
Digital Object Identifier (DOI) 10.1007/s101070000165

Math. Program., Ser. A 88: 451–485 (2000)

Marina Epelman� · Robert M. Freund

Condition number complexity of an elementary
algorithm for computing a reliable solution of
a conic linear system

Received: March 13, 1997 / Accepted: March 9, 2000
Published online July 20, 2000 –  Springer-Verlag 2000

Abstract. A conic linear system is a system of the form

(FPd) Ax = b
x ∈ CX ,

where A : X −→ Y is a linear operator between n- and m-dimensional linear spaces X and Y , b ∈ Y ,
and CX ⊂ X is a closed convex cone. The data for the system is d = (A, b). This system is “well-posed”
to the extent that (small) changes in the data d = (A, b) do not alter the status of the system (the system
remains feasible or not). Renegar defined the “distance to ill-posedness,” ρ(d), to be the smallest change
in the data �d = (�A, �b) needed to create a data instance d + �d that is “ill-posed,” i.e., that lies in
the intersection of the closures of the sets of feasible and infeasible instances d′ = (A′, b′) of

(
FP(·)

)
.

Renegar also defined the condition number C(d) of the data instance d as the scale-invariant reciprocal of

ρ(d): C(d)

= ‖d‖

ρ(d)
.

In this paper we develop an elementary algorithm that computes a solution of (FPd) when it is feasible,
or demonstrates that (FPd) has no solution by computing a solution of the alternative system. The algorithm is
based on a generalization of von Neumann’s algorithm for solving linear inequalities. The number of iterations
of the algorithm is essentially bounded by

O
(
c̃ C(d)2 ln(C(d))

)
where the constant c̃ depends only on the properties of the cone CX and is independent of data d. Each iteration
of the algorithm performs a small number of matrix-vector and vector-vector multiplications (that take full
advantage of the sparsity of the original data) plus a small number of other operations involving the cone CX .
The algorithm is “elementary” in the sense that it performs only a few relatively simple computations at each
iteration.

The solution x̂ of the system (FPd) generated by the algorithm has the property of being “reliable” in the
sense that the distance from x̂ to the boundary of the cone CX , dist(x̂, ∂CX), and the size of the solution, ‖x̂‖,
satisfy the following inequalities:

‖x̂‖ ≤ c1C(d), dist(x̂, ∂CX) ≥ c2
1

C(d)
, and

‖x̂‖
dist(x̂, ∂CX)

≤ c3C(d),

where c1, c2, c3 are constants that depend only on properties of the cone CX and are independent of the data d
(with analogous results for the alternative system when the system (FPd) is infeasible).

Key words. complexity of convex programming – conditioning – error analysis

M. Epelman: University of Michigan, Industrial and Operations Engineering, 1205 Beal Avenue, Ann Arbor,
MI 48109-2117, USA, e-mail: mepelman@umich.edu

R.M. Freund: M.I.T. Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142-1347, USA,
e-mail: rfreund@mit.edu

Mathematics Subject Classification (1991): 90C, 90C05, 90C60

� This research has been partially supported through an NSF Graduate Research Fellowship

452 Marina Epelman, Robert M. Freund

1. Introduction

The subject of this paper is the development of an algorithm for solving a convex
feasibility problem in conic linear form:

(FPd) Ax = b
x ∈ CX ,

(1)

where A : X −→ Y is a linear operator between the (finite) n-dimensional normed
linear vector space X and the (finite) m-dimensional normed linear vector space Y (with
norms ‖x‖ for x ∈ X and ‖y‖ for y ∈ Y , respectively), C X ⊂ X is a closed convex
cone, and b ∈ Y . We denote by d = (A, b) the “data” for the problem (FPd). That is,
the cone CX is regarded as fixed and given, and the data for the problem is the linear
operator A together with the vector b. We denote the set of solutions of (FPd) as Xd to
emphasize the dependence on the data d, i.e.,

Xd = {x ∈ X : Ax = b, x ∈ CX }.
The problem (FPd) is a very general format for studying the feasible regions of convex
optimization problems, and has recently received much attention in the analysis of
interior-point methods, see Nesterov and Nemirovskii [22] and Renegar [29] and [30],
among others, wherein interior-point methods for (FPd) are shown to be theoretically
efficient.

We develop an algorithm called “algorithm CLS” (for Conic Linear System) that
either computes a solution of the system (FPd), or demonstrates that (FPd) is infeasible
by computing a solution of an alternative (dual) system. In both cases the solution
provided by algorithm CLS is “reliable” in a sense that will be described shortly.

Algorithm CLS is based on a generalization of the algorithm privately communicated
by von Neumann to Dantzig and studied by Dantzig in [6] and [7], and is part of a large
class of “elementary” algorithms for finding a point in a suitably described convex
set, such as reflection algorithms for linear inequality systems (see [1,21,8,15]), the
perceptron algorithm [31–34], and other so-called row-action methods. When applied
to linear inequality systems, these elementary algorithms share the following desirable
properties, namely: the work per iteration is extremely low (typically involving only
a few matrix-vectoror vector-vectormultiplications), and the algorithms fully exploit the
sparsity of the original data at each iteration. We refer to these algorithms as “elementary”
in that the algorithms do not perform particularly sophisticated computations at each
iteration, and in some sense these algorithms are all very unsophisticated as a result
(especially compared to an interior-point algorithm or a volume-reducing cutting-plane
algorithm such as the ellipsoid algorithm).

In analyzing the complexity of algorithm CLS, we adopt the relatively new con-
cept of the condition number C(d) of (FPd) developed by Renegar in a series of pa-
pers [28–30]. C(d) is essentially a scale invariant reciprocal of the smallest data pertur-
bation �d = (�A,�b) for which the system (FPd+�d) changes its feasibility status.
The problem (FPd) is well-conditioned to the extent that C(d) is small; when the problem
(FPd) is “ill-posed” (i.e., arbitrarily small perturbations of the data can yield both feas-
ible and infeasible problem instances), then C(d) = +∞. The condition number C(d)

Computing a reliable solution of a conic linear system 453

is connected to sizes of solutions and deformations of Xd under data perturbations [28],
certain geometric properties of Xd [13], and the complexity of algorithms for computing
solutions of (FPd) [30,14]. (The concepts underlying C(d) will be reviewed in detail at
the end of this section.) We show in Sect. 5 that algorithm CLS will compute a feasible
solution of (FPd) in

O
(
c̃1C(d)2 ln(C(d))

)
(2)

iterations when (FPd) is feasible, or will demonstrate infeasibility in

O
(
c̃2C(d)2) (3)

iterations when (FPd) is infeasible. The scalar quantities c̃1 and c̃2 are constants that
depend only on the simple notion of the “width” of the cones C X and C∗

X and are
independent of the data d, but may depend on the dimension n.

As alluded to above, algorithm CLS will compute a reliable solution of the system
(FPd), or will demonstrate that (FPd) is infeasible by computing a reliable solution of
an alternative system. We consider a solution x̂ of the system (FPd) to be reliable if,
roughly speaking, (i) the distance from x̂ to the boundary of the cone C X , dist(x̂, ∂CX),
is not excessively small, (ii) the norm of the solution ‖x̂‖ is not excessively large, and
(iii) the ratio ‖x̂‖

dist(x̂,∂C X)
is not excessively large. A reliable solution of the alternative

system is defined similarly. The sense of what is meant by “excessive” is measured
using the condition number C(d). The importance of computing a reliable solution can
be motivated by considerations of finite-precision computations. Suppose, for example,
that a solution x̂ of the problem (FPd) (computed as an output of an algorithm involving
iterates x1, . . . , xk = x̂, and/or used as input to another algorithm) has the property that
dist(x̂, ∂CX) is very small. Then the numerical precision requirements for checking or
guaranteeing feasibility of iterates will necessarily be large. Similar remarks hold for
the case when ‖x̂‖ and/or the ratio ‖x̂‖

dist(x̂,∂C X)
is very large.

In [13] it is shown that when the system (FPd) is feasible, there exists a point x̃ ∈ Xd
such that

‖x̃‖ ≤ c1C(d), dist(x̃, ∂CX) ≥ c2
1

C(d)
, and

‖x̃‖
dist(x̃, ∂CX)

≤ c3C(d), (4)

where the scalar quantities c1, c2, and c3 depend only on the width of the cone C X , and
are independent of the data d of the problem (FPd), but may depend on the dimension n.
Algorithm CLS will compute a solution x̂ with bounds of the same order as (4), which
justifies the term “reliable” solution. Similar remarks hold for the case when (FPd) is
infeasible.

It is interesting to compare the complexity bounds of algorithm CLS in (2) and (3) to
that of other algorithms for solving (FPd). In [30], Renegar presented an interior-point
(i.e., barrier) algorithm for resolving (FPd) and analyzed its performance in terms of the
barrier parameter for the cone C X , and C(d). In [14] several efficient volume-reducing
cutting-plane algorithms for resolving (FPd) (such as the ellipsoid algorithm) are ana-
lyzed in terms of C(d). Both the interior-point algorithm and the ellipsoid algorithm have
an iteration complexity bound that is linear in ln(C(d)), and so are efficient algorithms
in a sense defined by Renegar [29].

454 Marina Epelman, Robert M. Freund

In contrast with the above efficient algorithms, algorithm CLS developed in this
paper has iteration complexity exponential in ln(C(d)). On the other hand, both the
interior-point algorithm and the ellipsoid algorithm are very sophisticated algorithms
and require significant computational effort to perform each iteration, unlike the ele-
mentary algorithm CLS. The interior-point algorithm makes implicit and explicit use of
information from a self-concordant barrier at each iteration, and uses this information
in the computation of the next iterate by solving for the Newton step along the central
trajectory. The work per iteration is O(n3) operations to compute the Newton step. The
ellipsoid algorithm makes use of a separation oracle for the cone C X in order to perform
a special space dilation at each iteration, and the work per iteration of the ellipsoid al-
gorithm is O(n2) operations. Intuition strongly suggests that the sophistication of these
methods is responsible for their excellent computational complexity. In contrast, the
elementary algorithm CLS relies only on relatively simple assumptions regarding the
ability to work conveniently with the cone C X (discussed in detail in Sect. 2) and does
not perform any sophisticated computation at each iteration. As a result, the work per
iteration of algorithm CLS is low, and each iteration fully exploits the sparsity of the
original data.

The results in this paper provide positive answers to the following two theoretical
questions:

– Is there an elementary algorithm which obtains reliable solutions of well-posed
instances of (FPd)?

– Can the iteration complexity of an elementary algorithm for (FPd) be bounded in
terms of the condition number C(d)?

This paper does not attempt to address the practical performance of algorithm
CLS versus theoretically efficient algorithms such as interior-point algorithms or the
ellipsoid algorithm. However, we briefly discuss computational performance of a family
of algorithms related to CLS in Sect. 6.

An outline of the paper is as follows. The remainder of this introductory section
discusses the condition number C(d) of the system (FPd). Section 2 contains further
notation, definitions, assumptions, and preliminary results. Section 3 presents a general-
ization of the von Neumann algorithm (appropriately called algorithm GVNA) that can
be applied to conic linear systems in a special compact form (i.e., with a compactness
constraint added). We analyze the properties of the iterates of algorithm GVNA under
different termination criteria in Lemmas 1, 2 and 3. Section 4 presents the development
of algorithms HCI (Homogeneous Conic Inequalities) and HCE (Homogeneous Conic
Equalities) for resolving two essential types of homogeneous conic linear systems. Both
algorithms HCI and HCE consist of calls to algorithm GVNA applied to appropriate
transformations of the homogeneous systems at hand. Finally, in Sect. 5, we present
algorithm CLS for the conic linear system (FPd). Algorithm CLS is a combination of
algorithms HCI and HCE. Theorem 3 contains the main complexity result for algorithm
CLS, and is the main result of this paper. Section 6 contains some discussion.

We now present the development of the concepts of condition numbers and data
perturbation for (FPd) in detail. Recall that d = (A, b) is the data for the problem (FPd).
The space of all data d = (A, b) for (FPd) is denoted by D:

D = {d = (A, b) : A ∈ L(X, Y), b ∈ Y}.

Computing a reliable solution of a conic linear system 455

For d = (A, b) ∈ D we define the product norm on the Cartesian product L(X, Y)× Y
to be

‖d‖ = ‖(A, b)‖ = max{‖A‖, ‖b‖} (5)

where ‖b‖ is the norm specified for Y and ‖A‖ is the operator norm, namely

‖A‖ = max{‖Ax‖ : ‖x‖ ≤ 1}. (6)

We define

F = {(A, b) ∈ D : there exists x satisfying Ax = b, x ∈ CX}, (7)

the set of data instances d for which (FPd) is feasible. Its complement is denoted byFC ,
the set of data instances for which (FPd) is infeasible.

The boundary ofF and ofF C is precisely the setB = ∂F = ∂FC = cl(F)∩cl(FC),
where ∂S denotes the boundary and cl(S) denotes the closure of a set S. Note that if
d = (A, b) ∈ B, then (FPd) is ill-posed in the sense that arbitrarily small changes in the
data d = (A, b) can yield instances of (FPd) that are feasible, as well as instances of
(FPd) that are infeasible. Also, note that B �= ∅, since d = (0, 0) ∈ B.

For a data instance d = (A, b) ∈ D, the distance to ill-posedness is defined to be:

ρ(d)

= inf{‖�d‖ : d +�d ∈ B} =

{
inf{‖d − d̄‖ : d̄ ∈ FC} if d ∈ F,

inf{‖d − d̄‖ : d̄ ∈ F} if d ∈ FC,
(8)

see Renegar [28–30]. The condition number C(d) of the data instance d is defined to be:

C(d) = ‖d‖
ρ(d)

(9)

when ρ(d) > 0, andC(d) = ∞whenρ(d) = 0. The condition numberC(d) is a measure
of the relative conditioning of the data instance d, and can be viewed as a scale-invariant
reciprocal of ρ(d), as it is elementary to demonstrate that C(d) = C(αd) for any positive
scalar α. Observe that since d̃ = (Ã, b̃) = (0, 0) ∈ B, then for any d /∈ B we have
‖d‖ = ‖d − d̃‖ ≥ ρ(d), whereby C(d) ≥ 1. Further analysis of the distance to ill-
posedness has been presented in [13], Vera [35,36,38,37], Filipowski [11,12], Nunez
and Freund [23], Peña [25,24] and Peña and Renegar [26].

2. Preliminaries, assumptions, and further notation

We will work in the setup of finite dimensional normed linear vector spaces. Both
X and Y are normed linear spaces of finite dimension n and m, respectively, endowed
with norms ‖x‖ for x ∈ X and ‖y‖ for y ∈ Y . For x̄ ∈ X, let B(x̄, r) denote the ball
centered at x̄ with radius r, i.e.,

B(x̄, r) = {x ∈ X : ‖x − x̄‖ ≤ r},
and define B(ȳ, r) analogously for ȳ ∈ Y .

456 Marina Epelman, Robert M. Freund

We denote the set of real numbers by � and the set of nonnegative real numbers
by �+.

We associate with X and Y the dual spaces X∗ and Y∗ of linear functionals defined
on X and Y , respectively, and whose (dual) norms are denoted by ‖u‖∗ for u ∈ X∗
and ‖w‖∗ for w ∈ Y∗. Let c ∈ X∗. In order to maintain consistency with standard
linear algebra notation in mathematical programming, we will consider c to be a column
vector in the space X∗ and will denote the linear function c(x) by ct x. Similarly, for
A ∈ L(X, Y) and f ∈ Y∗, we denote A(x) by Ax and f(y) by f t y. We denote the
adjoint of A by At .

We now recall some facts about norms. Given a finite dimensional linear vector
space X endowed with a norm ‖x‖ for x ∈ X, the dual norm induced on the space X ∗
is denoted by ‖z‖∗ for z ∈ X∗, and is defined as:

‖z‖∗ = max{zt x : ‖x‖ ≤ 1}, (10)

and the Hölder inequality zt x ≤ ‖z‖∗‖x‖ follows easily from this definition. We also
point out that if A = uvt , then it is easy to derive that ‖A‖ = ‖v‖∗‖u‖.

If C is a convex cone in X, C∗ will denote the dual convex cone defined by

C∗ = {z ∈ X∗ : zt x ≥ 0 for any x ∈ C}.

We will say that a cone C is regular if C is a closed convex cone, has a nonempty
interior, and is pointed (i.e., contains no line).

Remark 1. If C is a closed convex cone, then C is regular if and only if C∗ is regular.

The “strong alternative” system of (FPd) is:

(SAd) Ats ∈ C∗
X

bts < 0.
(11)

A separating hyperplane argument yields the following partial theorem of the alternative
regarding the feasibility of the system (FPd):

Proposition 1. If (SAd) is feasible, then (FPd) is infeasible. If (FPd) is infeasible, then
the following “weak alternative” system (12) is feasible:

Ats ∈ C∗
X

bts ≤ 0
s �= 0.

(12)

When the system (FPd) is well-posed, we have the following strong theorem of the
alternative:

Proposition 2. Suppose ρ(d) > 0. Then exactly one of the systems (FPd) and (SAd) is
feasible.

Computing a reliable solution of a conic linear system 457

We denote the set of solutions of (SAd) as Ad , i.e.,

Ad = {s ∈ Y∗ : Ats ∈ C∗
X , bts < 0}.

Similarly to solutions of (FPd), we consider a solution ŝ of the system (SAd) to be
reliable if the ratio ‖ŝ‖∗

dist(ŝ,∂Ad)
is not excessively large. (Because the system (SAd) is

homogeneous, it makes little sense to bound ‖ŝ‖∗ from above or to bound dist(ŝ, ∂Ad)

from below, as all solutions can be scaled by any positive quantity.) In [13] it is shown
that when the system (FPd) is infeasible, there exists a point s̃ ∈ Ad such that

‖s̃‖∗
dist(s̃, ∂Ad)

≤ c4C(d), (13)

where the scalar quantity c4 depends only on the width of the cone C∗
X . (The concept of

the width of a cone will be defined in the next paragraph.) Algorithm CLS will compute
a solution ŝ with a bound of the same order as (13).

Let C be a regular cone in the normed linear vector space X. We will use the
following definition of the width of C:

Definition 1. If C is a regular cone in the normed linear vector space X, the width of
C is given by:

τC = max

{
r

‖x‖ : B(x, r) ⊂ C

}
.

We remark that τC measures the maximum ratio of the radius to the norm of the center
of an inscribed ball in C, and so larger values of τC correspond to an intuitive notion
of greater width of C. Note that τC ∈ (0, 1], since C has a nonempty interior and C
is pointed, and τC is attained for some (x̄, r̄) as well as along the ray (αx̄, αr̄) for all
α > 0. By choosing the value of α appropriately, we can find u ∈ C such that ‖u‖ = 1
and τC is attained for (u, τC).

Closely related to the width is the notion of the coefficient of linearity for a cone C:

Definition 2. If C is a regular cone in the normed linear vector space X, the coefficient
of linearity for the cone C is given by:

βC = sup inf ut x
u ∈ X∗ x ∈ C
‖u‖∗ = 1 ‖x‖ = 1.

(14)

The coefficient of linearity βC measures the extent to which the norm ‖x‖ can be
approximated by a linear function over the cone C. We have the following properties
of βC:

Remark 2 (see [13]). 0 < βC ≤ 1. There exists ū ∈ int C∗ such that ‖ū‖∗ = 1 and
βC = min{ūt x : x ∈ C, ‖x‖ = 1}. For any x ∈ C, βC‖x‖ ≤ ūt x ≤ ‖x‖. The set
{x ∈ C : ūt x = 1} is a bounded and closed convex set.

In light of Remark 2 we refer to ū as the norm linearization vector for the cone C. The
following proposition provides insight into the relationship between the width of C and
the coefficient of linearity for C∗:

458 Marina Epelman, Robert M. Freund

Proposition 3 (see [14]).Suppose that C is a regular cone in the normed linear vector
space X, and let τC denote the width of C and let βC∗ denote the coefficient of linearity
for C∗. Then τC = βC∗ . Moreover, τC is attained for (u, τC), where u is the norm
linearization vector for the cone C∗.

We now pause to illustrate the above notions on two relevant instances of the cone C,
namely the nonnegative orthant �n+ and the positive semi-definite cone Sk×k+ . We first

consider the nonnegative orthant. Let X = �n and C = �n+

= {x ∈ �n : x ≥ 0}. Then

we can identify X∗ with X and in so doing, C∗ = �n+ as well. If ‖x‖ is given by the L1
norm ‖x‖ = ∑n

j=1 |x j |, then note that ‖x‖ = et x for all x ∈ C (where e is the vector
of ones), whereby the coefficient of linearity is βC = 1 and ū = e. If instead of the L1
norm, the norm ‖x‖ is the L p norm defined by:

‖x‖p =

 n∑

j=1

|x j |p



1/p

for p ≥ 1, then it is straightforward to show that ū =
(

n

(
1
p−1

))
e and the coefficient of

linearity is βC = n

(
1
p−1

)
. Also, by setting u = e, it is straightforward to show that the

width is τC = n−
1
p .

Now consider the positive semi-definite cone, which has been shown to be of
enormous importance in mathematical programming (see Alizadeh [2] and Nesterov
and Nemirovskii [22]). Let X = Sk×k denote the set of real k × k symmetric matrices,

and so n = k(k+1)
2 , and let C = Sk×k+

= {
x ∈ Sk×k : x � 0

}
, where x � 0 is the Löwner

partial ordering, i.e., x � w if x −w is a positive semi-definite symmetric matrix. Then
C is a closed convex cone. We can identify X∗ with X, and in so doing it is elementary
to derive that C∗ = Sk×k+ . For x ∈ X, let λ(x) denote the k-vector of ordered eigenvalues
of x. For any p ≥ 1, let the norm of x be defined by

‖x‖ = ‖x‖p =

 k∑

j=1

|λ j(x)|p



1
p

(see [19], for example, for a proof that ‖x‖ p is a norm). When p = 1, ‖x‖1 is the sum
of the absolute values of the eigenvalues of x. Therefore, when x ∈ C, ‖x‖1 = tr(x) =

k∑
i=1

xii where xi j is the i j th entry of the real matrix x (and tr(x) is the trace of x), and

so ‖x‖1 is a linear function on C. Therefore, when p = 1, we have ū = I and the

coefficient of linearity is βC = 1. When p > 1, it is easy to show that ū =
(

k

(
1
p−1

))
I

has ‖ū‖∗ = ‖ū‖q = 1 (where 1/p + 1/q = 1) and that βC = k

(
1
p−1

)
. Also, it is easy

to show by setting u = I that the width is τC = k−
1
p .

We will make the following assumption throughout the paper concerning the cone
CX and the norm on the space Y :

Computing a reliable solution of a conic linear system 459

Assumption 1. CX ⊂ X is a regular cone. The coefficient of linearity β for the cone CX,
and the width τ of the cone CX, together with corresponding norm linearization vectors f̄
(for the cone CX) and f (for the cone C∗

X) are known and given. For y ∈ Y, ‖y‖ = ‖y‖2.

Suppose C is a regular cone in the normed vector space X, and ū is the norm
linearization vector for C. Given any linear function ct x defined on x ∈ X, we define
the following conic section optimization problem:

(CSOPC) min ct x
x

s.t. x ∈ C
ūt x = 1.

(15)

For the algorithm CLS developed in this paper, we presume that we have available
an oracle that can solve (CSOPCX) efficiently, that is, the upper bound on the number
of operations the oracle takes to solve (CSOPCX) is not excessive, for otherwise the
algorithm will not be very efficient. Let TC denote an upper bound on the number of
operations performed in a call to the oracle.

We now pause to illustrate how an oracle for solving (CSOPC) is easily implemented
for two relevant instances of the cone C, namely�n+ and Sk×k+ . We first consider�n+. As
discussed above, when ‖x‖ is given by L p norm with p ≥ 1, the norm approximation
vector ū is a positive multiple of the vector e. Therefore, for any c, the problem (CSOPC)
is simply the problem of finding the index of the smallest element of the vector c, so
that the solution of (CSOPC) is easily computed as xc = ei , where i ∈ argmin{c j : j =
1, . . . , n}. Thus TC = n.

We now consider Sk×k+ . As discussed above, when ‖x‖ is given by ‖x‖ = ‖x‖p =(∑n
j=1 |λ j(x)|p

) 1
p

with p ≥ 1, the norm approximation vector ū is a positive multiple

of the matrix I . For any c ∈ Sk×k , the problem (CSOPC) corresponds to the problem
of finding the normalized eigenvector corresponding to the smallest eigenvalue of the
matrix c, i.e., (CSOPC) is a minimum eigenvalue problem and is solvable to within
machine tolerance in O(k3) operations in practice (though not in theory).

Solving (CSOP) for the Cartesian product of two cones is easy if (CSOP) is easy to

solve for each of the two cones: suppose that X = V ×W with norm ‖x‖ = ‖(v,w)‖
=
‖v‖ + ‖w‖, and C = CV × CW where CV ⊂ V and CW ⊂ W are regular cones with
norm linearization vectors ūV and ūW , respectively. Then the norm linearization vector
for the cone C is ū = (ūV , ūW), βC = min{βCV , βCW }, and TC = TCV + TCW + O(1).

We end this section with the following remark which gives a geometric interpretation
of the distance from a given point to the boundary of a closed convex set, which will be
often used in this paper.

Remark 3. Let S be a closed convex set in �m and let f ∈ �m be given. The distance
from f to the boundary of S is denoted as

dist(f, ∂S)

= min

z
{‖ f − z‖ : z ∈ ∂S}. (16)

If f �∈ S, then dist(f, ∂S) = min{‖ f − z‖ : z ∈ S}. If f ∈ S, then dist(f, ∂S) = max{r :
B(f, r) ⊂ S}.

460 Marina Epelman, Robert M. Freund

3. A generalized von Neumann algorithm for a conic linear system
in compact form

In this section we consider a generalization of the algorithm of von Neumann studied
by Dantzig in [6] and [7], see also [10]. We will work with a conic linear system of the
form:

(P) Mx = g
x ∈ C

ūt x = 1,

(17)

where C ⊂ X is a closed convex cone in the (finite) n-dimensional normed linear vector
space X, and g ∈ Y where Y is the (finite) m-dimensional linear vector space with
Euclidean norm ‖y‖ = ‖y‖2, and M ∈ L(X, Y). We assume that C is a regular cone,
and the norm linearization vector ū of Remark 2 is known and given. (The original
algorithm of von Neumann presented and analyzed by Dantzig in [6] and [7] was
developed for the case when C = �n+ and ū = e.) We will refer to a system of the form
(17) as a conic linear system in compact form, or simply a compact-form system.

The “alternative” system to (P) of (17) is:

(A) Mt s − ū(gts) ∈ int C∗, (18)

and a generalization of Farkas’ Lemma yields the following duality result:

Proposition 4. Exactly one of the systems (P) of (17) and (A) of (18) has a solution.

Notice that the feasibility problem (P) is equivalent to the following optimization
problem:

(OP) min
x
{‖g − Mx‖ : x ∈ C, ūt x = 1}.

If (P) has a feasible solution, the optimal value of (OP) is 0; otherwise, the optimal value
of (OP) is strictly positive. We will say that a point x is “admissible” if it is a feasible
point for (OP), i.e., x ∈ C and ū t x = 1.

We now describe a generic iteration of our algorithm. At the beginning of the
iteration we have an admissible point x̄. Let v̄ be the “residual” at the point x̄, namely,
v̄ = g−Mx̄. Notice that ‖v̄‖ = ‖g−Mx̄‖ is the objective value of (OP). The algorithm
calls an oracle to solve the following instance of the conic section optimization problem
(CSOPC) of (15):

min v̄t(g− Mp) = min v̄t(gūt − M)p
p p

s.t. p ∈ C s.t. p ∈ C
ūt p = 1 ūt p = 1,

(19)

where (19) is an instance of the (CSOPC) with c = (−Mt + ūgt)v̄. Let p̄ be an optimal
solution to the problem (19), and w̄ = g− M p̄.

Next, the algorithm checks whether the termination criterion is satisfied. The ter-
mination criterion for the algorithm is given in the form of a function STOP(·), which
evaluates to 1 exactly when its inputs satisfy some termination criterion (some relevant

Computing a reliable solution of a conic linear system 461

examples are presented after the statement of the algorithm). If STOP(·) = 1, the
algorithm concludes that the appropriate termination criterion is satisfied and stops.

On the other hand, if STOP(·) = 0, the algorithm continues the iteration. The
direction p̄ − x̄ turns out to be a direction of potential improvement of the objective
function of (OP). The algorithm takes a step in the direction p̄− x̄ with step-size found
by constrained line-search. In particular, let

x̃(λ) = x̄ + λ(p̄− x̄), λ ∈ [0, 1].

Then the next iterate x̃ is computed as x̃ = x̃(λ∗), where λ∗ is chosen to minimize the
size of the residual at x̃:

λ∗ = argminλ∈[0,1]‖g− Mx̃(λ)‖
= argminλ∈[0,1]‖g− M(x̄ + λ(p̄− x̄))‖ = argminλ∈[0,1]‖(1− λ)v̄+ λw̄‖.

Notice that x̃ is a convex combination of the two admissible points x̄ and p̄ and therefore
x̃ is also admissible. Also, λ∗ above can be computed as the solution of the following
simple constrained convex quadratic minimization problem:

min
λ∈[0,1] ‖(1 − λ)v̄+ λw̄‖2 = min

λ∈[0,1]λ
2‖v̄− w̄‖2 + 2λ(v̄t(w̄− v̄))+ ‖v̄‖2. (20)

The closed-form solution of the program (20) is easily seen to be

λ∗ = min
{

v̄t(v̄− w̄)

‖v̄− w̄‖2 , 1
}

. (21)

The formal description of the algorithm is as follows:

Algorithm GVNA

– Data: (M, g, x0) (where x0 is an arbitrary admissible starting point).
– Initialization: The algorithm is initialized with x0.
– Iteration k, k ≥ 1: At the start of the iteration we have an admissible point xk−1 :

xk−1 ∈ C, ūt xk−1 = 1.

Step 1 Compute vk−1 = g − Mxk−1 (the residual).

Step 2 Call the oracle to solve the following instance of (CSOPC):

min (vk−1)t(g − Mp) = min (vk−1)t(gūt − M)p
p p

s.t. p ∈ C s.t. p ∈ C
ūt p = 1 ūt p = 1.

(22)

Let pk−1 be an optimal solution of the optimization problem (22) and wk−1 =
g−Mpk−1. Evaluate STOP(·). If STOP(·) = 1, stop, return appropriate output.

462 Marina Epelman, Robert M. Freund

Step 3 Else, let

λk−1 = argminλ∈[0,1]{‖g− M(xk−1 + λ(pk−1 − xk−1))‖} (23)

= min
{

(vk−1)t(vk−1 − wk−1)

‖vk−1 −wk−1‖2 , 1
}

and
xk = xk−1 + λk−1(pk−1 − xk−1).

Step 4 Let k ← k + 1, go to Step 1.

Note that the above description is rather generic; to apply the algorithm we have to
specify the function STOP(·) to be used in Step 2. Some examples of function STOP(·)
that will be used in this paper are:

1. STOP1(vk−1, wk−1) = 1 if (vk−1)twk−1 > 0, STOP1 = 0 otherwise. If the vectors
vk−1, wk−1 satisfy termination criterion STOP1, then it can be easily verified that
the vector s = − vk−1

‖vk−1‖ is a solution to the alternative system (A) (see Proposition 5).
Therefore, algorithm GVNA with STOP = STOP1 will terminate only if the system
(P) is infeasible.

2. STOP2(vk−1, wk−1) = 1 if (vk−1)twk−1 >
‖vk−1‖2

2 , STOP2 = 0 otherwise. This
termination criterion is a stronger version of the previous one.

3. STOP3(vk−1, wk−1, k) = 1 if (vk−1)twk−1 > 0 or k ≥ I , where I is some pre-
specified integer, STOP3 = 0 otherwise. This termination criterion is essentially
equivalent to STOP1, but it ensures finite termination (in no more than I iterations)
regardless of the status of (P).

Proposition 5. Suppose vk−1 and wk−1 are as defined in Steps 1 and 2 of algorithm
GVNA. If (vk−1)twk−1 > 0, then (A) has a solution and so (P) is infeasible.

Proof. By definition of wk−1,

0 < (vk−1)twk−1 = (vk−1)t(gūt − M)pk−1 ≤ (vk−1)t(gūt − M)p

for any p ∈ C, ūt p = 1. Hence, (gūt −M)tvk−1 ∈ int C∗ and s = − vk−1

‖vk−1‖ is a solution
of (A).

�
Analogous to the von Neumann algorithm of [6] and [7], we regard algorithm GVNA

as “elementary” in that the algorithm does not perform any sophisticated computations
at each iteration (each iteration must perform a few matrix-vector and vector-vector
multiplications and solve an instance of (CSOPC)). Furthermore the work per iteration
will be low so long as the number of operations performed by the oracle is small. Each
iteration of algorithm GVNA requires at most

TC + O(mn)

Computing a reliable solution of a conic linear system 463

operations, where TC is the number of operations performed by the oracle. The term
O(mn) derives from counting the matrix-vector and vector-vector multiplications. The
number of operations required to perform these multiplications can be significantly
reduced if M and g are sparse.

It can be easily seen that the size of the residual ‖vk‖ is non-increasing, since the
interval of the line-search in (23) includes λ = 0. In fact, the size of the residual will
decrease when either of the three termination criteria above is used. The rate of decrease
depends on the termination criterion used and on the status of the system (P). In the
rest of this section we present three lemmas that provide upper bounds on the size of
the residual throughout the algorithm. The first result is a generalization of Dantzig’s
convergence result [6].

Lemma 1 (Dantzig [6]). If algorithm GVNA with STOP = STOP1 (or STOP =
STOP3) has performed k (complete) iterations, then

‖vk‖ ≤ ‖M − gūt‖
βC
√

k
. (24)

Proof. First note that if x is any admissible point (i.e., x ∈ C and ūt x = 1), then
‖x‖ ≤ ūt x

βC
= 1

βC
, and so

‖g − Mx‖ = ‖(gūt − M)x‖ ≤ ‖M − gūt‖ · ‖x‖ ≤ ‖M − gūt‖
βC

. (25)

From the discussion preceding the formal statement of the algorithm, all iterates of
the algorithm are admissible, so that xk ∈ C and ūt xk = 1 for all k. We prove the bound
on the norm of the residual by induction on k.

For k = 1,

‖v1‖ = ‖g− Mx1‖ ≤ ‖M − gūt‖
βC

= ‖M − gūt‖
βC
√

1
,

where the inequality above derives from (25).

Next suppose by induction that ‖vk−1‖ ≤ ‖M−gūt‖
βC
√

k−1
. At the end of iteration k we have

‖vk‖ = ‖g − Mxk‖ = ‖(1− λk−1)(g− Mxk−1)+ λk−1(g− Mpk−1)‖

= ‖(1− λk−1)vk−1 + λk−1wk−1‖,
(26)

where pk−1 and wk−1 were computed in Step 2. Recall that λk−1 was defined in Step 3
as the minimizer of ‖(1 − λ)vk−1 + λwk−1‖ over all λ ∈ [0, 1]. Therefore, in order
to obtain an upper bound on ‖vk‖, we can substitute any λ ∈ [0, 1] into (26). We will
substitute λ = 1

k . Making this substitution, we obtain:

‖vk‖ ≤
∣∣∣∣
∣∣∣∣k − 1

k
vk−1 + 1

k
wk−1

∣∣∣∣
∣∣∣∣ = 1

k
‖(k − 1)vk−1 +wk−1‖. (27)

464 Marina Epelman, Robert M. Freund

Squaring (27) yields:

‖vk‖2 ≤ 1

k2

(
(k − 1)2‖vk−1‖2 + ‖wk−1‖2 + 2(k − 1)(vk−1)t(wk−1)

)
. (28)

Since the algorithm did not terminate at Step 2, the termination criterion was not met,
i.e., in the case STOP = STOP1 (or STOP = STOP3), (vk−1)twk−1 ≤ 0. Also, since
pk−1 is admissible, ‖wk−1‖ = ‖g− Mpk−1‖ ≤ ‖M−gūt‖

βC
. Combining these results with

the inductive bound on ‖vk−1‖ and substituting into (28) above yields

‖vk‖2 ≤ 1

k2

(
(k − 1)2 ‖M − gūt‖2

β2
C(k − 1)

+ ‖M − gūt‖2

β2
C

)
= 1

k
· ‖M − gūt‖2

β2
C

.

�
We now develop another line of analysis of the algorithm, which will be used when

the problem (P) is “well-posed.” Let

H = HM = {Mx : x ∈ C, ūt x = 1}, (29)

and notice that (P) is feasible precisely when g ∈ H. Define

r = r(M, g) = inf{‖g− h‖ : h ∈ ∂H}. (30)

As it turns out, the quantity r plays a crucial role in analyzing the complexity of algorithm
GVNA.

Observe that r(M, g) = 0 precisely when the vector g is on the boundaryof the setH.
Thus, when r = 0, the problem (P) has a feasible solution, but arbitrarily small changes
in the data (M, g) can yield instances of (P) that have no feasible solution. Therefore
when r = 0 we can rightfully call the problem (P) unstable, or in the language of data
perturbation and condition numbers, the problem (P) is “ill-posed.” We will refer to the
system (P) as being “well-posed” when r > 0.

Notice that both H = HM and r = r(M, g) are specific to a given data instance
(M, g) of (P), i.e., their definitions depend on the problem data M and g. We will,
however, often omit problem data M and g from the notation for H = HM and r =
r(M, g). It should be clear from the context which data instance we are referring to.

In light of Remark 3, when (P) has a feasible solution, r(M, g) can be interpreted as
the radius of the largest ball centered at g and contained in the setH.

We now present an analysis of the performance of algorithm GVNA in terms of the
quantity r = r(M, g).

Proposition 6. Suppose that (P) has a feasible solution. Let vk be the residual at
point xk, and let pk be the direction found in Step 2 of the algorithm at iteration k + 1.
Then (vk)t(g− Mpk)+ r(M, g)‖vk‖ ≤ 0.

Proof. If vk = 0, the result follows trivially. Suppose vk �= 0. By definition of r(M, g),
there exists a point h ∈ H such that g − h + r(M, g) vk

‖vk‖ = 0. By the definition of H,
h = Mx for some admissible point x. It follows that

g− Mx = −r(M, g)
vk

‖vk‖ .

Computing a reliable solution of a conic linear system 465

Recall that pk ∈ argminp{(vk)t(g− Mp) : p ∈ C, ūt p = 1}. Therefore,

(vk)t(g − Mpk) ≤ (vk)t(g− Mx) = −(vk)tr(M, g)
vk

‖vk‖ = −r(M, g)‖vk‖,

and rearranging yields

(vk)t(g− Mpk)+ r(M, g)‖vk‖ ≤ 0.

�
Proposition 6 is used to prove the following linear convergence rate for algorithm

GVNA:

Lemma 2. Suppose the system (P) is feasible, and that r(M, g) > 0. If GVNA with
STOP = STOP1 (or STOP = STOP3) has performed k (complete) iterations, then

‖vk‖ ≤ ‖v0‖e
− k

2

(
βCr(M,g)

‖M−gūt ‖
)2

. (31)

Proof. Let x̄ be the current iterate of GVNA. Furthermore, let v̄= g−Mx̄ be the residual
at the point x̄, p̄ be the solution of the problem (CSOPC), and w̄ = g − M p̄. Suppose
that the algorithm has not terminated at the current iteration, and x̃ = x̄ + λ∗(p̄− x̄) is
the next iterate and ṽ is the residual at x̃. Then

‖ṽ‖2 = ‖(1− λ∗)v̄+ λ∗w̄‖2 = (λ∗)2‖v̄− w̄‖2 + 2λ∗v̄t(w̄− v̄)+ ‖v̄‖2, (32)

where λ∗ = min
{

v̄t (v̄−w̄)

‖v̄−w̄‖2 , 1
}

. Since the algorithm has not terminated at Step 2, the

termination criterion has not been satisfied, i.e., in the case of STOP = STOP1 (or
STOP = STOP3), v̄tw̄ ≤ 0. Therefore

v̄t(v̄− w̄) ≤ ‖v̄‖2 − v̄tw̄+ (‖w̄‖2 − v̄tw̄) = ‖v̄ − w̄‖2,

so that v̄t(v̄−w̄)

‖v̄−w̄‖2 ≤ 1 and λ∗ = v̄t(v̄−w̄)

‖v̄−w̄‖2 . Substituting this value of λ∗ into (32) yields:

‖ṽ‖2 = ‖v̄‖2‖w̄‖2 − (v̄tw̄)2

‖v̄− w̄‖2 . (33)

Recall from Proposition 6 that v̄tw̄ ≤ −r(M, g)‖v̄‖. Thus, ‖v̄‖2(‖w̄‖2− r(M, g)2) is an
upper bound on the numerator of (33). Also, ‖v̄− w̄‖2 = ‖v̄‖2+‖w̄‖2−2v̄tw̄ ≥ ‖w̄‖2.
Substituting this into (33) yields

‖ṽ‖2 ≤ ‖v̄‖2(‖w̄‖2 − r(M, g)2)

‖w̄‖2 =
(

1− r(M, g)2

‖w̄‖2

)
‖v̄‖2

≤
(

1−
(

βCr(M, g)

‖gūt − M‖
)2
)
‖v̄‖2,

466 Marina Epelman, Robert M. Freund

where the last inequality derives from (25). Applying the inequality 1 − t ≤ e−t for

t =
(

βCr(M,g)
‖gūt−M‖

)2
, we obtain:

‖ṽ‖2 ≤ ‖v̄‖2e
−
(

βCr(M,g)

‖gūt−M‖
)2

,

or, substituting v̄ = vk−1 and ṽ = vk ,

‖vk‖ ≤ ‖vk−1‖e
− 1

2

(
βCr(M,g)

‖gūt−M‖
)2

. (34)

Applying (34) inductively, we can bound the size of the residual ‖vk‖ by

‖vk‖ ≤ ‖v0‖e
− k

2

(
βCr(M,g)

‖gūt−M‖
)2

.

�
We now establish a bound on the size of the residual for STOP = STOP2.

Lemma 3. If GVNA with STOP = STOP2 has performed k (complete) iterations, then

‖vk‖ ≤ 4‖M − gūt‖
βC
√

k
.

Proof. Let x̄ be the current iterate of GVNA. Furthermore, let v̄= g−Mx̄ be the residual
at the point x̄, p̄ be the solution of the problem (CSOPC) and w̄ = g − M p̄. Suppose
that the algorithm has not terminated at the current iteration, and x̃ = x̄ + λ∗(p̄− x̄) is
the next iterate and ṽ is the residual at x̃. Then

‖ṽ‖2 = ‖(1− λ∗)v̄+ λ∗w̄‖2 = (λ∗)2‖v̄− w̄‖2 + 2λ∗v̄t(w̄− v̄)+ ‖v̄‖2, (35)

where λ∗ is given by (21). Consider two cases:

Case 1: ‖w̄‖2 ≤ w̄t v̄. It can be easily shown that in this case λ∗ = 1. Substituting this
value of λ∗ into (35), algebraic manipulations yield

‖ṽ‖2 = ‖w̄‖2 ≤ w̄t v̄ ≤ ‖v̄‖2

2
= ‖v̄‖2 − ‖v̄‖2

2
≤ ‖v̄‖2 − ‖v̄‖4β2

C

16‖M − gūt‖2
. (36)

The second inequality in (36) follows from the assumption that the algorithm did not

terminate at the present iteration, i.e., in the case of STOP = STOP2, v̄tw̄ ≤ ‖v̄‖2

2 . The
last inequality follows since

‖v̄‖2 ≤ ‖M − gūt‖2

β2
C

≤ 8‖M − gūt‖2

β2
C

.

The need for the last inequality may not be immediately clear at this stage, but will
become more apparent later in this proof.

Computing a reliable solution of a conic linear system 467

Case 2: ‖w̄‖2 ≥ w̄t v̄. It can be easily shown that in this case λ∗ = v̄t(v̄−w̄)

‖v̄−w̄‖2 . Substituting
this value of λ∗ into (35) yields:

‖ṽ‖2 = ‖v̄‖2 − (v̄t(w̄− v̄))2

‖w̄− v̄‖2
.

Since v̄tw̄ ≤ ‖v̄‖2

2 , we have:

v̄t(v̄− w̄) ≥ ‖v̄‖2

2
,

so that

‖ṽ‖2 ≤ ‖v̄‖2 − ‖v̄‖4

4‖w̄− v̄‖2 ≤ ‖v̄‖2 − ‖v̄‖4β2
C

16‖M − gūt‖2 ,

since

‖w̄− v̄‖2 ≤ ‖v̄‖2 + ‖w̄‖2 + 2‖v̄‖ · ‖w̄‖ ≤ 4‖M − gūt‖2

β2
C

(the last inequality results from an application of (25) for ‖v̄‖ = ‖g − Mx̄‖ and
‖w̄‖ = ‖g− M p̄‖).

Combining Case 1 and Case 2, we conclude that

‖ṽ‖2 ≤ ‖v̄‖2 − ‖v̄‖4

γ 2 , where γ

= 4‖M − gūt‖

βC
. (37)

Next, we establish (using induction) the following relation, from which the statement
of the lemma will follow: if the algorithm has performed k (complete) iterations, then

‖vk‖2 ≤ γ 2

k
. (38)

First, note that ‖v1‖2 ≤ ‖M−gūt‖2

β2
C

≤ γ 2

1 , thus establishing (38) for k = 1. Suppose

that (38) holds for k ≥ 1. Then, using the relationship for ṽ and v̄ established above
with ṽ = vk+1 and v̄ = vk, we have:

‖vk+1‖2 ≤ ‖vk‖2 − ‖vk‖4

γ 2 ,

or, dividing by ‖vk+1‖2 · ‖vk‖2,

1

‖vk‖2 ≤ 1

‖vk+1‖2 −
‖vk‖2

‖vk+1‖2γ 2 ≤
1

‖vk+1‖2 −
1

γ 2 .

Therefore,
1

‖vk+1‖2 ≥ 1

‖vk‖2 +
1

γ 2 ≥
k

γ 2 +
1

γ 2 ,

and so

‖vk+1‖2 ≤ γ 2

k + 1
,

thus establishing the relation (38), which completes the proof of the lemma.
�

468 Marina Epelman, Robert M. Freund

4. Elementary algorithms for homogeneous conic linear systems

In this section we develop and analyze two elementary algorithms for homogeneous
conic linear systems: algorithm HCI (for Homogeneous Conic Inequalities) which solves
systems of the form

(HCI) Mt s ∈ int C∗, (39)

and algorithm HCE (for Homogeneous Conic Equalities) which solves systems of the
form

(HCE) Mw = 0,

w ∈ C.
(40)

Here the notation is the same as in Sect. 3, and we make the following assumption:

Assumption 2. C ⊂ X is a regular cone. The width τC of the cone C and the coef-
ficient of linearity βC for the cone C, together with vectors ū and u of Remark 2 and
Proposition 3 are known and given. For y ∈ Y, ‖y‖ = ‖y‖2.

Both algorithms HCI and HCE consist of calls to algorithm GVNA applied to trans-
formations of the appropriate homogeneous system. Algorithms HCI and HCE will be
used in Sect. 5 in the development of algorithm CLS for general conic linear system
(FPd).

4.1. Algorithm HCI for homogeneous conic inequality system (HCI)

In this subsection we will assume that the system (HCI) of (39) is feasible. We
denote the set of solutions of (HCI) by SM :

SM

= {s : Mts ∈ int C∗}.

The solution s returned by algorithm HCI is “sufficiently interior” in the sense that the
ratio ‖s‖∗

dist(s,∂SM)
is not excessively large. (The notion of sufficiently interior solutions

is very similar to the notion of reliable solutions. However, we wish to reserve the
appellation “reliable” for solutions and certificates of infeasibility of the system (FPd).)

Observe that the system (HCI) of (39) is of the form (18) (with g = 0). (HCI) is the
“alternative” system for the following problem:

(PHCI) Mx = 0
x ∈ C
ūt x = 1,

(41)

which is a system of the form (17). Following (30) we define

r(M, 0)

= inf{‖h‖ : h ∈ ∂H}, (42)

where, as in (29), H

= {Mx : x ∈ C, ūt x = 1}. Applying a separating hyperplane

argument, we easily have the following result:

Computing a reliable solution of a conic linear system 469

Proposition 7. Suppose (HCI) of (39) is feasible. Then (PHCI) of (41) is infeasible and
r(M, 0) = min{‖Mx‖ : x ∈ C, ūt x = 1} > 0.

Algorithm HCI, described and analyzed below, consists of a single application of
algorithm GVNA to the system (PHCI) and returns as output a sufficiently interior
solution of the system (HCI).

Algorithm HCI

– Data: M
– Run algorithm GVNA with STOP = STOP2 on the data set (M, 0, x0) (where x0

is an arbitrary admissible starting point). Let v̄ be the residual at the last iteration of
algorithm GVNA.

– Define s

= − v̄

‖v̄‖ . Return s.

Theorem 1. Suppose (HCI) is feasible. Algorithm HCI will terminate in at most⌊
16‖M‖2

β2
Cr(M, 0)2

⌋
(43)

iterations of algorithm GVNA.
Let s be the output of algorithm HCI. Then s ∈ SM and

‖s‖∗
dist(s, ∂SM)

≤ 2‖M‖
βCr(M, 0)

. (44)

Proof. Suppose that algorithm GVNA (called in algorithm HCI) has completed k iter-
ations. From Lemma 3 we conclude that

‖vk‖ ≤ 4‖M‖
βC
√

k
,

where vk = −Mxk is the residual after k iterations. From Proposition 7, r(M, 0) ≤ ‖Mx‖
for any admissible point x. Therefore,

r(M, 0) ≤ ‖vk‖ ≤ 4‖M‖
βC
√

k
.

Rearranging yields

k ≤ 16‖M‖2

β2
Cr(M, 0)2

,

from which the first part of the theorem follows.
Next, observe that ‖s‖∗ = 1. Therefore, to establish the second part of the theorem,

we need to show that dist(s, ∂SM) ≥ βCr(M,0)
2‖M‖ . Equivalently, we need to show that for

any q ∈ Y∗ such that ‖q‖∗ ≤ 1, Mt
(
s + βCr(M,0)

2‖M‖ q
) ∈ C∗. Let p be an arbitrary vector

satisfying p ∈ C, ūt p = 1. Then(
Mt

(
s + βCr(M, 0)

2‖M‖ q

))t

p = st Mp+ βCr(M, 0)

2‖M‖ qt Mp. (45)

470 Marina Epelman, Robert M. Freund

Observe that by definition of s

st Mp = −v̄t Mp

‖v̄‖ ≥ v̄twk−1

‖v̄‖ >
‖v̄‖

2
,

where v̄ = vk−1 is the residual at the last iteration of algorithm GVNA. (The first
inequality follows since p is an admissible point, and the second inequality follows
from the fact that the termination criterion of STOP2 is satisfied at the last iteration.)
On the other hand,

βCr(M, 0)

2‖M‖ qt Mp ≥ −βCr(M, 0)

2‖M‖ ‖q‖∗ · ‖M‖ · ‖p‖ ≥ −r(M, 0)

2
.

Substituting the above two bounds into (45), we conclude that(
Mt

(
s + βCr(M, 0)

2‖M‖ q

))t

p >
‖v̄‖
2

− r(M, 0)

2
≥ 0.

�

4.2. Algorithm HCE for homogeneous conic equality system (HCE)

We denote the set of solutions of (HCE) of (40) by WM , i.e.,

WM

= {w : Mw = 0, w ∈ C}.

We assume in this subsection that (HCE) is feasible and M has full rank. The solution w

returned by algorithm HCE is “sufficiently interior” in the sense that the ratio ‖w‖
dist(w,∂C)

is not excessively large. (The system (HCE) has a trivial solution w = 0. However this
solution is not a sufficiently interior solution, since it is contained in the boundary of
the cone C).

We define H̃ = {Mx : x ∈ C, ‖x‖ ≤ 1} (note the similarity withHM of (29)), and

ρ(M)

= dist(0, ∂H̃) = max{r : B(0, r) ⊂ H̃}. (46)

The following remark summarizes some important facts about ρ(M):

Remark 4. Suppose ρ(M) > 0. Then the set {w ∈ WM : w �= 0} is non-empty, and M
has full rank. Moreover, ρ(M) ≤ ‖M‖ and

‖(MMt)−1‖ ≤ 1

ρ(M)2 . (47)

This follows from the observation that ρ(M)2 ≤ λ1(MMt), where λ1(MMt) denotes
the smallest eigenvalue of the matrix MMt .

We will assume for the rest of this subsection that ρ(M) > 0. Then the second
statement of Remark 4 implies that the earlier assumption that M has full rank is
satisfied. In order to obtain a sufficiently interior solution of (HCE) we will construct
a transformation of the system (HCE) which has the form (17), and its solutions can be
transformed into sufficiently interior solutions of the system (HCE). The next subsection
contains the analysis of the transformation, and its results are used to develop algorithm
HCE in the following subsection.

Computing a reliable solution of a conic linear system 471

4.2.1. Properties of a parameterized conic system of equalities in compact form. In
this subsection we work with a compact-form system

(HCE0) Mx = 0
x ∈ C

ūt x = 1.

(48)

The system (HCE0) is derived from the system (HCE) by adding a compactifying
constraint ūt x = 1. Remark 4 implies that when ρ(M) > 0 the system (HCE0) is
feasible.

We will consider systems arising from parametric perturbations of the right-hand
side of (HCE0). In particular, for a fixed vector z ∈ Y , we consider the perturbed
compact-form system

(HCEδ) Mx = δz
x ∈ C

ūt x = 1,

(49)

where the scalar δ ≥ 0 is the perturbation parameter (observe that (HCE0) can be viewed
as an instance of (HCEδ) with the parameter δ = 0, justifying the notation). Since the
case when z = 0 is trivial (i.e., (HCEδ) is equivalent to (HCE0) for all values of δ), we
assume that z �= 0. The following lemma establishes an estimate on the range of values
of δ for which the resulting system is feasible, and establishes bounds on the parameters
of the system (HCEδ) in terms of δ.

Before stating the lemma, we will restate some facts about the geometric interpre-
tation of (HCEδ) and the parameter r(M, δz) of (30). Recall that the system (HCEδ) is

feasible precisely when δz ∈ H
= {Mx : x ∈ C, ūt x = 1}. Also, if the system (HCEδ)
is feasible, r(M, δz) can be interpreted as the radius of the largest ball centered at δz and
contained in H. Moreover, using the inequality βC‖x‖ ≤ ūt x ≤ ‖x‖ for all x ∈ C, it
follows that

βCr(M, 0) ≤ ρ(M) ≤ r(M, 0).

Lemma 4. Suppose (HCE0) of (48) is feasible, and z ∈ Y, z �= 0. Define

δ̄ = max{δ : (HCEδ) is feasible}. (50)

Then ρ(M)
‖z‖ ≤ r(M,0)

‖z‖ ≤ δ̄ < +∞. Moreover, if ρ(M) > 0, then δ̄ > 0, and for

any δ ∈ [0, δ̄], the system (HCEδ) is feasible and ‖M − δzūt‖ ≤ ‖M‖ + δ‖z‖ and

r(M, δz) ≥
(

δ̄−δ

δ̄

)
ρ(M).

Proof. Since H is compact and z is nonzero, δ̄ is well defined and finite. Note that the
definition of δ̄ implies that δ̄z ∈ ∂H. To establish the lower bound on δ̄, note that for
any y ∈ Y such that ‖y‖ ≤ 1, r(M, 0)y ∈ H. Therefore, if we take y = z

‖z‖ , we have
r(M,0)
‖z‖ z ∈ H, and so (HCEδ) is feasible for δ = r(M,0)

‖z‖ . Hence, δ̄ ≥ r(M,0)
‖z‖ ≥ ρ(M)

‖z‖ .
The bound on ‖M − δzūt‖ is a simple application of the triangle inequality for the

operator norm, i.e., ‖M − δzūt‖ ≤ ‖M‖ + δ‖z‖ · ‖ū‖∗ = ‖M‖ + δ‖z‖.

472 Marina Epelman, Robert M. Freund

Finally, suppose that ρ(M) > 0. Then δ̄ > 0. Let δ ∈ [0, δ̄] be some value of the
perturbation parameter. Since δ ≤ δ̄, the system (HCEδ) is feasible. To establish the
lower bound on r(M, δz) stated in the lemma, it is sufficient to show that a ball of radius
δ̄−δ

δ̄
r(M, 0) centered at δz is contained in H. Suppose y ∈ Y is such that ‖y‖ ≤ 1. As

noted above, δ̄z ∈ H and r(M, 0)y ∈ H. Therefore,

δz + δ̄− δ

δ̄
r(M, 0)y = δ

δ̄
(δ̄z)+

(
1− δ

δ̄

)
(r(M, 0)y) ∈ H,

since the above is a convex combination of δ̄z and r(M, 0)y. Therefore, r(M, δz) ≥
δ̄−δ

δ̄
r(M, 0) ≥ δ̄−δ

δ̄
ρ(M), which concludes the proof.

�
We now consider the system (HCEδ) of (49) with the vector z

= −Mu, where u is
as specified in Assumption 2. The system (HCEδ) becomes

(HCEδ) Mx = −δMu
x ∈ C
ūt x = 1.

(51)

The following proposition indicates how approximate solutions of the system (HCEδ)
of (51) can be used to obtain sufficiently interior solutions of the system (HCE).

Proposition 8. Suppose ρ(M) > 0 and δ > 0. Suppose further that x is an admissible
point for (HCEδ), and in addition x satisfies

‖Mx + δMu‖ ≤ 1

2
δτC

ρ(M)2

‖M‖ .

Define

w

= (I − Mt(MMt)−1 M)(x + δu). (52)

Then Mw = 0 and

‖w− (x + δu)‖ ≤ 1

2
δτC (53)

which implies that w ∈ C, dist(w, ∂C) ≥ 1
2δτC, and ‖w‖ ≤ 1

2δτC + 1
βC

+ δ.

Proof. First, observe that w satisfies Mw = 0 by definition (52). To demonstrate (53)
we apply the definition (52) of w to obtain

‖w− (x + δu)‖ = ‖Mt (MMt)−1 M(x + δu)‖ ≤ ‖M‖ · ‖(MMt)−1‖ · ‖M(x + δu)‖

≤ δτCρ(M)2 · ‖M‖ · ‖(MMt)−1‖
2‖M‖ = δτCρ(M)2 · ‖(MMt)−1‖

2
≤ δτC

2
,

since ‖(MMt)−1‖ ≤ 1
ρ(M)2 from Remark 4.

Computing a reliable solution of a conic linear system 473

The last three statements of the proposition are direct consequences of (53). Notice
that B(x + δu, δτC) ⊂ C since B(u, τC) ⊂ C and x ∈ C. Combining this with (53) and
the triangle inequality for the norm we conclude that w ∈ C and dist(w, ∂C) ≥ 1

2δτC .
Also,

‖w‖ ≤ ‖w− (x + δu)‖ + ‖x + δu‖ ≤ 1

2
δτC + 1

βC
+ δ,

which completes the proof.
�

Notice that w defined by (52) is the projection of x + δu onto the set {w : Mw = 0}
with respect to the Euclidean norm on the space X. Although the norm on the space X
may be different from the Euclidean norm, we will refer to the point w defined by (52)
as the projection of x + δu. It is interesting to note that it is not necessary to have δ ≤ δ̄

for Proposition 8 to be applicable.

4.2.2. Algorithm HCE. Algorithm HCE applies algorithm GVNA to a sequence of
problem (HCEδ) of (51) with decreasing values of δ, until the output provides a suffi-
ciently interior solution of (HCE).

The formal statement of algorithm HCE is as follows:

Algorithm HCE

– Data: M
– Iteration k, k ≥ 1

Step 1 δ = δk
= 21−k, compute I(δ):

I(δ)

=
⌈

9

2β2
Cδ2

ln

(
1

2τCδ2

(
1+ 1

βCδ

))⌉
. (54)

Step 2 Run GVNA with STOP = STOP3 with I = I(δ) on the data set
(M,−δMu, x0) (where x0 is an arbitrary admissible starting point).

Step 3 Let x be the last iterate of GVNA in Step 2.
Set w = (I − Mt (MMt)−1 M)(x + δu). If ‖w− (x + δu)‖ ≤ 1

2τCδ, stop.
Return w.
Else, set k ← k + 1 and repeat Step 1.

The following proposition states that when ρ(M) > 0 algorithm HCE will terminate
and return as output a sufficiently interior solution of (HCE).

Theorem 2. Suppose (HCE) satisfies ρ(M) > 0. Algorithm HCE will terminate in at
most ⌈

log2

(‖M‖
ρ(M)

)⌉
+ 2 (55)

iterations, performing at most

4

3

⌈
216‖M‖2

ρ(M)2β2
C

ln
(

40‖M‖
ρ(M)τCβC

)⌉
+
⌈

log2

(‖M‖
ρ(M)

)⌉
+ 2 (56)

iterations of algorithm GVNA.

474 Marina Epelman, Robert M. Freund

Algorithm HCE will return a vector w ∈ X with the following properties:

1. w ∈ WM,
2. dist(w, ∂C) ≥ τCρ(M)

8‖M‖ ,

3. ‖w‖ ≤ 5
2βC

,

4. ‖w‖
dist(w,∂C)

≤ 11‖M‖
ρ(M)βCτC

.

Proof. We begin by establishing the maximum number of iterations algorithm HCE will
perform. Suppose that x is an admissible point for the system (HCEδ) for some value
δ > 0. The residual at point x is defined in algorithm GVNA as v = −δMu − Mx =
−M(x + δu). From Proposition 8, having a residual with a small norm will guarantee
that the projection w of the point x+δu will satisfy the property ‖w−(x+δu)‖ ≤ 1

2τCδ.
In particular, it is sufficient to have ‖v‖ ≤ ε with

ε = 1

2
δτC

ρ(M)2

‖M‖ . (57)

We now argue that if δ ≤ 1
2

ρ(M)
‖M‖ , then Step 2 of algorithm HCE will terminate in I(δ)

iterations and produce an iterate with the size of the residual no larger than ε given
by (57).

Suppose 0 < δ ≤ 1
2

ρ(M)
‖M‖ . Let δ̄ be as defined in (50). Applying Lemma 4 for

z = −Mu we conclude that the system (HCEδ) is feasible for any δ ∈ [0, δ̄], and
δ̄ ≥ ρ(M)

‖Mu‖ ≥ ρ(M)
‖M‖ ≥ 2δ. Hence the system (HCEδ) is feasible, and furthermore

‖M + δMuūt‖ ≤ (1+ δ)‖M‖ ≤ 3

2
‖M‖

(since δ ≤ 1
2), and

r(M,−δMu) ≥
(

δ̄− δ

δ̄

)
ρ(M) ≥ 1

2
ρ(M).

Since the system (HCEδ) is feasible, from Proposition 5 it must be true that algorithm
GVNA with STOP = STOP3 will perform I = I(δ) iterations, where

I(δ)

=
⌈

9

2β2
Cδ2

ln
(

1

2τCδ2

(
1+ 1

βCδ

))⌉
≥ 18‖M‖2

ρ(M)2β2
C

ln
(

2‖M‖2

ρ(M)2τC

(
1+ 1

βCδ

))
,

(58)

since δ ≤ 1
2

ρ(M)
‖M‖ . Applying Lemma 2 we conclude that after I(δ) iterations of GVNA

the residual vI(δ) satisfies:

‖vI(δ)‖ ≤ ‖v0‖e
− I(δ)

2

(
βCr(M,−δMu)

‖M+δMuūt ‖
)2

≤ ‖Mx0 + δMu‖e
− I(δ)

2

(
βCρ(M)

3‖M‖
)2

≤
(

1

βC
+ δ

)
‖M‖e

− 9‖M‖2

ρ(M)2β2
C

ln
(

2‖M‖2

ρ(M)2τC

(
1+ 1

βC δ

))
·
(

βCρ(M)

3‖M‖
)2

= ρ(M)2τCδ

2‖M‖ = ε.

Computing a reliable solution of a conic linear system 475

We conclude that if 0 < δ ≤ 1
2

ρ(M)
‖M‖ , then algorithm GVNA of Step 2 of HCE will

perform I(δ) iterations and w defined in Step 3 will satisfy the termination criterion of
HCE.

In principle, algorithm HCE might terminate with a solution after as little as one
iteration, if the point w defined in Step 3 of that iteration happens to be sufficiently close
to the point x + δu. However, in the worst case algorithm HCE will continue iterating
until the value of δ becomes small enough to guarantee (by the analysis above) that
the corresponding iteration will produce a point satisfying the termination criterion. To
make this argument more precise, recall that during the kth iteration of the algorithm
HCE, δ = δk = 21−k. Hence, HCE is guaranteed to stop at (or before) the iteration
during which value of δ falls below 1

2
ρ(M)
‖M‖ for the first time. In other words, the number

of iterations of HCE that are performed is bounded above by

min
{

k : 21−k ≤ 1

2

ρ(M)

‖M‖
}

.

Therefore algorithm HCE will terminate in no more than

K =
⌈

log2

(‖M‖
ρ(M)

)⌉
+ 2 (59)

iterations, which proves the first claim of the theorem. Also, notice that throughout the
algorithm,

δk >
1

4

ρ(M)

‖M‖ . (60)

To bound the total number of iterations of GVNA performed by HCE, we need to
bound the sum of the corresponding I(δ)’s:

K∑
k=1

I(δk) =
K∑

k=1

⌈
9 · 4k

8β2
C

ln

(
4k

8τC

(
1+ 2k−1

βC

))⌉
. (61)

It can be shown by analyzing the geometric series
∑K

k=1 4k that the sum in (61) satisfies∑K
k=1 I(δk) ≤ 4

3 I(δK)+ K . Therefore

K∑
k=1

I(δk) ≤ 4

3

⌈
9

2β2
C(δK)2

ln

(
1

2τC(δK)2

(
1+ 1

βCδK

))⌉
+ K

≤ 4

3

⌈
72‖M‖2

ρ(M)2β2
C

ln
(

8‖M‖2

ρ(M)2τC

(
1+ 4‖M‖

ρ(M)βC

))⌉
+
⌈

log2

(‖M‖
ρ(M)

)⌉
+ 2

≤ 4

3

⌈
72‖M‖2

ρ(M)2β2
C

ln

(
40‖M‖3

ρ(M)3τCβC

)⌉
+
⌈

log2

(‖M‖
ρ(M)

)⌉
+ 2

≤ 4

3

⌈
216‖M‖2

ρ(M)2β2
C

ln

(
40‖M‖

ρ(M)τCβC

)⌉
+
⌈

log2

(‖M‖
ρ(M)

)⌉
+ 2. (62)

476 Marina Epelman, Robert M. Freund

The second inequality in (62) follows from (60). We have thus established the second
claim of the theorem.

It remains to show that the vector w returned by algorithm HCE satisfies conditions 1
through 4. Let δK denote the value of δ during the last iteration of HCE. Applying
Proposition 8 combined with (60) we conclude that conditions 1 and 2 are satisfied.
Furthermore,

‖w‖ ≤ 1

2
δKτC + 1

βC
+ δK ≤ 3

2
+ 1

βC
≤ 5

2βC
,

which establishes condition 3, and

‖w‖
dist(w, ∂C)

≤
1
2δKτC + 1

βC
+ δK

1
2τCδK

= 2

(
1

2
+ 1

βCτCδK
+ 1

τC

)

≤ 2
(

1

2
+ 4‖M‖

ρ(M)βCτC
+ 1

τC

)
≤ 11‖M‖

ρ(M)βCτC
,

which establishes condition 4 and completes the proof of the theorem.
�

5. Algorithm CLS for resolving a general conic linear system

In this section we indicate how algorithms HCI and HCE can be used to obtain reliable
solutions of a conic linear system in the most general form. A general conic linear
system has the form

(FPd) Ax = b
x ∈ CX

of (1), and the “strong alternative” system of (FPd) is

(SAd) Ats ∈ C∗
X

bts < 0

of (11). We develop algorithm CLS, which is a combination of two other algorithms,
namely algorithm FCLS (Feasible Conic Linear System) which is used to find a reliable
solution of (FPd), and algorithm ICLS (Infeasible Conic Linear System), which is used
to find a reliable solution to the alternative system (SAd). We first proceed by presenting
algorithms FCLS and ICLS, and studying their complexity. We then combine algorithms
FCLS and ICLS to form algorithm CLS and study its complexity.

Recall that Assumption 1 is presumed to be valid.

5.1. Algorithm FCLS

Algorithm FCLS is designed to compute a reliable solution of (FPd) of (1) when the
system (FPd) is feasible. Consider the following reformulation of the system (FPd):

−bθ + Ax = 0
θ ≥ 0, x ∈ CX .

(63)

Computing a reliable solution of a conic linear system 477

System (63) is of the form (HCE) of (40) under the following assignments:

– M = [−b A
]

– C = �+ × CX ,

with norms defined as follows:

– ‖(θ, x)‖ = |θ| + ‖x‖, (θ, x) ∈ � × X
– ‖v‖ = ‖v‖2, v ∈ Y .

Then the norm approximation vector for C is easily seen to be ū = (1, f̄) with βC = β.
Moreover, the width of the cone C is τC = τ

1+τ
≥ 1

2τ and is attained at u = 1
1+τ

(τ, f).

Proposition 9. Suppose (FPd) of (1) is feasible and ρ(d) > 0. Then the system (63) is
feasible, M has full rank, and we have

‖M‖ = ‖d‖, and ρ(M) = ρ(d),

where ρ(M) is defined in (46).

Proof. Feasibility of the system (63) is trivially obvious. The expression for ‖M‖ = ‖d‖
follows from the definition of the operator norm. The last statement of the proposition
is a slightly altered restatement of Theorem 3.5 of [30]. Since ρ(M) = ρ(d) > 0,
Remark 4 implies that M has full rank.

�

We use algorithm HCE to find a sufficiently interior solution of the system (63) and
transform its output into a reliable solution of (FPd), as described below:

Algorithm FCLS

– Data: d = (A, b)

Step 1 Apply algorithm HCE to the system (63). The algorithm will return a vector
w̃ = (θ̃, x̃).

Step 2 Define x̂ = x̃
θ̃

. Return x̂ (a reliable solution of (FPd)).

Lemma 5. Suppose (FPd) is feasible and ρ(d) > 0. Then algorithm FCLS will termi-
nate in at most

4

3

⌈
216C(d)2

β2 ln

(
80C(d)

τβ

)⌉
+ ⌈

log2 C(d)
⌉+ 2 (64)

iterations of algorithm GVNA. The output x̂ will satisfy

1. x̂ ∈ Xd,

2. ‖x̂‖ ≤ 22C(d)
βτ

− 1,

478 Marina Epelman, Robert M. Freund

3. dist(x̂, ∂CX) ≥ βτ
22C(d)

,

4. ‖x̂‖
dist(x̂,∂C X)

≤ 22C(d)
βτ

.

Proof. To simplify the expressions in this proof, define α

= dist(w̃, ∂C) =

dist
(
(θ̃, x̃), ∂(�+ × CX)

)
.

From Theorem 2 we conclude that algorithm HCE in Step 1 will terminate in at
most

4

3

⌈
216C(d)2

β2 ln
(

80C(d)

τβ

)⌉
+ ⌈

log2 C(d)
⌉+ 2

iterations of algorithm GVNA, which establishes the first statement of the lemma.
Next, from Theorem 2 we conclude that the vector w̃ = (θ̃, x̃) returned by algorithm

HCE in Step 1 satisfies:

−bθ̃ + Ax̃ = 0, (θ̃, x̃) ∈ �+ × CX , α ≥ τCρ(M)

8‖M‖ ≥ τ

16C(d)
, (65)

|θ̃| + ‖x̃‖ ≤ 5

2βC
= 5

2β
,
‖(θ̃, x̃)‖

α
≤ 11‖M‖

ρ(M)βCτC
≤ 22C(d)

βτ
. (66)

Note in particular that (65) implies that θ̃ ≥ α > 0, so that x̂ is well-defined, and
Ax̂ = b, x̂ ∈ CX , which establishes statement 1.

Next,

‖x̂‖ = ‖x̃‖
θ̃

= ‖w̃‖ − θ̃

θ̃
≤ ‖w̃‖

α
− 1 ≤ 22C(d)

βτ
− 1,

which proves 2.

To prove 3, define t

= α

‖w̃‖ (1+‖x̂‖). Then a simple application of (66) implies that

t ≥ βτ
22C(d)

. Further, let p ∈ X be an arbitrary vector satisfying ‖p‖ ≤ t. Then

‖θ̃ p‖ ≤ θ̃ · t = θ̃ · α

‖w̃‖ (1+ ‖x̂‖) = α

‖w̃‖ (θ̃ + ‖x̃‖) = α,

and so x̃ + θ̃ p ∈ CX , and hence x̂ + p = x̃+θ̃ p
θ̃

∈ CX . Therefore, dist(x̂, ∂CX) ≥ t ≥
βτ

22C(d)
, establishing 3.

Finally,

‖x̂‖
dist(x̂, ∂CX)

≤ ‖x̂‖
t

= ‖x̂‖ · ‖w̃‖
α(1+ ‖x̂‖) ≤

‖w̃‖
α

≤ 22C(d)

βτ
,

which establishes 4.
�

Computing a reliable solution of a conic linear system 479

5.2. Algorithm ICLS

Algorithm ICLS is designed to compute a reliable solution of (SAd) of (11) when the
system (FPd) is infeasible. Consider the following compact-form reformulation of the
system (FPd):

−bθ + Ax = 0
θ + f̄

t
x = 1

θ ≥ 0, x ∈ CX .

(67)

The alternative system to (67) is given by

−bts > 0
Ats ∈ int C∗

X .
(68)

System (68) is of the form (HCI) under the following assignments:

– M = [−b A
]

– C = �+ × CX ,

with norms defined as follows:

– ‖(θ, x)‖ = |θ| + ‖x‖, (θ, x) ∈ � × X
– ‖v‖ = ‖v‖2, v ∈ Y .

Then the norm approximation vector for C is easily seen to be ū = (1, f̄) with βC = β.

Proposition 10. Suppose the system (FPd) is infeasible and ρ(d) > 0. Then the system
(67) is infeasible, and we have

‖M‖ = ‖d‖,
ρ(d) ≤ r(M, 0) ≤ ρ(d)

β
,

where r(M, 0) is defined in (42).

Proof. Suppose the system (67) has a solution (θ̃, x̃). Since the system (FPd) is infea-
sible, we must have θ̃ = 0. Then the perturbed data vector d + �d = (A + εb f̄

t
, b)

where ε > 0 gives rise to the system (FPd+�d) which has a solution x̃/ε. The size
of the perturbation ‖�A,�b‖ = ‖εb f̄

t
, 0‖ = ε‖b‖ can be made arbitrarily small.

This indicates that the system (FPd) is ill-posed, contradicting the assumptions of the
proposition. Thus, the system (67) has no solution.

The expression for ‖M‖ = ‖d‖ follows from the definition of the operator norm.
Next we establish the bounds on r(M, 0). Since the system (67) is infeasible r(M, 0) is
computed as

r(M, 0) = min ‖0 − M(θ, x)‖ = min ‖bθ − Ax‖
θ + f̄

t
x = 1 θ + f̄

t
x = 1

θ ≥ 0, x ∈ CX θ ≥ 0, x ∈ CX ,

(69)

which is exactly program Pg(d) of [13] (for the case when CY = {0}). Therefore,
applying Theorem 13 of [13] we conclude that βr(M, 0) ≤ ρ(d) ≤ r(M, 0), that is,
ρ(d) ≤ r(M, 0) ≤ ρ(d)

β
.

�

480 Marina Epelman, Robert M. Freund

We use algorithm HCI to compute a sufficiently interior solution of the system (68)
and show that it is a reliable solution of (SAd), as described below:

Algorithm ICLS

– Data: d = (A, b)

Step 1 Apply algorithm HCI to the system (68). The algorithm will return a vector s.
Step 2 Return s (a reliable solution of (SAd)).

Lemma 6. Suppose (FPd) is infeasible and ρ(d) > 0. Then algorithm ICLS will termi-
nate in at most ⌊

16C(d)2

β2

⌋
(70)

iterations of GVNA. The output s satisfies s ∈ Ad and

‖s‖∗
dist(s, ∂Ad)

≤ 2C(d)

β
.

Proof. From Theorem 1 we conclude that algorithm HCI in Step 1 will terminate in at
most ⌊

16‖M‖2

β2
Cr(M, 0)2

⌋
≤
⌊

16C(d)2

β2

⌋

iterations of GVNA, which establishes the first statement of the lemma. Furthermore,
the output s satisfies s ∈ SM and

‖s‖∗
dist(s, ∂SM)

≤ 2‖M‖
βCr(M, 0)

≤ 2C(d)

β
.

Since SM ⊆ Ad , the result follows.
�

5.3. Algorithm CLS

Algorithm CLS described below is a combination of algorithms FCLS and ICLS. Al-
gorithm CLS is designed to solve the system (FPd) of (1) by either finding a reliable
solution of (FPd) or demonstrating the infeasibility of (FPd) by finding a reliable solution
of (SAd). Since it is not known in advance whether (FPd) is feasible or not, algorithm
CLS runs both algorithms FCLS and ICLS in parallel, and terminates when either one
of the two algorithms terminates. The formal description of algorithm CLS is as follows:

Algorithm CLS

– Data: d = (A, b)

Step 1 Run algorithms FCLS and ICLS in parallel on the data set d = (A, b), until
one of them terminates.

Step 2 If algorithm FCLS terminates first, return its output x̂. If algorithm ICLS
terminates first, return its output s.

Computing a reliable solution of a conic linear system 481

Although Step 1 of algorithm CLS calls for algorithms FCLS and ICLS to be run
in parallel, there is no necessity for parallel computation per se. Observe that both
algorithms FCLS and ICLS consist of repetitively calling the algorithm GVNA on
a sequence of data instances. A sequential implementation of Step 1 is to run one
iteration of algorithm GVNA called by algorithm FCLS, followed by the next iteration
of algorithm GVNA called by the algorithm ICLS, etc., until one of the iterations yields
the termination of the algorithm.

Combining the complexity results for algorithms FCLS and ICLS from Lemmas 5
and 6 we obtain the following complexity analysis of algorithm CLS:

Theorem 3. Suppose that ρ(d) > 0 and Assumption 1 is satisfied. If the system (FPd)
is feasible, algorithm CLS will terminate in at most

8

3

⌈
216C(d)2

β2 ln
(

80C(d)

τβ

)⌉
+ 2

⌈
log2 C(d)

⌉+ 4

iterations of GVNA, and will return a reliable solution x̂ of (FPd). That is, x̂ will have
the following properties:

– x̂ ∈ Xd,

– ‖x̂‖ ≤ 22C(d)
βτ

− 1,

– dist(x̂, ∂CX) ≥ βτ
22C(d)

,

– ‖x̂‖
dist(x̂,∂C X)

≤ 22C(d)
βτ

.

If the system (FPd) is infeasible, algorithm CLS will terminate in at most

2
⌊

16C(d)2

β2

⌋

iterations of GVNA, and will return a reliable solution s of (SAd), thus demonstrating
infeasibility of (FPd). That is, s will satisfy the following properties:

– s ∈ Ad,

– ‖s‖∗
dist(s,∂Ad)

≤ 2C(d)
β

.

Proof. The proof is an immediate consequence of Lemmas 5 and 6. The bounds on the
number of iterations of algorithm GVNA in the theorem are precisely double the bounds
in the lemmas, due to running algorithms FCLS and ICLS in parallel.

�

6. Discussion

Discussion of complexity bound and work per iteration.Observe that algorithm
CLS (as well as algorithms FCLS and ICLS) consists simply of repetitively calling
algorithm GVNA on a sequence of data instances (M, g), all with the same matrix
M = [−b A], and with right-hand side of the form g = 0 or g = −δMu for a sequence
of values of the parameters δ. Viewed in this light, algorithm CLS is essentially no

482 Marina Epelman, Robert M. Freund

more than algorithm GVNA applied to a sequence of data instances all of very similar
form. The total workload of algorithm CLS, as presented in Theorem 3, is the total
number of iterations of algorithm GVNA called in algorithm CLS. In this perspective,
algorithm CLS is “elementary” in that the computation at each inner iteration is not
particularly sophisticated, only involving some matrix-vector multiplications and the
solution of one conic section optimization problem (CSOPCX) per iteration of GVNA.
Each iteration of algorithm GVNA used in algorithms FCLS and ICLS uses at most
TCX + O(mn) operations, where TCX is the number of operations needed to solve an
instance of (CSOPCX) and the term O(mn) derives from counting the matrix-vector
and vector-vector multiplications. The number of operations required to perform these
multiplications can be significantly reduced if the matrices and vectors involved are
sparse.

In addition to running algorithm GVNA, algorithm CLS (in particular, algorithm
FCLS) computes several projections using formula (52). This computation cannot be
considered elementary since it involves the inverse of the square matrix MMt and re-
quires O(m3) iterations. However, since the matrix M used by algorithm FCLS is the
same in all projection computations, this step of the algorithm can be implemented by

computing the projection matrix P

= I − Mt (MMt)−1 M “off-line” (before calling

algorithm CLS). Then the projections required by the algorithm FCLS can be computed
by means of matrix-vector multiplication. Since algorithm FCLS will perform no more
than O(ln(C(d))) computations of Euclidean projections (see Theorem 2), the multipli-
cations involving P will not increase the computation time significantly even though P
is not likely to have a nice sparsity structure.

A practical elementary algorithm? This paper has positively addressed two theoretical
questions regarding elementary algorithms and the condition number C(d). It remains
to be seen if algorithm CLS, or any other elementary algorithm for solving the problem
(FPd), will be competitive in practice with algorithms such as interior-point methods on
a suitable class of problems. Each iteration of algorithm CLS will perform only a few
operations when the oracle for solving the problem (CSOP) is efficiently implemented,
and when the original problem data is sparse. Furthermore, the number of operations
performed in each iteration of CLS is less affected by the growing dimension of the
problem then it would be for an interior point algorithm. Therefore, a study of the
practical performance of algorithm CLS on problem classes involving large, sparse, and
well-structured problems may be a topic of future research investigation.

In this vein, recent literature contains both theoretical and practical studies of sev-
eral algorithms for obtaining approximate solutions of certain structured convex op-
timization problems that can be also considered elementary in the above sense, and
moreover, are of similar nature to the algorithm CLS. See, for example, Grigoriadis and
Khachiyan [17,18] and Villavicencio and Grigoriadis [39], who consider algorithms for
block angular resource sharing problems, Plotkin, Shmoys, and Tardos [27] and Karger
and Plotkin [20] who consider algorithms for fractional packing problems, and Bien-
stock [4,5] and Goldberg et al. [16], where results of computational experiments with
these methods are discussed. Similar to algorithm CLS, each iteration of the algorithms
above maintains an “admissible” point (i.e., a point that satisfies a pre-specified subset
of problem constraints) and consists of a call to an oracle to solve a linear optimization

Computing a reliable solution of a conic linear system 483

subproblem similar to (CSOP), and uses the oracle output to generate a direction and
a new iterate with reduced violations in the remaining constraints. In addition to calls
to the oracle, most computations performed at each iteration consist of matrix-vector
multiplications involving the original data. Most recently, Ben-Tal, Margalit, and Ne-
mirovski [3] also use an elementary algorithm (the general mirror descent scheme) to
successfully solve very-large-scale image reconstruction problems.

The many applications of the problems considered in the aforementioned papers
include network design problems, multi-commodity network flows, scheduling, combi-
natorial optimization, image reconstruction, etc. The dimensionality of such structured
problems arising in practice is often prohibitively large for theoretically efficient al-
gorithms such as interior-point methods to be effective. However, the computational
experience with the above elementary algorithms has shown that elementary algorithms
can be a superior alternative (see, in particular, [5] and [3]). The complexity analysis
as well as the practical computational experience of this body of literature lends more
credence to the practical viability of elementary algorithms in general, when applied to
large-scale, sparse, well-structured, and well-conditioned problems.

Other formats of conic linear systems.In this paper, we have assumed that the problem
(FPd) has “primal standard form” Ax = b, x ∈ CX , where CX is a regular cone. Instead,
one might want to consider problems in “standard dual form” b − Ax ∈ CY , x ∈ X,
or the most general form b − Ax ∈ CY , x ∈ CX . Elementary algorithms for problems
in these forms, with the cones CY and/or CX assumed to be regular, are addressed in
detail in [9]. In general, these problems can be approached by converting them into
primal standard form above and applying algorithm CLS as described in this paper. The
technique for converting problems of general form b − Ax ∈ CY , x ∈ CX into primal
standard form was originally suggested by Peña and Renegar [26] and can be interpreted
as introducing scaled slack variables for the linear constraints. This approach is extended
to problems in standard dual form in [9]. In some cases, however, the problem can be
treated by an elementary algorithm directly, without converting it into standard form.
These approaches are also presented in detail in [9].

Converting Algorithm CLS into an optimization algorithm. Converting algorithm
CLS into an optimization algorithm is a logical extension of the work presented in
this paper. Suppose that we are interested in minimizing a linear function ct x over the
feasible region of (FPd). Then algorithm CLS could be modified, for example, with the
addition of an outer loop that will add an objective function cut of the form ct x ≤ ct x̄
whenever a solution x̄ is produced at the previous iteration. This may be a topic of future
research.

Ill-posed problem instances.The complexity bound of Theorem 3 relies on the fact
that (FPd) is not ill-posed, i.e., ρ(d) > 0. The algorithm CLS is not predicted to
perform well (and in fact, is not guaranteed to terminate) in cases when ρ(d) = 0. This
does not constitute, in our view, a weakness of the algorithm, since such problems are
exceptionally badly behaved in general. In particular, an arbitrarily small perturbation
of the data can change the feasibility status of such problems, which makes it rather
hopeless to compute exact solutions or certificates of infeasibility.

484 Marina Epelman, Robert M. Freund

References

1. Agmon, S. (1954): The relaxation method for linear inequalities. Can. J. Math. 6, 382–392
2. Alizadeh, F. (1995): Interior point methods in semidefinite programming with applications to combina-

torial optimization. SIAM J. Optim. 5(1), 13–51
3. Ben-Tal, A., Margalit, T., Nemirovski, A. (2000): The ordered subsets mirror descent optimization method

and its use for the positron emission tomography reconstruction problem. Technical Report, MINERVA
Optimization Center, Technion – Israel Institute of Technology, Haifa, Israel

4. Bienstock, D. (1996): Experiments with a network design algorithm using ε-approximate linear programs.
Technical Report 1999-4. CORC, Columbia Univeristy

5. Bienstock, D. (1999): Approximately solving large-scale linear programs. I. Strengthening lower bounds
and accelerating convergence. Technical Report 1999-1. CORC, Columbia Univeristy

6. Dantzig, G.B. (1991): Converting a converging algorithm into a polynomially bounded algorithm. Tech-
nical Report SOL 91-5. Stanford University

7. Dantzig, G.B. (1992): An ε-precise feasible solution to a linear program with a convexity constraint in
1/ε2 iterations independent of problem size. Technical Report. Stanford University

8. Eaves, B.C. (1973): Piecewise linear retractions by reflection. Linear Algebra Appl. 7, 93–98
9. Epelman, M. (1999): Complexity, Condition Numbers, and Conic Linear Systems. PhD thesis. Mas-

sachusetts Institute of Technology
10. Epelman, M., Freund, R.M. (1997): Condition number complexity of an elementary algorithm for

resolving a conic linear system. Working Paper OR 319-97. Operations Research Center, Massachusetts
Institute of Technology

11. Filipowski, S. (1994): On the complexity of solving linear programs specified with approximate data and
known to be feasible. Technical Report. Dept. of Industrial and Manufacturing Systems Engineering,
Iowa State University

12. Filipowski, S. (1994): On the complexity of solving sparse symmetric linear programs specified with
approximate data. Technical Report. Dept. of Industrial and Manufacturing Systems Engineering, Iowa
State University

13. Freund, R.M., Vera, J.R. (1999): Some characterizations and properties of the “distance to ill-posedness”
and the condition measure of a conic linear system. Math. Program. 86(2), 225–260

14. Freund, R.M., Vera, J.R. (2000): Condition-based complexity of convex optimization in conic linear form
via the ellipsoid algorithm. SIAM J. Optim. 10(1), 155–176

15. Goffin, J.L. (1980): The relaxation method for solving systems of linear inequalities. Math. Oper. Res.
5(3), 388–414

16. Goldberg, A.V., Oldham, J.D., Plotkin, S., Stein, C. (1998): An implementation of a combinatorial ap-
proximation algorithm for minimum-cost multicommodity flow. Technical Report 98-038. NEC Research
Institute, Inc.

17. Grigoriadis, M.D., Khachiyan, L.G. (1994): Fast approximation schemes for convex programs with many
blocks and coupling constraints. SIAM J. Optim. 4(1), 86–107

18. Grigoriadis, M.D., Khachiyan, L.G. (1996): Coordination complexity of parallel price-directive decom-
position. Math. Oper. Res. 21(2), 321–340

19. Horn, R.A., Johnson, C.R. (1985): Matrix Analysis. Cambridge University Press, New York
20. Karger, D., Plotkin, S. (1995): Adding multiple cost constraints to combinatorial optimization problems,

with applications to multicommodity flows. Proceedings of the Twenty-Seventh Annual ACM Symposium
on the Theory of Computing, pp. 18–25

21. Motzkin, T.S., Schoenberg, I.J. (1954): The relaxation method for linear inequalities. Can. J. Math. 6,
393–404

22. Nesterov, Y., Nemirovskii, A. (1994): Interior-Point Polynomial Algorithms in Convex Programming.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia

23. Nunez, M.A., Freund, R.M. (1998): Condition measures and properties of the central trajectory of a linear
program. Math. Program. 83(1), 1–28

24. Peña, J. (1997): Computing the distance to infeasibility: theoretical and practical issues. Technical Report.
Cornell University

25. Peña, J. (2000): Understanding the geometry of infeasible perturbations of a conic linear system. SIAM
J. Optim. 10(2), 534–550

26. Peña, J., Renegar, J. (2000): Computing approximate solutions for convex conic systems of constraints.
Math. Program. DOI 10.1007/s101070000136

27. Plotkin, S.A., Shmoys, D.B., Tardos, É. (1995): Fast approximation algorithms for fractional packing
and covering problems. Math. Oper. Res. 20(2), 257–301

28. Renegar, J. (1994): Some perturbation theory for linear programming. Math. Program. 65(1), 73–91

Computing a reliable solution of a conic linear system 485

29. Renegar, J. (1995): Incorporating condition measures into the complexity theory of linear programming.
SIAM J. Optim. 5(3), 506–524

30. Renegar, J. (1995): Linear programming, complexity theory, and elementary functional analysis. Math.
Program. 70(3), 279–351

31. Rosenblatt, F. (1958): The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Rev. 65, 386–408

32. Rosenblatt, F. (1960): On the convergence of reinforcement procedures in simple perceptrons. Report.
VG-1196-G-4. Cornell Aeronautical Laboratory, Buffalo, NY

33. Rosenblatt, F. (1960): Perceptron simulation experiments. Proc. Inst. Radio Eng. 48, 301–309
34. Rosenblatt, F. (1962): Principles of Neurodynamics. Spartan Books, Washington, DC
35. Vera, J.R. (1992): Ill-posedness and the computation of solutions to linear programs with approximate

data. Technical Report. Cornell University
36. Vera, J.R. (1992): Ill-Posedness in Mathematical Programming and Problem Solving with Approximate

Data. PhD thesis. Cornell University
37. Vera, J.R. (1996): Ill-posedness and the complexity of deciding existence of solutions to linear programs.

SIAM J. Optim. 6(3), 549–569
38. Vera, J.R. (1998): On the complexity of linear programming under finite precision arithmetic. Math.

Program. 80(1), 91–123
39. Villavicencio, J., Grigoriadis, M.D. (1997): Approximate Lagrangian decomposition with a modified Kar-

markar logarithmic potential. In: Network optimization (Gainesville, FL, 1996), pp. 471–485. Springer,
Berlin

