramkov (1995), Kramkov (1996) treated particular aspects
of similar problems, in various degrees of generality.

On the other hand, the valuation theory for American Contingent Claims
with unconstrained portfoliogoes back to Samuelson (1965), to McKean (1965)
who treated formally the valuation problem for the American call-option on a
dividend-paying stock as a question in optimal stopping and solved the associated
free-boundary problem, and to Merton (1973); see our Theorem 7.2, and Smith
(1976), for a survey of this early work. This formal theory was given “financial”
justification by Bensoussan (1984) and Karatzas (1988), based on hedging argu-
ments and using explicitly the equivalent martingale measure methodologies of
Harrison and Pliska (1981); see the survey paper by Myneni (1992), as well as
Karatzas (1997, Sect. 1.4).

We review this theory in Sects. 2 and 3; even within the “classical”’ setup we
present a novel approach because we distinguish clearly the roles of the seller
and the buyer, which are quite asymmetric in the context of ACCs. This asym-
metry reflects itself in the definitions of the upper- and lower-hedging prices in
(3.3) and (3.5), respectively. The main result is that, in a complete market and
without constraints on portfolio choice, the upper- and lower-hedging prices are
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equal, and are given by the maximal expected rewdfd), under the equiva-

lent martingale measure, in an optimal stopping problem involving the claim’s

discounted value (Theorem 3.3); and this common value also gives the unique
arbitrage-free price for the ACC. We present in Sect.3 some of the standard
examples on the American call- and put-options that can be solved explicitly,

both for completeness of exposition and for later usage.

In Sect.4 we formulate the hedging problem for the ACC under general
portfolio constraints The upper- and lower-hedging pricds,(K) andhew(K),
respectively, are extended to this new context (Definitions (4.4) and (4.5)), the
notion of “arbitrage opportunity” is introduced (Definition 4.2), and it is shown
that the interval

(1.1) [hlow(K)a hyp(K )}

is the largest one can obtain based on arbitrage considerations alone: no price
inside this interval leads to an arbitrage opportunity, while every price outside the
interval does (Theorem 4.3). Equivalently, the effect of constraints is to “enlarge”
the set of arbitrage-free prices, from the singlefrf0)} of the unconstrained
case, to the interval (1.1) which contain) (Lemma 3.1 and (4.6)). Similar
results for European Contingent Claims were originated by Karatzas and Kou
(1996).

Section 5 contains the main results of the paper. We specialize there to convex
constraints on portfolio and show, in that context, how to compute the upper-
and lower-hedging prices of (1.1). As in Cvitarand Karatzas (1992, 1993) and
Karatzas and Kou (1996), we introduce an auxiliary fami¥#¢,, v € & of
unconstrained markets (random environments) — each with its own equivalent
martingale measurg,,, discount factory,(-), and hedging price

1.2) u,(0) = supE"[v,(1)B(7)], veZ

7€
for the ACCB(-) with unconstrained portfolios, wher# is the class of stopping
timest with values in the interval [OT]. Our original market-model is a member
of this family, and this latter is designed so as to reflect the convex portfolio
constraints. It turns out that the upper- and lower-hedging prices are given by
the supremum and the infimum, respectively, of the quanities in (1.2), over the
family of all these auxiliary random environments:

(1.3) hup(K) = supu,(0) = sup sup E”[,(7)B(7)],
ves vEY TEY

1.4) how(K) = inf u,(0) = inf supE"[v,(7)B(7)].
ves VEY e

The justification of the representations (1.3), (1.4) is carried out in the Appendices
A and B, respectively; it turns out to be quite demanding, as it involves not only
optimal stopping, but also novel problems in stochastic control and stochastic
games. “Simultaneous Doob-Meyer decompositions,” valid under a whole family
of probability measures, also play an important role in the analysis, as they did in
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El Karoui and Quenez (1991, 1995), Cvitarind Karatzas (1993), and Karatzas
and Kou (1996); see alscofmer and Kramkov (1995), Kramkov (1996).
Sections 6 and 7 use the representations (1.3), (1.dprputethe hedging
prices in a variety of examples, involving the American call-option. Section 8
treats briefly the case of different interest rates for borrowing and saving.

2. The model

We shall deal in this paper with the following standard model for a financial
market. 74 with d + 1 assets, which can be traded continuously. One of these
assets, called thieond (or “bank account”), has pric&(-) governed by

(21) dS(t) = Sr(t)dt, S(0)=1

The remainingd assets are subject to systematic risk; we shall refer to them as
stocks and assume that the price-per-sh&re) of theith stock is modelled by
the equation

d
@2 dSO=SOO Y o OMO]. $©=5 € ©0.0)

=1

foreveryi =1,....d.

In this model. 72, the components of thd-dimensionalBrownian motion
W(t) = (Wi(t),...,Wy(t))*, 0 < t < T, model the independent sources of
systematic risk, and; (t) is the intensity with which thgth source of uncertainty
influences the price of théth stock at timet € [0,T]. Here T > 0 is the
time-horizonof the model; unless explicitly stated otherwise, it will be assumed
finite. The Brownian motionV(:) is defined on the complete probability space
(12,.7 ,P); the augmentation of its natural filtratio W (t) = o(W(s), 0 < s <
t), 0<t <T will be denoted throughout b§ = {.7 (t) }o<t<T. The processes
r(t), 0 <t < T (the interest ratg, b(t) = (bi(t),...,bgt))*, 0 <t < T (the
vector of stock appreciation rategnd o(t) = (oj (t))1<ij<d, 0 < t < T (the
volatility matrix) are the “coefficients” of this model. They will be assumed
throughout to béF-progressively measurable, and bounded uniformlyt jm) €
[0, T] x £2; in addition,o(t, w) will be assumed to be invertible, with=(t, w)
bounded uniformly intw) € [0, T] x £2.

Under these assumptions, thedative riskprocess of Z2, namely

(2:3) o) 2 o OO —r®1, 0<t<T,

is bounded andf-progressively measurable; thus
t t

(24) 2z 2 exp{ [ o@awe - | ||9<s>2ds] 0<t<T
0 0

is a martingale, and
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t
(2.5) wOt) 2 W(t) + / g(s)ds, 0<t<T
0
is a Brownian motion under the probability measure
(26) PO(A) 2 E[Zo(T)1a], A7 (T),

by the Girsanov theorem (e.g. Karatzas and Shreve (1991), Sect. 3.5).

2.1 RemarkThe probability measur® of (2.6) is calledrisk-neutral equivalent
martingale measurst is equivalent taP, and it is clear from (2.3), (2.5) that we
may rewrite (2.2) in the form

d
@7 4SO =S0[On+ Yo OMOD]. SO =s < 0.x)

j=1

or equivalentlyd (1o(t)S (1) = (0(t)S (1)) - Soi; oy ()W, where we have set

t
(2.8) Yo(t)= S)(t)—exp<—/o r(s)ds), 0<t<T.

In other words, undeP? the discounted stock prices()S(-), i =1,....d are
martingales.

2.2 Definition: (i) An F-progressively measurable process [0, T] x 2 — .24
with foT | 7(t)||?dt < oo a.s., is calledportfolio process

(i) An F-adapted process C [0, T] x 2 — [0, c0) with increasing, right-
continuous paths and @) = 0, C(T) < oo a.s., is calledcumulative consump-
tion process. o

2.3 Definition: For any given portfolio/cumulative consumption process pair
(m,C), and x € ., the solution X:) = X*™C(.) of the linear stochastic equa-
tion

d

X0 =3 m0) e (X(t)—Z )G - e

d
=Y m) {bi (t)dt + Z i (AW (t)]

i=1 j=1
d
+ <X(t) =3 m (t)> r(t)dt — dC(t)
i=1
(2.9) = r ()X (t)dt + 7*(t)o (t)dWO(t) — dC(t), X(0) =x,

is called thewealth processcorresponding to initial capital x, portfolio rule(-),
and cumulative consumption rule(¢. o

The interpretation of these quantities should be clegft) represents the
amount of the agent’s wealth that is invested in ittfestock at timet, and this
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amount may be positive or negative, which means that short-selling of stocks is
permitted. The amourX(t) — Z{Ll 7 (t) not invested in stocks is put into the
bank-account, and it too is allowed to take negative values (corresponding to
borrowing rather than saving, at the interest nafg). In particular, the vector

processe(t) = (pa(t), ..., Pa(t)*, andp(t) = (o(t), pat), ..., ¥a(t))*, 0 <

t < T, with entries
p) = {”‘(t)/x(t) X0 70 } i=1....d
mi(t)/S(t) = XOpi(t))/S) ;i
XO-YL O _ XOR-Y_" pO)
provide, respectively, theroportions of wealthand thenumber-of-share$eld
in each of the assets at timieand we obtain

(2.10)  «i(t)

0 (X({t)=0 B
1,...,d}
S(0) = S0 1=0

d
(2.11) X(t)=> ¢it)St), Vo<t<T.

i=0
On the other handZ (t + h) — C(t) represents the amount withdrawn (for “con-
sumption”) during the intervalt(t + h), h > 0. Finally, let us notice that the
solution of (2.9) is given by

X (t) + / ~0(8)dC(s)
O,t]
t
= x + / +o(8)T*(8)o(S)AWOX(s),
0
t
(2.12) =X+ / ()X ()p*(s)a(s)dWO(s), 0<t <T.
0

2.4 Definition: We say that a portfolio/consumption process pairC) as in
Definitions 2.2 and 2.3, isdmissible in.Z for the initial wealth x, if there
exists a nonnegative random variablewith E°(AP) < oo for some p> 1, such
that the wealth process(} = X*™C(.) of (2.9), (2.12) satisfies almost surely:

(2.13) X6TC()y> -4, VO<t<T.
We shall denote by-#y(x) the class of all such pairs.o

The requirement of admissibility is imposed, in order to rule out “doubling
strategies” (cf. Harrison and Pliska (1981), Karatzas and Shreve (1998)); these
achieve arbitrarily large levels of wealth, but violate the condition of Definition
2.4. In particular, ifX(-) is a.s. bounded from below on,[0] as in (2.13), then
the process of (2.12) is B -local martingale and bounded from below, thus a
supermartingale undét®, and the optional sampling theorem gives
(2.14)

(X + [

0,7]

yo(t)dC(t)] <x; Vre.”, V(mC)e. . 4x,71).
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Here and in the sequel, we are denoting.t the class off*-stopping times
T:2—=[st],for0<s<t<T,andlet¥ = .%67.

2.5 Remark on notatiorFor any givenr € . we denote, in (2.14) and in the
sequel, by 4q(X, 7) the class of portfolio/consumption process pairsQG) for
which thestopped process’X™:C (- A ) satisfies the requirement (2.13). Clearly,
Ao(X) = Ao(X, T) C . Ap(X,T), VT € ..

3. American contingent claims in an unconstrained market

Let us consider now the following situation: two agents enter at tinve O

into an agreement. One of them (the “seller”) agrees to provide to the second
agent (the “buyer”) a random amouB{r(w),w) > 0 at timet = r(w), where
72— [0,T] is a stopping time of* andat the disposal of the buye¥Ve shall
assume throughout th& : [0, T] x 2 — [0, c0) is anF-adapted process with
continuous paths and

(3.1) E| sup (o(t)B(t))**| < 0o, for somee > 0.
0<t<T

In return for this commitment, the buyer agrees to pay an ameuntO to the
seller at timet = 0. What should this amount béf? other words, what is the “fair
price” to pay att = O to the seller, for his obligation — to deliver the amount
B(7) > 0 to the buyer at a stopping timec . of the buyer’'s choice?

A processB(-) with the properties stated above is called/merican Con-
tingent Claim(ACC); and the question we just posed, is técing problem
for this American Contingent Claim. The “classical’” examples are the American
call-option B(t) = (S(t) — q)" and the Americamput-option Bt) = (g — S (t))*,

0 <t < T on thei® stock, with exercise price & q < co. As we shall see in
this section, the pricing problem admits a complete solution in the framework of
the model 7 of (2.1), (2.2).

To tackle the pricing problem, one has to look at the situation of each agent
separately. Theseller's objectiveis, starting with the amount > 0 that he
receives from the buyer dt= 0, to find a portfolio/consumption process pair
(#, C) that makes it possible for him to fulfil his obligatiavithout risk(i.e., with
probability one) andvhenever the buyer should choose to ask for the payment:

(3.2) x**C(r) > B(r)as, V7.7

The smallest value of initial capital > 0 that allows the seller to do this, is
calledupper hedging pricéor the ACC:

(3.3) hep 2 inf{x > 0/3(#,C) €. 4(x) st. (3.2) holds.

Consider now théuyer’s objectivehe starts out with the amountx (as he
paysx > 0 to the seller) at timé = 0, and looks for a stopping time€ ., and
a portfolio/consumption strategyr(C) € . 4o(—x, 7), such that, by exercising
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his option at timet = 7(w), the payment that he receives allows him to recover
the debt he incurred at= 0 by purchasing the ACC:

(3.4) X %FC(73)+B(F) > 0, as.

The largest amount > 0 that enables the buyer to do this, is callewer
hedging pricefor the ACC:

(35) how 2 sup{x > 0/37 € .7, (#,C) €. %o(—x, ) st. (3.4) holds.

The reader should not fail to notice tllsymmetryin the definitions of the
upper and lower hedging prices in (3.3), (3.5), respectively. This asymmetry
reflects the fundamental asymmetry in the situations of the seller and the buyer:
the former needs to hedge agai@asiy stopping timer € . in (3.2), whereas
the latter need only hedge as in (3.4) fmmestopping timer’'e ..

The following inequality (3.7) justifies the terminology “upper” and “lower”
hedging price.

3.1 Lemma: Consider the decreasing function

(3.6) ut) £ sup E%o(r)B(r)], 0<t<T.
TEAT

We have

(3.7) 0 < B(0) < hiow < u(0) < hyp < 0.

Proof: If the set of (3.3) is empty, thehy, = co andhy, > u(0) holds trivially;
if not, let x be an arbitrary element of this set, and observe from (2.14), (3.2)
that we have:

> B ol () + |

0,7]

%(t)dé(t)} > Eoo(rB()]; ¥ e S

Thusx > u(0), andh,, > u(0) follows from the arbitrariness of. On the other
hand, the numbeB(0) clearly belongs to the set of (3.5) (just take= B(0) >

0, =0, #(-) =0, C() = 0 in (3.4)); for an arbitrary element > 0 of this
set, (2.14) and (3.4) give

X >E {70(*)Xx’ﬁ’é(%) + 70(t>dé(t>} > “Eo(PB(R)] > —u(O),
(0,7]
whencehoy, < u(0) from the arbitrariness of.

3.2 Remark From condition (3.1), and the boundedness of the pro6éjsn
(2.3), we obtain
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| sup (B =B |2o(T) sup (DB
0<t<T 0<t<T

1/p
< (@)Y (u«: sup (VO(t)B(t»p) < o0

with p=1+e> 1, % + % = 1. In particular,u(0) < oo in (3.6).

Here is the main theoretical result of this section.
3.3 Theorem.The infimum of (3.3) and the supremum of (3.5) are both attained,

and are equal:

(3.8) hup = hiow = U(0) = SUp E%10(r)B(7)] < oc.
TEYS

Furthermore, there exists a pafft, C) € . 4o(u(0)) such that, with

@9) Ro) 2 —resssup ElpBOIZML 0<t<T.
: ,

(3.10) ¥ inf{t € [0,T)/Xo(t) =B(t)} AT,

and7(-) = —7(-), we have almost surely:

(311) XUOFC() =Ro(t) > B(t), VO<t<T,
(3.12) XUOFC(r) = _X-UOFOot) S B(t), VO<t< 7
(3.13) C(F) =0, XUOFC(F)= X UOF0(F)=B(F). o

The portfolior(-) (respectivelyx{(-)) is the optimal hedging portfolidor the
seller (respectively, the buyer). The stopping timeroff(3.10) is theoptimal
exercise timefor the buyer; and the procesé(-) of (3.9) is called theprice-
process of the AC@h [0, T].

We shall refer the reader to Karatzas and Shreve (1998, Sect.2.7) for the
proof of Theorem 3.3; see also the survey by Myneni (1992), and Jacka (1991).
Although closed form solutions are typically not available for pricing Amer-
ican options on finite-horizons, an extensive literature exists on their numerical
computation. We shall make here no attempt to survey all the existing literature;
rather, interested readers are referred to several survey papers and books such as

Broadie and Detemple (1994), Boyle et al. (1996), Carverhill and Webber (1990),
Hull (1993), Wilmott et al. (1993) for a partial list of fairly recent numerical work
on American options and comparisons of efficiency.
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4. Constraints on portfolio choice

Let us introduce noveonstraintson the portfolios available to agents. Suppose
that two Borel subset&., K_ of .22% are given,each of which contains the
origin, and we restrict attention to portfolio/consumption rulesQ) that satisfy

p(t) € Ky, aslong asx*™C(t) > 0
p(t) € K_, aslong aX*™C(t) <0,

wherep(-) is the portfolio-proportion process of (2.10). In other words, our class
of admissible portfolio/consumption process pairs becomes now

A(X) 2 {(,C) €. 40(x)/ Pp(t) €Ki on {X*™C(t) > 0}, and
(4.1) p(t) € K_ on {X*™C(t) <0}, VO<t < T}

We shall consider also the subclasses

A(X) 4 {(m,C) €.4(x)/p(t) € Ky andX*™C(t) >0, VO<t < T, as}
4.2) for x > 0,

A_(x) 2 {(7,C) €.2(x)/p(t) € K_ andX*™C(t) <0, YO<t < T, as}
(4.3) for x <0,

and define 4(x, 1), .4.(x, ) for any givenr € .77, just as in Remark 2.5.

4.1 Remark on notatiotwe shall denote byZ4(K) the market 7 of (2.1), (2.2),
(2.9), constrainedby the requirement that portfolio/consumption rules ¢)
should belong to the class(x) of (4.1).

Consider now, in this constrained marke#(K), an American Contingent
Claim (ACC)B(:) = {B(t), 0 <t < T} as in the beginning of Sect.3. By
analogy with (3.3), (3.5) and the discussion preceding them, we can introduce
the upper-hedging price

(4.4) hup(K) 4 inf{x > 0/3(, C) €. 2.(x) st. (3.2) holds
and thelower-hedging price
(4.5) how(K) 4 sup(x > 0/37 €., 3(, C) €. 4_(—x,7) st. (3.4) holds

of B(-) with constrained portfoliosAnd just as in Lemma 3.1, we have here as
well

(4.6) 0 < B(0) < hiow(K) < u(0) < hyp(K) < oo.

The numbeu(O)é SUP.c.o E%[o(7)B(7)] is the same as in (3.8); however, unlike
the double equalityny, = hew = u(0) of the unconstrained case, here we have
typically hiew(K) < hyp(K). How does then one characterize, or even compute,
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these upper- and lower-hedging prices in the general, constrained &&seshall
try to address this question in the next sections. For the remainder of the present
section, let us take up the important issueadbitrage

4.2 Definition: Suppose that &> O is the price of the American Contingent Claim
B(:) in the market. Z(K), at time t= 0. We say that the triple #Z(K), u, B("))
admits an arbitrage opportunity, if there exists either

(i) a pair (7,C) € . 2.(x) that satisfies
(4.7) x**C(7) > B(r) as, ¥ re.7

for some0 < x < u; or
(i) a stopping timeF € . and a pair (i, C) € . 4_(—x, 7), such that

(4.8) X%#C(7)+B(¥) > 0, as.

holds for some x> u. o

The economic meaningf this definition should be clear. In the first case, an
agent carsell the contingent claim at time= 0 for u > x (i.e., for more than is
required to hedge it without risk throughout the intervalT() in the sense of
(4.7)). In the second case, an agent bagthe contingent claim fou < x (that
is, for less than the amount which allows him to recover his initial debt without
risk, as in (4.8), by exercising his option to the claim at some stopping time ~
in .¥). In either case, there exists an opportunity for creating wealth without
risk, i.e., for arbitrage. Clearlyany price u> 0 that leads to such an arbitrage
opportunity should be excluded

4.3 Theorem. Every u > 0 outside the interva[how(K), hyp(K)] leads to an
arbitrage opportunity in(.Z4(K), u, B), while no u> 0 in this interval does. For
this reason, we callhew(K), hyp(K)] the arbitrage-free interval.

Proof of Theorem 4:30ne checks easily, that the setg, 4 of (4.4), (4.5),
respectively, are intervalsx(€ £, 0<y <x)=y e ¥, and k € %4,y >
X) =y € ?4. Now, if u > hyp(K), for anyx in the interval fi,p(K), u) we have
X € 24, that is (4.7) for some pairt(T) € . 2.(x); similarly, if u < how(K),
for any x in the interval @, how(K)) we havex € £, that is (4.8), for some
stopping timer"c . and some pair#,;C) € . 4_(—x, 7).

Now supposehow(K) < u < hy(K) and that the conditions of (i) are sat-
isfied; from the definition (4.4) ohyy(K), we obtain therh,p(K) < x < u, a
contradiction. We argue similarly, if the conditions of (ii) are satisfiedl.

In the unconstrained setup of Sect. 3, one can show similarly that any price
u # u(0) leads to an arbitrage opportunity in, u, B).
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5. Convex constraints

Let us concentrate henceforth on the important caselaxfed, convesubsets
K+, K_ of .229. We shall assume, as before, thatn K_ contains the origin,
but we shall impose also the additional condition

if A >
(5.1) A\ps+(1—\p_ € {E*’ :; izé }7 for every p. € Ky, p_ € K_.
The function
(5.2) 5(x) 2 Slip(—p*x):%d [0, o]
TeK*

and itseffective domain

K

{xe. 23 c.Rst. —p'x <, VpekKi}

(5.3) {x €. 2%/5(x) < o0}

will play an important role for our subsequent analysis. In the terminology of
Convex Analysis (e.g. Rockafellar 1970)(-) is the support functionof the
convex set-K,, andK is a convex cone, called “barrier cone” of the convex
set —K,. Condition (5.1) guarantees that the set&, and K_ have the same
barrier coneK , on which their support functions add up to zero: in other words,

(5.4) K={xe.#%/33e. 2 st p"’x < (3, VpeK_}
and
eon _ | =0(%), xeK }
55 su X) = ~ 5.
(55) supe {oo’ o

5.1 RemarkThe reader should consult Karatzas and Kou (1996), Proposition 7.2,
for justification of the claims in the last sentence. It is also shown in that paper
(Proposition 7.1) that the condition (5.1) guarantees the following “superposition
property”: for arbitrary but fixet,, X, in.22, and any £, C;) € .4(x) (i = 1,2),
there exists a pairn(, C) € . 4(xg + X2) such that

(5.6) XxaremC ity = )amCut) + XemC () vO<t<T. o
Finally, we shall assume throughout that
(5.7) the functions(-) of (5.2) is continuous o ;

a sufficient condition for this, is that the barrier coKe of (5.3) be locally
simplicial (cf. Rockafellar (1970), Theorem 10.2 on p. 84).

Here are some examples of convex constraint sets that satisfy all the as-
sumptions of this section. In discussing these, it will be useful to recall the
number-of-shares processeg:), i =0,1,...,d of (2.10).
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5.2 Example: Unconstrained cage € .22%*1). In other wordsK., = K_ =.229;
thenK = {0}, §(-) =0 onK.

5.3 Example: Prohibition of short-selling oj stocks >0, 1 <i <d). In~other
words, K, = [0, 00)¢, K_ = (—o0, 0]¢; hereK = [0, o0)¢, andd(-) = 0 onK.

5.4 Example: Incomplete markgti = 0, m+1 <i < d). Suppose now that only
the firstm stocks, 1< m < d-—1, can be traded. Thef. =K_ ={p € .%d/pi =
0,Vi =m+1,....d} and we obtairK = {x € .229/x =0, Vi = 1,...,m},
5()=0onK.

5.5 Example: Both Kand K. = —K, are closed convex cones iw¢. Then
K = {x € . 29/p*x > 0, ¥p € K:}, andd(-) = 0 on K. Clearly, this is a
generalization of Examples 5.2-5.4.

5.6 Example Prohibition of borrowmqépo > 0). In other wordsK, = {p €
Y Sp < 1 Ko ={pe 2/ Yl 2 1) ThenK = {x € 29/x =
-+ =Xg < 0}, andd(x) = —x; on K.

5.7 Example: Constraints on borrowing\ generalization of the previous ex-
ample isK, = {p € .%d/zid:lpi < k} for somek > 1, andK_ = {p €
229/ 3% p >k} ThenK = {x € .229/x = --- = x4 < 0}, andd(x) = —kxy,
for x € K.

5.8 Example: Constraints on the short-selling of stoékgeneralization of Ex-
ample 5.3 isK: = [—k,00)? for somek > 0, andK_ = (—oo,—k]%; then
=[0,00) andd(x) =k 3%, % onK.

In the context of European contingent claims, the techniques for handling
such convex constraints on portfolio choice were introduced by Ctitand
Karatzas (1993) and were further extended by Karatzas and Kou (1996). The
basic idea is to introduce auxiliary family{. 74, }, <~ of random environments
parametrized by processeé) in a suitable familyZ which contains the market
model . Z of Sect.2:. .74 = . #¢,, for the choicer = 0 in &. Within each
member.#, of this family, the pricing problem for the American Contingent
Claim B(-) is then solved exactly as in Sect.3; and by analogy with Theorem
3.3, one obtains

(5.8) u,(0) £ SUPELL (B, v €

as both the upper- and lower-hedging prices @f)Bvith unconstrained portfolios,
in the auxiliary random environmentZ,,. Then, the task is to show that the
upper- and lower-hedging prices 8f-), in the constrained markeZ4(K) of
Sect. 4, are given by

(5.9) hyp(K) = supu,(0) = sup sup E"[,(7)B(7)] =

VEY vEY TES

(5.10) hiow(K) = inf u,(0) = inf supE"[~,(7)B(7)] =
veEY VEY rcs
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respectively (provided, for (5.10), th&t < co or v = 0).

In order to introduce in detail this family{.Z,},c of random envi-
ronments, let7 be the space of-progressively measurable processes
[0,T] x £2 — K which satisfy

.
(5.11) E /0 (Iv(0)]% + 5((t))dt < co.

For everyr € .77, consider now the market mode#?,, as in (2.1), (2.2), but with
r(),b() replaced by )(t) 2 r(-) +6(v()) andb®(t) 2 b(-) + v() + 6(() a,
respectively:

(5.12) ds”(t) = O ) +o@m)dt, §(0) =1,
d
(5.13) ds™(t) =S“t) [(bi (t) +u(t) + () dt + > oy (1)WY (t)} :
j=1

with S(”)(O) =5 € (0,00), i =1,...,d. Inthis new market model, the analogues
of the processes in (2.8) and (2.3)-(2.5) are given as

(5.14) () 2 =exp[—/t(f(S)+5(V(S)))dS],
0

1
(1)
o HOIBY(O — rI1a] = 00) + 00,
t . 1 t 5
exp| - [ i@ - 5 [ I0.@IP.

1>

(5.15) 0,(t)

1>

(5.16) Z,(t)

t
W) 2w+ / 0,(s)ds
0

t

(5.17) =wOt) + / o Y s)v(s)ds, 0<t<T,
0

respectively. For every(-) in the subclass

(5.18) g2fver/ s e <o)

(t,w)€[0,T]x 2

of boundedprocesses i, the exponential proce,(-) of (5.16) is a martin-
gale, and the proce®¥™)(.) of (5.17) is a Brownian motion under tipeobability
measure

(5.19) PY(A) 2 E[Z,(T)1a], Ac.Z7(T),

by Girsanov’s theorem (Karatzas and Shreve (1991), Sect. 3.5).

5.9 RemarkThe equations of (2.2) for the stock-price processes can be written
in the form
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d
(520)  dS(1) =SO|®) —w@)dt+) oy (t)dV\é(”)}, i=1....d

j=1

in terms of the procesw/®)(-) of (5.17). In the special case of an Incomplete
Market (Example 5.4), it develops from this equation ttra discounted stock
pricesv(-)S (), i = 1,...,m are martingales under each probability measure
in the family{P"},c+ . For this reason, evel” (v € &) is called “equivalent
martingale measure” for the mode#Z of (2.1)-(2.2), withi =1,...,m.

5.10 RemarkNotice that, in conjunction with (5.14) and (5.17), we can rewrite
the equation (2.12) foX(-) = X*™€(.) equivalently as

T OXETE (1) + / 7(8)AC(s)
O,t]
t
+ /O Y (S)XITE(S)[5(v(s)) + v*(s)p(s)]ds
(5.21) =X+ / t 7, (S)X*™C (s)p*(s)o(s)dW™)(s), 0<t<T
0

for everyv € &; here agairp(-) is the portfolio-proportion process of (2.10).

5.11 Remarklt should be clear now, from the notation of (5.12)-(5.19) and
Theorem 3.3, that the quantity,(0) of (5.8) is indeed the (upper-, and lower-)
hedging price of the American Contingent ClaBqg-) with unconstrained port-
folios in ., Vv € &; on the other hand, the arguments of Remark 3.2 (in
conjunction with the boundedness ©f)) showu,(0) < oo, Vv € &. Let us
consider also, for every € &7, the analogue

(5.22) X, (t) 4 % esssup. o, B[ (T)B(7)|7 ()], 0<t<T,

of (3.9). This is the price-process i#Z, of the American Contingent Claim
B(:); clearly, X,(0) = u,(0) and X,(T) = B(T), a.s. Finally, we introduce the
processes

(5.23) X(t) 2 esssup., X, (1),  X(t) = essinfe X, (t); 0<t<T.

These satisfyX(0) = V, X(0) = v in the notation of (5.9), (5.10), as well as
X(T) = X(T) =B(T), a.s.

Here are the two main results of this paper, which justify the claims of (5.9)
and (5.10).

5.12 Theorem:The upper-hedging price f(K) of (4.4) is given by

(5.9) hup(K) =V 2 supu,(0) = sup sup E”[~,(r)B(7)].
veEY VEY TEY

Furthermore, if V < oo, there exists a pai(r, é) € .4+(V) such that
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(5.24) XV#C(r)=X(r) > B(r), Vre.s

holds, almost surely.

Proof: The inequalityV < hyy(K) is obvious, ifhyy(K) = oo; if not, the set of

(4.4) is nonempty. Withx > 0 an arbitrary element of this set, and, C)
-4+(x) any portfolio/consumption process pair that satisfies (3.2), the process of
(5.21) is then a nonnegative local martingale, thus also a supermartingale, under
P¥. Consequently, from (3.2), (4.2), (5.2) and the Optional Sampling Theorem,
we obtain

= B xS [ aude

0,7]

+ /0 %(s)xx””“é(s){&(y(s))+y*(s)p(s)}ds]
> E’[,(r)B(7)], for everyr €. andv € &,

in the notation of (2.10) for the portfolio-proportion procgss) = (p.(-),. .-
., Pa(-))*, namely,

;rlit) if XX,fr,é
2 {xecn T O=0 G
0 ,if X6mC(t) =0
Therefore,x > sup,c., sup.c.o E’[7.(7)B(7)] = V, andhyy(K) > V follows
from the arbitrariness of in the set of (4.4).
Similarly, the inequalityhyp(K) <V is trivial, if V = co. In Appendix A we

establish this inequality, as well as the remaining claims of the Theorem, for the
caseV <oco. o

5.13 Theorem:The lower-hedging price\&,(K) of (4.5) satisfies

(5.10Y how(K) < v 2 inf u,(0) = inf supE”[v,(7)B(7)],
veos ves %

/ .S

with equality if V < oo or if v = 0. In the case V< oo, there exists a pair
(w,C) € .4_(—v) such that

(525) —X""TC(Apo) =X(-Apo) > B() and —X"""C(pg) = B(po)
hold almost surely, with
(5.26) p 2 inf{uet, T)/XU)=BU)} AT, 0<t<T,

provided thatv > 0.

Proof: The inequalityv > how(K) is obvious, ifhoy(K) = 0. If not, the set of
(4.5) is nonempty; take aarbitrary x > 0 in this set, as well as any .7
and (r,C) € .4_(—x, 1) for which (3.4) holds. From (5.21), the process
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T OX () + / 1 (9)AE ()
0,t]

t

(5.27) +/ TIXFFEG(S) + v (S)P(S)]ds, 0<t<T
0

is then aP”-local martingale, for every € &/. Here again, we have employed
the notation

i (t) oy

< —_— =" if X x,m,C t)>0 i

bi() 2 {xmvc(t) v() } i=1...,d.
0 i XTXTC() =0

of (2.10) for the portfolio-proportion procesX-) = (B1(-), ..., Pqa())*. The sec-

ond and third terms in this expression are nonnegative (recall here (4.3) and (5.5)),
whereas the first term dominates the random variable max<:<1 7. (t), which

is P¥-integrable. To see this, take into account the boundedneags)ofv(-) and
o~1(:), observe

Z,(t)
Zo(t)

from (5.16), and argue as in Remark 3.2 that

Vo[ ZAT) Z,(T)\ "\ ¥
(5.29) E¥(A) _EO[ZO(T) -A} < (EO(AP))Y/P. (EO(ZO(T)) ) <00

with p > 1 as in Definition 2.4 and + 1 = 1.

It develops that the local martingale of (5.27) is bounded from below by
a P¥-integrable random variable and is thus a supermartingale, UPitlevWe
obtain, from (3.4) and the optional sampling theorem:

(5.28)

t t
=exp| ~ [ (o O WO - 5 [ o iemts)ds

X 2B OO [ u0aEe)

0,7]

+/O B (OX X FEO[(AD) + v OBD)]dt
> —E"[v(F)B()] = —uw,(0), VveZ

whencev = inf,c4 U,(0) > X, and thusv > hy(K) from the arbitrariness of
x > 0 in the set of (4.5).

Similarly, the inequalityv < hioy(K) is obvious, ifv = 0; in Appendix B we
establish this inequality, as well as the remaining claims of the theorem, for the
case (>0, V <). o

Let us consider, in addition to those of (5.26), the stopping times
(5.30) (V) 4 inf{u e [t,T)/X,(U) =BU}AT, 0<t<T

for everyrv € &7, and notice that
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(5.31) pe<pe(v), 0<t<T (Vrve).

In terms of these stopping times we have the following, somewhat simpler,
representations fdn,p(K) andhiew(K). These are also proved in Appendix B.

5.14 Proposition Suppose that \< oo. Then the processes of (5.23) admit the
representations

(5.32)  X(t) :esssupe,jE”[Yy”V((ptt)) X (pr) .7(t)},
(5.33)  X(t) :essinLGQJE"D”(gt)) B(pt).7(t)], 0<t<T.

In particular, the operations of “infimum” and “supremum?” in the definition of
X(-) can be interchanged:

X(t) =essinfe. esssup.,, E” D”((:)) B(7) .7(t)]
(5.34) = esssup. ., essinfeo E” D"((:)) B(7) .\47(t)], 0<t<T

and we have

(5.35) hiow(K)

inf B[, (po)B(po)] = sup inf E”[v, (T)B(7)],
veY res VEY

(5:36) hyp(K) = SUPE”[7,(p0)X(po)] = sup SUPE*[,(r)B(7)]. o

veY TES VEY

5.15 RemarkIn the case of arAmerican put-option &) = (g — S(t))* with
r(-) > 0, we have clearlyv. < q < oo. For anAmerican call-option Bt) =
(S(t) — g)* we haveV < o if and only if

(5.37) X — §(X) +% is bounded from below o .

This can be shown in exactly the same way as in Remarks 6.8-6.10 of Gvitani
and Karatzas (1993); the condition (5.37) is satisfied, in particular, if

(5.37) { K. contains both the origin and th& }

unit vector ¢ =(0,...0,1,0,...,0).

5.16 RemarksThe reader should not fail to notice that the maximizations in (5.9),
(5.23) for X(-), involve amixed optimal stopping/stochastic control probjeim
which the controller maximizes over both the stopping times . and the
control process € &.

Similarly, the optimization problem in (5.10), (5.23) fof(-), involves a
stochastic gamdetween two players: one of them, the “maximizer”, chooses
the stopping timer € ., whereas the second player, the “minimizer”, gets to
choose the processe &7. The order in which these operations are carried out
is irrelevant, as (5.34) shows, and thus the game has “value” pr&gess
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The reduction of the representation (5.10) to (5.35), which involves only the
stopping timepy instead of the entire family”, should not be surprising: it
reflects the fact that the buyer has to select prst stopping time, which turns
out to bepo.

5.17 RemarkIn the absence of condition (5.1), the property (5.5) ceases, in
general, to be valid; however the representation (5.10) still stands, if one replaces
there the class of processés by the classZ of Theorem 6.1 in Karatzas and
Kou (1996), and (5.9) still holds without any modification.

We should like to point out that there are examples of constraint sets with
clear economic meaning, which violate the assumption (5.1). We present two
such examples below.

5.18 Example: Constraints on short-selling of stogkgeneralization of Example
5.3 is to takeK, = [k, o0)?, K_ = (—o0, 1]9, wherek > 0 andl > 0. Using
(2.10), this constraint can be easily translated as

0s@=xopo = { o0 001 -1

In other words, the economic meaning is that the amount of short-selling should
be not more thak times the total amount of the wealth, if the wealth is positive,
and not more thar times the absolute value of the wealth, if the wealth is
negative. Certainly, an interesting special cade 7sl. Notice that the constraint
setsK, and K_ increase to2? ask and| go to infinity. Intuitively, such a
property should lead to the conclusion that the arbitrage-free interval will shrink
then to{u(0)}; the details will be given in the next section.

5.19 Example: Constraints on borrowing generalization of Example 5.6 is to
take K. = {p € 29/ Lp < k+1} Ko ={pe.2/Ylp >1-1}
wherek > 0 andl > 0. Again using (2.10), it can be translated as

d .
A0SO =X~ 3 pO) > (e ez}
i=
In other words, the amount borrowed is limited to not more tkaimes total
wealth, if the wealth is positive, and totimes the absolute value of wealth,
if the wealth is negative. Notice again that the constraints become weaker and
weaker ak and! increase.
We shall treat these two examples separately in the next section. Their coun-
terparts for European contingent claims are studied in Karatzas and Kou (1996).
We shall close this section with a couple of results aboutAimerican call-
option B(-) = (S(-) — q)* on thei stock.

5.20 Proposition Suppose that we havé-y > 0, and that for som@ < ¢ < oo,

(5.38) —0<5(X)+x <0, VxeK.
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Then the upper- and lower-hedging prices of (4.4), (4.5) for the American call-
option B(-) = (S(-) — q)*, are given by their counterparts for the corresponding
European call-option

(5.39)

hup(K) = SUPE”[7,(T)(S(T) — )], hiow(K) = inf E"[4,(T)(S(T) —a)"],
veEY vey

respectively.

Proof: From (5.20) and (5.17), (5.14), we have

d
(5.40) d(1 S O) = (L OS 1) [ G0 O+ gy (t)dvvJ-(”)(t)} ,

j=1

or equivalently
t
7S () = S(0) exp{ - /0 (0@ (s)) + v (S))dS}My(t)

2 t y 1
(5.41) M, (t) = exp{/o 0i (s)dW®)(s) — E/0 o (s)||2ds}, 0<t<T.

This shows that, under (5.38), the process of (5.41) & -awubmartingale, for
everyv € & (we have introduced the row-vectot(-) = (oi1(:),. - -, gid ().
Consequently, from the decreaseypft) = exp{— fé[r +(v(s))]ds} and Jensen’s
inequality,y, (-)(S () —a)" = (7.()S () —a7.())" is also aP”-submartingale. By
analogy with Example 3.6, it develops now again tha0) = E¥[~, (T)(S(T) —
g)*] in (5.8) Vv € &), and (5.39) follows from Theorems 5.12, 5.13 and
Remark 5.15.

5.21 Proposition Suppose that the interest-rate proce$$ satisfies (-) < r for
some real constant > 0, and that the function

(5.42) x — 6(x)+x is both nonnegative, and unbounded from aboveKon

Then the upper- and lower-hedging prices of (4.4), (4.5) for the American call-
option B()) = (S()) — q)" satisfy

(5.43) hup(K) < S(0),  hiow(K) =B(0) = (S(0) —a)".

Proof: The condition (5.42) implies that the process
(5.44) v ()S () of (5.40) is aP”—supermartingale W € &),

and thusu,(0) < 7,(0)S(0) = S(0) by the optional sampling theorem; this
leads directly to the first claim of (5.43). For the second, observe that given any
0<e<T, 7 €. and any element in the spacg of bounded, deterministic
(nonrandom) functions : [0, T] — K, we have



American contingent claims 235

B/l ()& () — )] < B[ (1S (D 1(roey]
SB[, (DS (7) — ge Jo (OO g
< E'[3,(9S (] + EV[(S OM,.(7) — A()" - 1<)
< §(0)e™ Jo OO rip (0] + B(S (OM, (€) — a(6))’
(5.45)  =5(0 oCOMOE LA (o)

where q()2qexp( — [y(r + 0((s)ds), M, ()= exp{fy oi(s)dWM(s)
—%fg loi(s)||?ds} is the P¥-martingale that appears in (5.41), aid(c)

4 EY(S(0)M,(¢) — q(e))*. In deriving (5.45) we have used the property (5.44),
the nonnegativity ok — d(x) +x on K, and Jensen’s inequality (to argue that
(SOM,(-) — q(e))* is aP”-submartingale). Now (5.45), (5.42) and Theorem
5.13 give

how(K) < inf SUpE"[,(7)(S(7) — a)']
VE‘«/dTE-‘/’

“(8(v(s))+i (9))ds

< Ao()+S(0) inf e o = Ao(o)

vEYy
for every 0< e < T. But the family of random variable§Mg(e) }o<c<T IS Uni-
formly integrable undeP?, as is checked by observing that gup. 1 E°(Mo(e))?
< expkT) holds, wherek is an upper bound onc;(-)||>. Thus, we have
hiow(K) < Tim.j0A0(€) = (S(0) — q)* = B(0). The reverse inequality is already
in (4.6). o

6. Market with constant coefficients

Let us consider now the case of a market witinstant coefficients

(6.1) r()=r>0, o()=o,

wherecs is a given, invertible,d x d) matrix, and a payoff process of the form
(6.2) BO=¢(&M®),. . .S(), 0<t<T.

Here : (0,00)? — [0,0) is a continuous function, and we assume that the
condition (3.1) is satisfied.

With given constraint set&, and K_, as in the beginning of Sect.5, we
define the functions

63) ¢x) 2 sup[e %™y (xie™, ..., xge )], X € (0, 00)"
vek
6.4) o) 2inf (672 (e ™, ..., xqe7 )], x € (0,00)".
- vek
Our next result shows that, under the conditions (6.1) and (6.2), the mixed

optimal-stopping/stochastic-control problem of (5.9) can be reducedpora
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optimal stopping problem. This reduction is along the lines of a similar result
for European contingent claims, due to Broadie et al. (1996).

6.1 Theorem: The quantity of Theorem 5.12, namely
(5.9) V2 supsupE” [N I (s () LS ()] = hup(K).
veEY TS

is given by

(6.5) V = supE° [e"" - o(S(7), ... S (7))]

TEY

under the conditions (6.1), (6.2) and in the notation of (6.3).

A slightly weaker result holds for the lower hedging price.
6.2 Theorem.The quantity of Theorem 5.13, namely
(5:20) 02 inf supE” &k O (s (), 5 ()] > how(K),
veEY TEY

satisfies

(6.6) v > supR° e oS (M),...% (1)

TEY

under the conditions (6.1), (6.2) and in the notation of (6.4).

Recall from Theorem 5.13 that.@) holds as equality, it =0 or if V < oc.
Clearly (6.6) also holds as equality 4f = 0; as we show in (6.13) below, the
inequality (6.6) may be strict it > 0, even wherV < oo holds.

Both Theorems 6.1 and 6.2 will be proved in Appendix C. For the reminder
of this section, let us discuss the case offanerican call-option

(6.7) BO=(S®-a), 0<t<T

on thei'™ stock, with exercise pricg > 0, as in Example 3.6, but now under
various constraints on portfolio choice. We place ourselves under condition (6.1),
except in the discussion of Examples 5.18 and 5.19.

6.3 RemarkUnder the assumption (5.42), we have now from Theorem 6.1 the
representation

(6.8) hup (K) = supE® [e™"" - (S (7))]

TEYS

for the upper-hedging-price in (5.43), where

(6.9) ¢ (x) = sup {e“s(") (xe™ — q)j , X €(0,00)
vek
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is the function of (6.3).

5.6 Example: Prohibition of borrowingcontinued). In this case we havéx) +
X =0 (vx € K) and the quantities of (5.39) are given by

(6.10)  hy(K)=S1(0), and hew(K)=u(0) =E°[e"(S(T) - q)']

asin (3.27)-(3.30), respectively; see Example 7.2 in Cvitand Karatzas (1993),
as well as Example 8.1 and Remark 8.1 in Karatzas and Kou (1996).

5.4 Example: Incomplete market < i < m (continued). Here, too, we have
0(x) +x =0 (vx € K), and (6.2) gives

hup(K) = hiow(K) = u(0) =E°[e""(S(T) — a)'];
recall Example 8.5 (a) in Karatzas and Kou (1996).

5.3 Example: Prohibition of short-selling of stpcﬂ@ntinued). In this cas&Xx) +
X, =X is both nonnegative and unboundedre [0, o0)? and we have

(6.11) how(K) = (S1(0)—a)* = v, hy(K) =E°[e"(S(T)—a)"] =V = u(0)

as in Examples 1.4.7, 1.3.2 in Karatzas (1997). Indeed, the first of these claims
follows from (5.43) of Proposition 5.21. For the second claim, recall from these
Examples (loc. cit.) that the portfolio-proportion process) takes values in
K. = [0, 00)? and thatu(0) belongs to the set of (4.4), sin¥g(t) = X"O-%0(t) =
E[e"0T=9(§(T) — q)*|.7 ()] > (S(t) — @)* =B(t), 0 <t < T holds almost
surely; this giveshyp(K) < u(0), whereas the reverse inequality comes from
(4.6).

Notice that in this case, and with = 1 for simplicity, the function of (6.4)
is given by

(6.12) p(x)= Vn;]:) (xe”—q) =0, 0<x<o0

and thus, fors; (0) > q, the inequality of (6.6) is strict:
(6.13) v=5(0)—q>0= supE’[e""" - p (S (7))] -
TEY
o
5.8 Example: Constraints on the short-selling of sto@@antinued). Here again,
oxX)+x = (1 +k)x +k Zj 4 % is nonnegative and unbounded Kn= [0, co)Y;
the same argument as before leads again to the formulae of (6.11).

5.7 Example: Constraints on borrowin@ontinued). In this casé(x) + x =
(1 — k)% is nonnegative and unbounded Kn= {x € .22%/x; = --- = x4 < 0},
sincek > 1; therefore, the lower hedging price is

(6.14) hiow(K) = (§(0) — )" = B(0),

from Proposition 5.21. On the other hand, we have
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(6.15)

a0 < i) < a2 B0 e (s - 4 ) |+ 5P <50

for the upper hedging price. To see this, recall from Karatzas and Kou (1996)
(Example 8.1, proof of (8.2)) that there exists a portfal{g) With corresponding
wealth-process given by

S(t)

% 2 7o =6 e T (K sm-a) |70]+ 3 o<t

and with portfolio-proportion process (-“)éfr(-)/f((-) satisfyingpgi(-) < k and
Bi()=0,V]j #i (i.e. f(-) € K). Using the fact thae~" S (t) is aP°-martingale,
and thuse~"(S(t) — q)* aP%-submartingale, we deduce

X(t) =E° {e—f”—t){ (";15(T) _ q> + SI((T)} ,?(t)}

> Ee T (S(T) —a)' |7 ()] > (S) —q)" =B(), YO<t<T

almost surely. In other wordsy belongs to the set of (4.4), thigp(K) < a.
Notice that, ak increases, the bounds of (6.15) become tighter,and, u(0)
ask — oo.

Note that, in this case, the function of (6.9) becomes

(6.16) Qp—(x):{(cq)(x/c)k ;0<x§c}’ o= kq
X—q ;X >C

and thus the upper hedging pribg, (K) is given as the optimal expected payoff
of the optimal stopping problem (6.8) for this reward function. We have not been
able to solve this optimal problem explicitly; see, however, (7.22)-(7.24) below
for the solution of this problem on anfinite time-horizon o

5.4 Example: Incomplete market, i1l < i < d (continued). In this case the
stock, on which the American call-optid3(-) = (S() — g)* is written, cannot be
traded. We have thai(x) +X = is unbounded oK = {x € .22%/x =0, Vj =

1,...,m}, both from above and from below; thivs 4 Sup,co U, (0) = oo from
Remark 5.15, and

(6.17) hup(K) = 00

from Theorem 5.12. On the other hand, arguments similar to those in the proof
of Proposition 6.2 give

v £ inf u,(0) < (S(0)— q)* =B(0).
ves

Indeed, we have for any € ., 0< e < T, v € &, in the notation of (5.41)
and (5.45), that
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E’ [ (7)(S (1) — a)’]
T €
<BUSOex( [ v (s [ uEds) M)~ ) L]
B0l | 1 (s} M) ~ e ) <]

T e 4
< seh OSSO A (o),

A9 2 /ﬁ (a ©) exp{ /0 U (9)ds

1 L\ e
Hlollzve - glalle} ~aere) -

and we have denotefb; || é,/Zjdzl of. Taking the infimum over ¢ %, we
obtain

where

—2%/2

dz,

v < inf SUpEY[v,(T)(S (1) — q)*] < Ag(e), VO0<e<T,
VEL rcs

and thusy < Tim0Ao(€) = (S(0)—q)*. This way we deducbie(K) < (S(0)—
g)* = B(0). The reverse inequality is also valid, thanks to (4.6), and gives

(6.18) hiow(K) = (§(0) — )" = B(0).

5.18 Example: Constraints on the short-selling of sto@mitinued). Arguing as
in Example 5.3, we have directly

hup(K) = E°[e”"(S(T) — 9)"] = u(0)

by (3.27)-(3.29). Furthermore, the price of an American option must be higher
than that of its European counterpart, and thus we get from Example 8.2 and
Remark 8.3 in Karatzas and Kou (1996) that

u(0) > hw(K) > p >0,

for | > 1; herep 2E°[e~"T (Sy(T) _q)+1{sl(T)z%}] can be computed explicitly
as in Remark 8.3 or Sect. 10 of Karatzas and Kou (1996), mnd"* u(0) as
| — oco.

5.19 Example: Constraints on borrowingontinued). From (3.27)-(3.30), the
portfolio-proportion procesp(-) takes values ifiK_ andu(0) belongs to the set
of (4.5). Thus,how(K) = u(0), and the previous analysis of Example 5.7 yields
u(0) < hyp(K) < a.
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7. American call-option on infinite-horizon and with dividends

We shall consider in this section thmerican call-option Bt) = (S(t) — q)*,
0 <t < oo on an infinite horizorin a market model with constant coefficients
r >0 0=o011>0 g >0, and one stockd = 1,S(-) = $(-)) which pays
dividendsat a certain fixed rat@ € (O, r).

This constant dividend rate makes itself felt in the wealth-equation (2.9),
where one should replada(-) by by(:) + 5; equivalently, this means that the
relative-risk process of (2.3) becomes

(7.1) o0 2 Zou+0 1), 0<t<ox,

and (2.4)-(2.6) are to be understood now with the new definition (7.8)-pf

7.1 RemarkThe fact that we are working now on the infinite time-horizon}9,
rather than on a finite time-interval ,[0], necessitates certain changes in the
measure-theoretic setup of the model, particularly concerning the measurability
requirements on the procesdag:), 7(-), C(:), v(-) and the construction of the
probability measureB?, PV (v € &). These can be taken care of as in Sect. 1.7
of Karatzas and Shreve (1998), where we refer the reader for details.

Denoting byx = S(0) € (0, ) the initial stock-price, we have now from
(2.2), (7.1), and (2.5):
(7.2)

S(t) =x - expleWO@) +(r — 3 — %Z)t] =x- exple(WO)—pt)] 0<t<oo

where,oé % + Z. From this, it is not hard to verify the properties

(7.3) EO{ sup (Y(t))“f] <oo, for0<ec< 2—6
0 (o)

<t<oo
as well as lim_, . Y (t) = 0 (a.s.P) for the discounted process

v 2 [ C0-an ost<ol,

In particular, the condition (3.1) is satisfied.

Let us deal first with theinconstrained casehis is a well-known problem,
going back to McKean'’s (1965) classic paper, but we shall sketch here the main
lines of the argument for completeness and future reference; all the details can
be found in Sect. 2.6 of Karatzas and Shreve (1998). Our main effort will go into
computing theoptimal reward function

(7.4) G(x) 2 sup Ee""(S(r) — q)'], 0<x < oo
TER, 00

for a givenq € (0, ), because then therice-procesof (3.9) becomes
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Xo(t) = ess sup.,, E°[e" " O(S(r) - q)']

(7.5) G(S(t)) = (S(t) —a)" =B(t), 0<t<oo,

and 1©’s rule gives theoptimal hedging portfoliar(-) of Theorem 3.3 as
(t) = S(t) G'(S()),
Ao () _ S(t) G'(S(t))
79 PO %0 ™ eEm)

In order to compute the optimal reward function of (7.4), we look first at stopping
times of the form

0<t <oo.

inf{t > 0/S(t) > a}
inf {t > o/w<°>(t) —pt > %Iog (i) } a € (g, 00).

We shall find in this class a stopping timg that maximizes the expected dis-
counted rewar®°[e~""(S(7) — q)*], and then argue that, is optimal amongall
stopping times. Standard theory (e.g. Karatzas and Shreve (1991), p.176) gives
the Laplace transform of the distribution of the stopping tirpen (7.7), as

2l )
(7.8)  E°%e"™) = (;) . where v 2 VPR A A € <1’r ' ﬂ)
. -

Ta

(7.7)

is the positive root of the equatiofglf2 —p& — L =0. Thus,

A —Opa—rma no J@@-g)(3); O0<x<a
79 00 2 Eoe (st - )= { @D 2ox<a )
for everya > ¢, and

74
v—1

(7.10) g(x) a supga(X) = gp(x), 0< X < oo, whereb 4
a>q

It follows from (7.9), (7.10) that the functiog,(-) is convex increasing with
(7.11) 0<gi()<1

and of classC1((0, 00)\{a}), for everya € (q, cc); it is of classC*(0, o0), i.e.
we have thé'smooth-fit” condition

(7.12) ga(@a=)=1=gl(a+), ifandonlyif a=h.

In fact, the functiong(-) = gn(-) of (7.10) is of clas (0, o) NC2((0, >0)\{b}),
and solves theariational inequality

Zx2g"(x) + (r — A)xg'(x) —rg(x) =0 0 <x<b
=—(fx—-rq)<0; X >Db
(7.13) g(x) > (x—q); 0 <x<b

g(X) =X -q; X >Db.
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7.2 Theorem: McKean (1965) The optimal reward function ) of (7.4) is given
by

714) G0 =900 =m0 = { L7 DET D= 4 p= 2

-q; b<x<oo Ty -1

as in (7.8)-(7.10). In terms of it, the price-proceX¥s(:) of (3.9), the optimal
hedging portfolio-proportion process(), the optimal exercise timé of (3.10)
and the cash-flow proce&3(-) of Theorem 3.3, are given by (7.5),

R ' ;7 0<S(t)<b }
7.15 t) = 1,7], 0<t
719 p0={e | IO pean ostax
(7.16) F=m 2 inf{t >0/S(t) >b},  and
R t
a1 C0= [ (W) - misundu 0<t<o

respectively. In particular,

u(0) = X(0) =G(S(0))

Xo(t) = XUOFC(t) = G(S(t)) > (S(t) — )" =B(t), 0<t < oo,
(7.18) C(¥) =0, XUOFC(3)=B(¥).

Let us deal now witlconvex constraintsn portfolio, as in Sect.5. We have
the analogues of (5.20) and (5.41)

ds(t) = S@)[(r — 8 — v(t))dt + cdW®(1)],

2SO = SO exp [— / (5 + 50w + v+ oW )~ 1.
0
(7.19)

for 0 <t < oo, and it is relatively easy to check thBtoposition 5.21 remains
valid in this infinite-horizon case as well.

5.3 Example: Prohibition of short-selling of sto@ontinued). Her&,. = [0, o),
K- =(—00,0] and4(x) +x = X is both nonnegative and unbounded from above
on K =10, c0), which leads to

(7.20) hiow(K) = B(0) = (S(0) — )",  hup(K) = u(0) = G(S(0)).

Indeed, the first claim follows from Proposition 6.2, wherégs(K) < u(0) =
G(S(0)) is a consequence of (7.15) (which impligs) € K.) and of (7.5), (7.18)
(which imply then thau(0) belongs to the set of (4.4)); the reverse inequality is
a consequence of (4.6).
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5.8 Example: Constraints on the short-selling of stgctntinued). In this case
K: = [k, 0), K_ = (—00, —k] for somek > 0, and againi(x) + x = (1 +k)x
is nonnegative and unbounded from abovekor [0, 00); arguments similar to
those of the previous case lead to the same computations as in (7.20).

5.7 Example: Constraints on borrowingontinued). For somé& > 1, consider
Ky = (—o0,K], K_ = [k, o0) and thusi(x) +x = (1 — k)x > 0 onK = (—o0, 0]
From Proposition 6.2, we conclude

(7.21) hiow(K) = B(0) = (S(0) - a)",

and from Theorem 7.2:

(7.22) hup(K) = u(0) = G(S(0)), if k > 7.

We claim that

(7.23) hup(K) = G(S(0)) for 1< k <,
where

a fe—-a@E)k ;0<x<c a4 kg
(7.24) Gk(x) {x—q c <X < oo and c¢ k—1>b'

Notice that thisG,(-) is a convex increasing function, of cla83(0, o) (“smooth-
fit") and C2((0, o)\ {c}). We shall denote b’ (-) the right-hand second deriva-
tive of this function on (0co).

Proof of (7.23) hyp(K) < G(S(0)). To prove this inequality it suffices to show
that G(S(0)) belongs to the set of (4.4); that is, to construct a portfeli¢)”
and a cumulative consumption procé3g-), such that

#0)

(.25) RO EXEOE() 2 BO = (SO - ) PO = g5

€ K as.

In order to do this, we apply the change-of-variable formula to the process
Yi(t) 26 G(S(t)), 0<t < oo, and obtain

dvi(t) = e (";xzeﬁ'(x)w—ﬂ)xea(x)—rek(x)) L
X=S(t

in conjunction with (7.2). The observations

xG‘Q(x):{ k;0<x<c}<k

G0 Litq x=c

and
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0.2
— [ZXZG,Q’(X) +(r — B)XG(x) — er(x)}

OX—rgq>pc—rg>pb—rg>0;, x>c
= —U(Zkzpk;)Gk(X)>0; 0<x<c

show thatpg(t) £ X&)

) is a portfolio process with values K., and that

x=S(t)

du
x=S(u)

t 2
&2~ [ (et - 60 - 1640

is an (increasing) cumulative consumption process. Back into (7.26), we conclude
R(t) = XSO (1) = G(S(1) > (S() - @),  0<t< oo,

and (7.25) follows.

Proof of (7.23) hyp(K) > G¢(S(0)). For any constant € K = (—o0, 0] we have
from (5.9) that

(7.27) hup(K) > sup E*[e~K7(S(r) — q)*] = G)(S(0)).
TES, 00

The optimal stopping problem of (7.27) can be solved explicitly, and exactly as
in Theorem 7.2; its optimal expected reward function is given by the analogue

Wy = J G —aE) 0<x<c,
728 G 6 {X —aq; C, <X <
of (7.14), with
(7.29)
\/ﬁ _
- A 02 +2(r ku)+py7 pV§M+f and c,,é W
7 o v, —1

Clearly,, is the positive root of the equatioc? — p, & — =k = 0, and we
have the analoguk < ~, < (ri‘ﬁkfu) A« of (7.8). Becauser € (—0,0], we
can letr — —o0, and observey, \ k, ¢, — C, G,ﬁl’)(-) — Gk(+), which leads to
hup(K) > G (S(0)).

5.6 Example: Prohibition of borrowingcontinued). HereK, = (—oo, 1], K_ =
[1,00) andd(x) +x =0 onK = (—o0, 0].
We claim that

(7.30) hup(K) = S(0).
The inequalityhyp(K) < S(0) is obvious; for the reverse inequality, we have

hup(K) > sup E'[e~")7(S(r) — )*] =: G)(S(0))
TES, 00
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for every fixedr € K. By analogy with (7.28) and (7.29), the optimal expected
reward in this new stopping problem is given as

ey = € =@ ) 0<x<c
G()(X)_{x—q; " C, <X <00

where now~/, 2 L/pZ+20 —v)+p)), ¢, 4 % Letting v | —oo, we
obtain nowy/, \, 1, ¢, — oo, GM(x) ~ x and thus the desired inequality
hup(K) > S(0).

We recall now the notation of (7.14)-(7.18) and claim thé&d) = G(S(0))
belongs to the set of (4.5); indeed, with= 7, as in (7.16),Cv:vz 0, and
B(-) = P() € (1,7] C [1,00) =K_ as in (7.15), we have-X ~UO-FC(.) = Xy(-)
on [0,7], as well as ¢ C) € . 2_(—u(0), ¥) and (3.4) (sinceX U@-%.C () +
B(F) = —Xo(m) + (S(m) — q)* = 0, a.s). Thushew(K) > u(0), whereas the
reverse inequality also holds, thanks to (4.6); we conclude that

(7.31) hiow(K) = u(0) = G(S(0)).

8. A higher interest rate for borrowing

We have studied so far the hedging problem for American contingent claims
in a financial market with the same interest rate for borrowing as for saving.
However, the techniques developed in the previous sections can be adapted to a
market. Z2* with interest rateR(-) for borrowing higher than the bond raté)
(saving rate).

We consider in this section amconstrainednarket. Z2* with two different
(bounded,F-progressively measurable) interest rate proces§es> r(-) for
borrowing and saving, respectively. In this market*, it is not reasonable to
borrow money and to invest money in the bond, at the same time. Therefore, the
relative amount borrowed at tinteis equal to (1— Zidzl pi(t))~. As shown in
Cvitanic and Karatzas (1992), the wealth proc¥gg = X*™C(-) corresponding
to initial wealthx and a portfolio/consumption pairr(C) as in Definition 2.3,
satisfies now the analogue

dX(t) = r(t)XM)dt — dC(t) + X (t)
d _
<[P Qw0 - RO - rO)(1-3p0)
i=1

of the wealth equation (2.9), whence

t

N 2 200X® + [ 20()d00)
t . d _
+ [ oOxORO - 101 (1- X po) . o<tsT
0 i=1

is aP%-local martingale.
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The theory of Sect. 5 goes through with only very minor changes; namely, one
setso(v(t)) = —(t) for v € &, whereZ is now the class oF-progressively
measurable processes [0, T] x 2 — .22¢ with

r() =R <wn()=r()=--=va() <0

a.e. on [QT] x £2. With this notation, the statements of our main results, Theorems
5.12 and 5.13, continue to hold for the uppéyf- and lower fy,,)-hedging
prices of the AC@B () in this market ZZ* with higher interest rate for borrowing:

(8.1) hip = l/seu5 u,(0), hg, = Vig; u, (0).
Here
A v
(8.2) u,(0)= SUBE [ (7)B(7)]
TES

is the unconstrained hedging price of Theorem 3.3 for the ARG, in the
market.#Z, with asset-prices governed by the equations

ds” (1) = S (1) - n@)dt,
45() =S5O bOd+ Ty OaW O], i=1....d

(that is, exactly as in (2.1), (2.2) but with interest-ref§ — v1(-) instead ofr (-)).
In particular, taking/; = (0, ...,0)* andw, = (r —R,...,r —R)* and setting

(8.3) U(r)2u,(0) = SUPE" [y, (7)B()],
TEY

(8.4) U(R)2u,,(0) = SUPE"[1,,(7)B(7)]

we obtain

(8.5) hiw < U AUR) < U(r) VU(R) < h,

Clearly,U (r) andU (R) are the arbitrage-free prices of (3.8), with unconstrained
portfolios, corresponding to interest rate procesgasandR(-), respectively.

In the special case of admerican call-option Bt) = (S;(t)—q)* and constant
R() =R >r =r(-), we know from Examples 1.4.7, 1.3.2 in Karatzas (1997) that
the optimal unconstrained hedging portfofi¢)"for the buyer always borrows
(at the interest rat®, sincepi(-) > 1), whereas the optimal hedging portfolio
w(-) = —x(-) for the seller always saves (at the interest rgteConsequently,
U(R) > hg,, U(r) < hg,, and in conjunction with (8.4):

(8.6) hip=U(R), hg, =U(r).
In other words, the upper (respectively, lower) hedging phige(respectively,
his,,) of the American call-optiom(-) = (S(-) — q)* in the market Z*, is given
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by the Black-Scholes formula (e.g. p. 19 in Karatzas (1997)), evaluated at the
higher interest-rat® (respectively, at the lower interest-rate

Appendix A: Proof of Theorem 5.12

We shall assume throughout this section that the quawititf (5.9) is finite and
show that

(A1) there exists a pair(C) € . 2.(V) which satisfies (5.24), a.s.

This will imply h,p(K) <V, and complete the proof of Theorem 5.12.
Let us start by introducing the family of random variables

A

(A2) X(r) £ ess SUP., €SS SUP:.o. EY[v.(0)B(p)|7 (1)], T€.

1
Yw(T)
with X(0) = V, X(T) = B(T) a.s.; here#, denotes the class of stopping
times¢ with 7 < £ < p a.s., for any two stopping times p such thatP[r <

p] = 1. For every fixedt € [0,T] we haveP[X(t) = X(t)] = 1 from (5.23)
and (A.2). Note also thaX(-) is the value of adouble (optimal stopping over
p € .Istochastic control over € &) stochastic maximization problerfor
notational convenience, we shall introduce also the random variable

(A3) I(r|p.v) 2 E’ [ (p)B(p).7 (7)] = E[Z,(7, p)1 (7, p)B(p) .7 (7)]

Y (7)

for everyr € .7, p € S, v € Z, WhereZ,(r, p) 22,(p)/Z,(7), (7, p) 2
Y. (p) /. (7). Clearly, the random variable of (A.3) depends only on the restriction
of the process/(-) € & to the stochastic interval

(A.4) [7, o1 2{(t, w) € [0, T]/7(w) <t < p(w)}.

We shall denote by/; , the restriction of to this stochastic interval.
We know from a fundamental property of the essential supremum (e.g. Neveu
(1975), p.121) that

(A5) X(r) = lim 1 (r|pk, ), as.
k— oo
for some sequencf(pk, ) tken, Wherepy € 1, i € Zr p,, Yk € N.
A.1 Lemma: For every fixed/(:) € &, and stopping times < p in ., we have

(A6) W(OX(T) = E [, ()X (0|7 (7)), as.

Proof: Let /7., be the class of processgé) in &, which agree with/(-) on the
stochastic interval {, p] of (A.4). For every procesg() in ./;,, and§ € .1,
we have then

L(r]€, 1) = E[Z,(7, (T, OB(E7 (T)]
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=E[Z,(7, p) 7. (T, p)- E{Z,.(p, O (p, E)B(I.7 (p) }.7 (7)]
= E[Z,(7, )7 (7, p) 1 (pI€, ). 7 (7)]

1 —
= E"[v (o) (pl€, 1)].7 (7)]

Y (T)
almost surely. Now from (A.5), there exists a sequefige, /) fken With & €
Sor and u € Z, ¢ (Vk € N), such thatX(p) = limi | (p|éx, i) a.s. Thus,
without loss of generality, we may takgu }ken C .//7, and obtain with the
help of Fatou’s lemma

X(r) >esssup. ;. esssup., |(7l¢,p)
Z Ilirnkg)ool (Tlfka IU/k)

> L B0, lim 1l m)l 7 ()]
’YV(T) k—o0

= L B X7 @), as
Y (7)

A.2 Lemma: TheF-adapted procesg(-) of (5.23) can be considered in its RCLL
modification, andy, (-)X(:) is alP”-supermartingale for every € &7. With X(-)
in this RCLL modification we havé(r) = X(7) a.s, for everyr € .7.

(A7)

Proof: The supermartingale property follows directly from (A.6) with determin-
istic 7 =t, p=s(0<t<s<T), sinceX(t) = X(t) and X(s) = X(s) a.s.

The RCLL regularity is proved as in El Karoui and Quenez (1995); finally, the
last assertion follows as in Karatzas and Shreve (1998), Appendix D or Remark
5.6.7.

Proof of (A.1) (adapted from Cvitahiand Karatzas (1993) From the Doob-
Meyer decomposition, and the martingale representation property of the Brow-
nian filtrationF, we can represent the supermartingaJ¢)X(-) of Lemma A.2

as

(A.8)

_ t
WOX(E) =V +M,(t) — A(t) =V + / Up(S)dWM(s) — AL (t), 0<t<T
0
for everyr € &. Herew, : [0,T] x 2 — .29 is F-progressively measurable
with foT [, (0)]|2dt < oo a.s., andd, : [0, T] x £2 — [0, oo0) is F-adapted, natural
increasing, with right-continuous paths aAd(0) = 0. We interpret (A.8) as a

simultaneous Doob-Meyer decompositiealid for everyv € &.
Consider now an arbitrary, € & and observe, thanks tg,(t)/.(t) =

EXD(IS (0(v(s)) — 6(#(3)))d5) anddW®(t) = dW(t) + o1 (t)(v(t) — p(t))dt
(from (5.14), (5.17) respectively), that (A.8) gives

_— "uls) . W 7(S)
TOXE) =V + /o ’YZ(S) PLRIAWHEE) - /(o,t] VZ(S)

dA.(s)

t —
(A9) — / 2(5) [45(8)aH(S)(1lS) — 1(8)) + 1 (S)X(S)(B(1(S)) — 6(v(s)))] ds.
0 'VV(S)
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Comparing this expression with the analogue of (A.8)
_ t
WOXO =V + [ G - AL, 0<t<T
0

for u(-), we obtain thathe processes

Yu() _ () _

(A.10) 07 Tho. ostsT
AG)  [% -1
[ R A C ORI OO
A e
= [, S e
(A.11) +h*(s)o Ys)v(s)ds=: C(t), 0<t<T

do not depend on € &. In particular,C(t) = [, %8, 0 <t < T has
increasing, right-continuous paths. We also have

T T
(A12) /0 Lix=oy (V)| dt :/0 7 201 x@=0yd <M,> (1) = 0, as.

from equations (12.1), (12.3), p. 365 in Meyer (1976); see also Karatzas and
Shreve (1991), p.225, Exercise 7.10. It develops then that the portfolio process
7:[0,T] x 2 — .22¢ and the portfolio-proportion process: [0, T] x 2 — .24

R . — o mi(t .
(A13) 7020 ) 0. BO2 L Uxg0 1= 1o d, 0T

areF-progressively measurable and satigg/nfr*(t)ﬂzdt < oo and
(A.14) h*(t) = ¥5(t)/7.(t) = XOP* ®o(t), 0<t<T

almost surely. The same arguments as on p.664 of Cuitami Karatzas (1993),
based on the fact that, (t) = f(o,t] %(s)dé(s)+f$ X(s)[d(v(s))+v*(s)p(s)]ds of
(A.11), (A.13) is an increasing process, yiélg(-))+v*(-)p(-) > 0, a.e. for every
v € &. On the other hand, the proof on pp.782-783 of Cvitaamd Karatzas
(1992), along with the continuity condition (5.7), the fact tKatis closed, and
Theorem 13.1, p.112 in Rockafellar (1970), show that

(A.15) pt) e Ky, VOL<tELT
holds a.s. Finally, substitution of (A.14) back into (A.11), (A.8) leads to

_ N t _
L OX(E) + /(O RECLECE /0 XSS + 1 (9P(S))ds

(A16) =V + / t Y (S)X(S)P*(S)o(s)dWM(s), 0<t<T
0
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for everyv € &. ) _
A comparison of (A.16) with (5.21) shows thatV-*C() = X(-); since

X(-) = B(-) = 0 and (A.15) hold, we conclude that the portfolio/consumption
process pairf,;C) in (A.11), (A.13) belongs to the class/.(V) of (4.2). o

Appendix B: Proof of Theorem 5.13
Let us start by introducing the family of random variables

X(7) 2 ess infey X, (1),

5 Y (p)
(B.1) X, (T) = ess sup.. ,TE”{ B(p)
Peser® ™
with X(0) = v, X(T) =B(T) a.s. Note thaX() is the upper-value of atochastic
game in which one player (the “maximizer”) selects the stopping timeand
the other player (the “minimizer”) gets to choose the stochastic pracess’ .
Arguing as in Remark 3.2, and using (3.1), we obtain fet p < 1 +e:

7(7’)], Te."

(B.2) E” SUD(%(T)X(T))"] <E” {SUD(WV(T)XV(T))"} <00, VveZ.
TES TEYS

Prooof of (B.2) For everyr € &, T €. and with
YOSEY|Z ML 0<t<T, Y2 sup(ot)B()),
0<t<T
we haveE(Y *) < oo from (3.1) and

()R (7) < B [ sup (7, (DB()
0<t<T

.7(7)} <c- E[Y]|Z (1)] = cY,(r), as.
Thus, from the Doob maximal martingale inequality and thi@ddr inequality,

E[ sup(%(T)XV(T»p} <c. E[ sup (Yy(t»p] <c. EY(YP)
rey 0<t<T

=c- E[Z,(T)YP] < c- (BE(Y" )Y (EZ,(T)))° < ¢ < o0

with r = 1t rl + % = 1. In the abovec = c, is a real constant which depends

onv € & and is allowed to vary from line to line.

B.1 Lemma: Suppose V< oc. For any stopping times < p < pg, with po as
in (5.26), we have

(8.3) (X < B X7 ()], as (Vv € Z)
(8.4) X(r) = ess inf.cs %E[%(PO)B(PO)L?(T)], as

In particular, for everyr € &, theF-adapted process
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(B.5) Qut) £ vt Apo)X(tApy), 0<t<T isaP’-submartingale
and can be considered, along with(-X\ po), in its RCLL modification.

Proof: Fix a proces#(-) € & and consider a sequence of proceqsg$) tken C
Z,1 N7, which agree withv(:) on [r, p] (notation of (A.4) and of Proof,
Lemma A.1) and are such thXt(p) = limy ka(p), a.s.

The sequencqy,, (7, )Xo () }ken is dominated by the random variable
v, (T, p)X(p) which isP¥-integrable since, from (A.6),

E” [, (1, )X (p)] < ¢ - E[1,(0)X(p)] < ¢ 1, (0)X(0) =¢- V < oc.

Therefore, the Dominated Convergence Theorem gives

> )EV[%(p)X(p)\ T =E [w Pl X,, (,o)| 7(7)}

= . | = ()% (0.7 )
= im %kl(T)E”k [ ()Xo (0)| 7 (7))

> ess infes — SR DR )

=ess InLegXu(T) =X(1), as.
The next-to-last equality follows from the fact that for everyg &,
(B.5Y Yu(- A po)Xu(- A po) is aP*—martingale

(recall Property (ii) in Theorem 1.4.4 of Karatzas (1997), the notation of (5.30)),
and pp < po(u) a.s.). This proves (B.3).
To prove (B.4), observe that the a.s. inequality

7w (po)
Y (7)

follows directly from (B.1); to prove the reverse inequality, one has to show

X(r) > ess inf/eyE[ B(po)

;7(7)]

X(r) <

1 a7z —
E’[7.(00)B(po)| . 7 (T)] as. (Vv € &),
Y (T)
but this follows directly from (B.3) and(po) = X(po) a.s. The almost sure
representation

(5.33) X(t) =ess infeos —=E[7.(p)B(p) 7 ()], 0<t<T

y(t)
is then proved in exactly the same way as (B.4). And (B.5) is a direct consequence
of (B.3).

Now arguing exactly as in Lemma A.2, we conclude that the processes
Qut+) = n(MX(t+), 0 <t < T andQu(t—) = % (M)X({t-), 0 <t < T
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are well-defined, and af@”-submartingales for every € &. Therefore, from
(B.5), (B.2) and Fatou’s lemma we have, on the ev@nt po}:

X(t) <TllmnE [ (t+i)X<t+r1]>
%Ilmnﬂi [Qo(t +r1]> .\7(t)]

1 1
<0 ["m“Q"(” )

a.s. On this same evefit < po} we have alsq; = po and

Qu(t+) < E"[Qu(po+).7 ()] = E” [0, (p0)B(po) .7 ()] = E” [, (p)B (o). 7 ()]

almost surely, whenc&(t+) < ess SUPc s 72 (I)E”[’yy(pt)B(pt)‘/(t)] X(t),
a.s. from (5.33). This shows thXi(- A po) can be considered in its RCLL mod-
ification.

.7/'(t)}

l p—
| = 5 =x),

a

Proof of Theorem 5.13 (continuedh order to complete the proof of Theorem
5.13, it remains to show the inequality

(B.6) v < hiew(K), whenevery > 0 andV < oc.

Thus, let us assume from now on that botl 0,V < oo hold, and observe that

for eachr € &, the P¥-submartingale, (-) of (B.5) has RCLL paths and is of
classZ[0, T] underP” (recall Lemma B.1 and (B.2)). From the Doob-Meyer
decomposition (Karatzas and Shreve (1991), Sect. 3.5) we can write this process
in the form

(B.7) QM) =v+M,M)+A (), 0<t<T

whereM,,(t) = fé PE(s)dWM(s), 0 <t < T is aP¥-martingale,», : [0, T] x

2 — .29 is anTF-progressively measurable process Wf[}l”@by(t)szt < o0
a.s., andA, (-) is anF-adapted natural increasing process with right-continuous
paths and\, (0) = 0,E”A,(T) < co. Again, (B.7) is anothesimultaneous Doob-
Meyer decompositigrvalid for all v € &7. Clearly, we may take

(B.8) ¥, () =0 ae on [po, T], andA,(po) = A.(T) as.

Proceeding exactly as in the proof of (A.1) in Appendix A, we see here again
that

A wu(t)
W 05T

(B.9) h(t) 2

(B.10) é(t)é‘/ dA.(s)

t
v *(s)o~L(s)
Joy ’YV(S) +/O (X(S)(S( (S))+h (S) (S) (S))dS, 0<t<T
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do not depend onv € & by analogy with (A.10) and (A.11); in particular,

é(-) = f(o,] % has increasing and right-continuous paths. We also have the

analogue

-
(B.11) / 1{§(t)=O}Hh(t)H2dt =0, as
0

of (A.12). Thus, if we define affi-progressively measurable process|[0, T] x
2 — . 2% andp:[0,T] x 2 — .29 via
(B.12)

#(1) 20" (1) *h(t), f’i(t)é%%i('{)l{yt)w}, i=1...d, 0<t<T,

we havefoT |7*(t)]|2dt < oo a.s.,h(-) = 0 a.e. on po, T], C(po) = C(T) a.s.,

(B.13) h*()= f(()) =X()EC) () aeon[0T]
as well as
(B.14)

t
At) = / T (SAE(S) / 1 (OXOBS) + PE) S)]ds, 0<t<T
0,t] 0

a.e. The same arguments as on p.664 of Cvitand Karatzas (1993) now yield
o)+ PE)*v() <0 a.e, for every € &7; and the proof on pp. 782-783 of
Cvitanic and Karatzas (1992), along with (5.5), (5.7), the fact Hatis closed,
and Theorem 13.1 on p.112 of Rockafellar (1970), show that

(B.15) p(-) € K_, ae

Now let us substitute (B.12)-(B.14) back into (B.7) and sé) = 0, to
obtain

Yot A po)(=X(t A po)) = (—v) — /( o 0(s)dC(s)

(B.16) + / t (S (=XE)PEE) dWO(s), 0<t<T.
0

In other words,

. x X(t) ;0<t<po
_y—v,7,C —
(8.17) X = {X(po)~1f>§g;f;> ;POS'[ST}

almost surely; and we conclude from (B.15) that the pairQ) belongs to the
class. 4_(—wv) of (4.3). On the other hand; X "™ (pg) = X(po) = B(po), a.s.,
so that the condition (3.4) holds with = pg. It develops that belongs to the
set of (4.5), and thus (B.6) follows. o

Proof of Proposition 5.14We have already proved (5.33), and this leads directly
to (5.35) and (5.34). For (5.32), observe
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(B.18)

% _ o | 2e(pr) = | (o)
%,(1)=E [%(t) %,(00)| 7 (t)} <E [%(t) X(o1)

for everyv € &, thanks to (B.5)and Lemma A.1; now (5.32) follows by taking
essential suprema in (B.18) overc &7, in conjunction with Lemma A.2, and
leads to (5.36). o

y(t)} < X(t), as.

Appendix C: Proof of Theorems 6.1 and 6.2

In this section we provide proofs of Theorems 6.1 and 6.2, following Broadie et
al. (1996); see also Karatzas and Shreve (1998), Sects.5.7 and 5.10. In order to
simplify notation a little, we shall only deal with the one-dimensional aasel

(the general case requires only more complicated notation), and we shall write

S)=xe h"Or 1y 1,12 exp[oW, (1) + (r —o%/2)t]; 0<t<T

for every process (-) € &, and withx = S(0) > 0 the initial stock price.

C.1 Lemma: For everyv (1) € &, T € ., we have, almost surely,
(C.1) 1) </ u(s)ds) :/ 0 (v (s))ds.
0 0

Proof: From the definition (5.2) of the support functidrf-) , we have for every
v()ea, €.,

([ ) =gp( [ )

< [ spcprones< [TswEnas

0 peKs

almost surely; on the other hand, from (5.5) we obtain

6 (/0 v (s) ds) = pi&f_ (/0 —pr (s) ds)

2/0 pien}g‘i (—py(s))ds=/O o (v (s))ds. o

Another crucial observation here is that

(C.2) the law of I, (t), 0 <t <T underP”, isthe same as the la
' of Ip(t),0 <t < T underP? forany v()ecZ.

Proof of Theorem 6:1From (C.1) and (C.2) we obtain
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EY [exp{—rT — /OT d(v(s)) dS} ©(S (T))}

=E” |exps —r7 -9 Tu(s)ds o (xe o Y951, (1)
ol o (v o )

<EY [e""Tp (X}, (7))]

(C.3) < supE¥[e @ (xI}, (1))] = supE® [e" "¢ (xIp (7))] -
TEY TEY

Taking the supremum of the left-hand-side of (C.3) ovén) € & andr € .7,
we deduce

V < supE° [e""" o (S()]
TEYS

sinceS(:) = xIp(-). Thus, in order to prove (6.6) and the Theorem, it remains to
show the reverse inequality

(C.4) V > supE°® [e "¢ (S(1))] -
TEY

Now (C.4) is clearly satisfied i¥ = oo, so let us concentrate on the case
V < oo. It suffices to prove, for every 8t < T, that

(C.5) X (t) > @ (S(t)) holds as.

for the process)?() of (5.23); because then the right-continuity )Ef(-) and
Lemmas A.1 and A.2 imply

V =X(0)> supE® [e”""X (r)] > SupE° [e" "3 (S ()] ,
TEY TEY

namely (C.4).
To prove (C.5), let us start by observing that, for evernKOt < T, the
inequalities

where

(C.6) X (t) > sup U(t,0;S(t) > lim,,u(t,0;S(t)) hold as,
- A —r(6-1) v
u(,o;x)=e esssup E
v()E% 0

t<0<T
0
—0 v(s)d
o (o)
) (xe I vES 9))}

I, (t:0) Sexplo (W, (6) — W, )+ (r —o?/2) (6 —1)] .

For any givenx e (0, x), let {1} C K be a maximizing sequence in (6.3), i.e.
(%) = li —3d() — Uk
(C.7) o (X) |I£n T [e o (xe )] .

Fix k € N, and defineu (-) € %, by settingu (s) = 5% fort <s <6, and
1 (s) = 0 otherwise; then we have
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0 0
E# lexp{ - (/ ) (S) dS) } %) <Xe_j; H(S)dspﬂ (t, 9))
t

=EF [y (xe T, (t;0))] = E° [e °Myp (xe * I (t; 0))]

from (C.2), and

o o )
t

(C.8)  =lim,,E° [e~y (xe " I (t;0))] > e Mg (xe™)

from Fatou’s lemma. Taking the supremum of the expression on the right-hand-
side of (C.8) with respect tk, we obtain

IiirnHJ,tLT(ta 91X) 2 SE(X)v VX € (07 OO))
in conjunction with (C.7), and (C.5) follows now from this and from (C.6)x

Proof of Theorem 6:2Equation (C.1) yields

EY [exp{—rr - /OT S (v (s) dS} W(S(T))]

>EY |expd —r7 — 4 Tz/(s)ds ) Xefj:y(s)dsfu(T)
ool =a ([ o) e )

(C9 >E[e X, ()] .
It follows from (C.9) and (C.2) that

SuUpE” {exp{—rf - /OT o (v (s)) ds} »(S (’T)):|

TEY
> SupE” [e "o (XTI, (7))]
TEY
(C.10) = supE° [e"""p (xIo (7))] = SupE° [e " (S(7))]
TEY TEY

holds for everyv (:) € &; taking the infimum on the left-hand-side of (C.10)
over this class, we obtain (6.7).o
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