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Abstract. A conic linear system is a system of the form

(FPy) Ax=b
x € Cy,

where A : X — Y is alinear operator between n- and m-dimensional linear spaces X and Y, b € Y,
and Cx C X isaclosed convex cone. The data for the system isd = (A, b). This system is “well-posed”
to the extent that (small) changes in the data d = (A, b) do not alter the status of the system (the system
remains feasible or not). Renegar defined the “distance to ill-posedness,” p(d), to be the smallest change
in the data Ad = (AA, Ab) needed to create a data instance d + Ad that is “ill-posed,” i.e., that lies in
the intersection of the closures of the sets of feasible and infeasible instances d = (A, b) of (FP.)).
Renegar also defined the condition number C(d) of the data instance d as the scale-invariant reciprocal of
p(d): C(d) 2 1dl

In this paper we develop an elementary algorithm that computes a solution of (FJ) when it isfeasible,
or demonstrates that (FPy) has no solution by computing a solution of the alternative system. Thealgorithm is
based on ageneralization of von Neumann'salgorithm for solving linear inequalities. The number of iterations
of the algorithm is essentially bounded by

O(ec(d?In(C(d)))

where the constant € depends only on the properties of the cone G¢ and isindependent of datad. Each iteration
of the algorithm performs a small number of matrix-vector and vector-vector multiplications (that take full
advantage of the sparsity of the original data) plus a small number of other operations involving the cone .
Thealgorithm is“elementary” in the sense that it performs only afew relatively simple computations at each
iteration.

The solution X of the system (FRy) generated by the algorithm has the property of being “reliable” in the
sense that the distance from X to the boundary of the cone Gy, dist(X, dCx ), and the size of the solution, || X||,
satisfy the following inequdlities:

. PN 1 Xl
IIX]l < ¢1C(d), dist(X, 9Cx) > CZ@, and m < c3C(d),

where ¢y, ¢y, c3 are constants that depend only on properties of the cone G¢ and are independent of the datad
(with analogous results for the alternative system when the system (FR) isinfeasible).
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1. Introduction

The subject of this paper is the development of an algorithm for solving a convex
feasibility problemin conic linear form:

(FPg) Ax = b
X e Cx,

@

where A : X — Y is alinear operator between the (finite) n-dimensiona normed
linear vector space X and the (finite) m-dimensional normed linear vector space Y (with
norms || x|| for x € X and |ly|| for y € Y, respectively), Cx C X is a closed convex
cone, and b € Y. We denote by d = (A, b) the “data” for the problem (FPq). That is,
the cone Cx is regarded as fixed and given, and the data for the problem is the linear
operator A together with the vector b. We denote the set of solutions of (FPg) as Xq to
emphasize the dependence on the data d, i.e.,

Xg={xe X: Ax=Dh, x € Cx]}.

The problem (FPy) is avery general format for studying the feasible regions of convex
optimization problems, and has recently received much attention in the analysis of
interior-point methods, see Nesterov and Nemirovskii [22] and Renegar [29] and [30],
among others, wherein interior-point methods for (FPq) are shown to be theoretically
efficient.

We develop an algorithm called “algorithm CLS’ (for Conic Linear System) that
either computes a solution of the system (FPy), or demonstrates that (FPy) isinfeasible
by computing a solution of an alternative (dual) system. In both cases the solution
provided by algorithm CLSis“reliable” in a sense that will be described shortly.

Algorithm CL Sisbased on ageneralization of thealgorithm privately communicated
by von Neumann to Dantzig and studied by Dantzigin [6] and [7], and is part of alarge
class of “elementary” agorithms for finding a point in a suitably described convex
set, such as reflection algorithms for linear inequality systems (see [1,21,8,15]), the
perceptron algorithm [31-34], and other so-called row-action methods. When applied
to linear inequality systems, these elementary algorithms share the following desirable
properties, namely: the work per iteration is extremely low (typically involving only
afew matrix-vector or vector-vector multiplications), and thea gorithmsfully exploit the
sparsity of theoriginal dataat eachiteration. Werefer tothesealgorithmsas* elementary”
in that the algorithms do not perform particularly sophisticated computations at each
iteration, and in some sense these algorithms are all very unsophisticated as a result
(especially compared to an interior-point algorithm or a volume-reducing cutting-plane
algorithm such as the ellipsoid algorithm).

In analyzing the complexity of algorithm CLS, we adopt the relatively new con-
cept of the condition number C(d) of (FP4) developed by Renegar in a series of pa-
pers[28-30]. C(d) is essentially ascale invariant reciprocal of the smallest data pertur-
bation Ad = (A A, Ab) for which the system (FP41aq) changes its feasibility status.
The problem (FPy) iswell-conditioned to theextent that C (d) issmall; when the problem
(FPy) is*“ill-posed” (i.e., arbitrarily small perturbations of the data can yield both feas-
ible and infeasible problem instances), then C(d) = +oc0. The condition number C(d)
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is connected to sizes of solutions and deformations of Xy under data perturbations[28],
certain geometric propertiesof Xq [13], and the complexity of algorithmsfor computing
solutions of (FPg) [30, 14]. (The concepts underlying C(d) will be reviewed in detail at
the end of this section.) We show in Sect. 5 that algorithm CLS will compute afeasible
solution of (FPg) in

O(&1C(d)?In(C(d))) 2
iterations when (FPq) is feasible, or will demonstrate infeasibility in
O(&L(d)?) (©)

iterations when (FPy) is infeasible. The scalar quantities €1 and €, are constants that
depend only on the simple notion of the “width” of the cones Cx and C} and are
independent of the data d, but may depend on the dimension n.

As alluded to above, algorithm CLS will compute a reliable solution of the system
(FPq), or will demonstrate that (FPy) is infeasible by computing a reliable solution of
an aternative system. We consider a solution X of the system (FPy) to be reliable if,
roughly speaking, (i) the distance from X to the boundary of the cone C , dist(X, dCx),
is not excessively small, (ii) the norm of the solution ||X|| is not excessively large, and
(iii) the ratio W’f.ﬁcw is not excessively large. A reliable solution of the alternative
system is defined similarly. The sense of what is meant by “excessive” is measured
using the condition number C(d). The importance of computing areliable solution can
be motivated by considerations of finite-precision computations. Suppose, for example,
that asolution X of the problem (FP4) (computed as an output of an algorithm involving
iteratesx1, . .. , xK = &, and/or used asinput to another algorithm) has the property that
dist(X, dCx) is very small. Then the numerical precision requirements for checking or
guaranteeing feasibility of iterates will necessarily be large. Similar remarks hold for
the case when ||| and/or the ratio % isvery large.

In[13] itisshown that when the system (FPy) isfeasible, thereexistsapoint X € Xg
such that

Xl

c@ Mg ey =@ @
where the scalar quantities ¢y, ¢z, and ¢z depend only on the width of the cone Cx, and
areindependent of the datad of the problem (FPy), but may depend on the dimension n.
Algorithm CLS will compute a solution X with bounds of the same order as (4), which
justifies the term “reliable” solution. Similar remarks hold for the case when (FPy) is
infeasible.

It isinteresting to comparethe complexity bounds of algorithm CLSin (2) and (3) to
that of other algorithms for solving (FPqg). In [30], Renegar presented an interior-point
(i.e., barrier) algorithm for resolving (FPq) and analyzed its performancein terms of the
barrier parameter for the cone Cx, and C(d). In [14] several efficient volume-reducing
cutting-plane algorithms for resolving (FPq) (such as the ellipsoid algorithm) are ana-
lyzedintermsof C(d). Both theinterior-point algorithm and the ellipsoid algorithm have
an iteration complexity bound that is linear in In(C(d)), and so are efficient algorithms
in a sense defined by Renegar [29].

Xl < caC(d), dist(X, ICx) > C2
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In contrast with the above efficient algorithms, algorithm CLS developed in this
paper has iteration complexity exponential in In(C(d)). On the other hand, both the
interior-point algorithm and the ellipsoid algorithm are very sophisticated agorithms
and require significant computational effort to perform each iteration, unlike the ele-
mentary algorithm CLS. Theinterior-point algorithm makesimplicit and explicit use of
information from a self-concordant barrier at each iteration, and uses this information
in the computation of the next iterate by solving for the Newton step along the central
trajectory. The work per iteration is O(n®) operationsto compute the Newton step. The
ellipsoid algorithm makes use of a separation oracle for the cone Cx in order to perform
aspecia space dilation at each iteration, and the work per iteration of the ellipsoid al-
gorithmis O(n?) operations. Intuition strongly suggests that the sophistication of these
methods is responsible for their excellent computational complexity. In contrast, the
elementary algorithm CLS relies only on relatively simple assumptions regarding the
ability to work conveniently with the cone Cx (discussed in detail in Sect. 2) and does
not perform any sophisticated computation at each iteration. As a result, the work per
iteration of algorithm CLS is low, and each iteration fully exploits the sparsity of the
original data.

The results in this paper provide positive answers to the following two theoretical
questions:

— Is there an elementary algorithm which obtains reliable solutions of well-posed
instances of (FPg)?

— Can the iteration complexity of an elementary algorithm for (FPy) be bounded in
terms of the condition number C(d)?

This paper does not attempt to address the practical performance of agorithm
CLS versus theoretically efficient algorithms such as interior-point algorithms or the
ellipsoid algorithm. However, we briefly discuss computational performanceof afamily
of algorithmsrelated to CLSin Sect. 6.

An outline of the paper is as follows. The remainder of this introductory section
discusses the condition number C(d) of the system (FPq). Section 2 contains further
notation, definitions, assumptions, and preliminary results. Section 3 presents ageneral-
ization of the von Neumann algorithm (appropriately called algorithm GVNA) that can
be applied to conic linear systems in a special compact form (i.e., with a compactness
constraint added). We analyze the properties of the iterates of algorithm GVNA under
different termination criteriain Lemmas 1, 2 and 3. Section 4 presents the devel opment
of algorithms HCI (Homogeneous Conic Inequalities) and HCE (Homogeneous Conic
Equalities) for resolving two essential types of homogeneousconic linear systems. Both
algorithms HCI and HCE consist of calls to algorithm GVNA applied to appropriate
transformations of the homogeneous systems at hand. Finaly, in Sect. 5, we present
algorithm CLS for the conic linear system (FPy). Algorithm CLS is a combination of
algorithmsHCI and HCE. Theorem 3 contains the main complexity result for algorithm
CLS, and is the main result of this paper. Section 6 contains some discussion.

We now present the development of the concepts of condition numbers and data
perturbationfor (FPq) in detail. Recall that d = (A, b) isthe datafor the problem (FPy).
The space of all datad = (A, b) for (FPy) is denoted by D:

D={d=(Ab:AcL(XY),beY}
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For d = (A, b) € D we define the product norm on the Cartesian product L (X, Y) x Y
tobe

ldll = [I(A, b [ = max{[|All, [[bll} ®)
where ||b|| isthe norm specified for Y and || A|| is the operator norm, namely
Al = max{[| AX]| = [IX]l < 1}. (6)
We define
F ={(A, b) e D: thereexists x satisfying Ax = b, x € Cx}, @)

the set of datainstancesd for which (FPy) isfeasible. Its complement is denoted by 7€,
the set of datainstances for which (FPy) isinfeasible.

Theboundary of F and of F€ isprecisely theset B = 9F = 9FC = cl(F)Ncl(FC),
where 9S denotes the boundary and cl(S) denotes the closure of a set S Note that if
d = (A, b) € B, then (FPq) isill-posed in the sense that arbitrarily small changesin the
datad = (A, b) can yield instances of (FPy) that are feasible, as well as instances of
(FPy) that are infeasible. Also, note that B # ¢, sinced = (0, 0) € B.

For adatainstanced = (A, b) € D, thedistanceto ill-posednessis defined to be:

inf{|d —d|| :d e FC}ifd e F,

A
p(d) = inf{||Ad|| : d+ Ad € B} = {inf{lld —d||:deF} ifde FC, ®

see Renegar [28-30]. The condition number C(d) of the datainstanced is defined to be:

e

ch=" ©)
when p(d) > 0,andC(d) = oo when p(d) = 0. Theconditionnumber C(d) isameasure
of the relative conditioning of the datainstanced, and can be viewed as a scale-invariant
reciprocal of p(d), asit iselementary to demonstratethat C(d) = C(ad) for any positive
scalar or. Observe that sinced = (A, b) = (0,0) € B, then for any d ¢ B we have
Id| = ||d — d|| > p(d), whereby C(d) > 1. Further analysis of the distance to ill-
posedness has been presented in [13], Vera[35,36,38,37], Filipowski [11,12], Nunez
and Freund [23], Pefia [ 25, 24] and Pefia and Renegar [26].

2. Preliminaries, assumptions, and further notation

We will work in the setup of finite dimensional normed linear vector spaces. Both
X and Y are normed linear spaces of finite dimension n and m, respectively, endowed
with norms ||x|| for x € X and ||y|| for y € Y. For X € X, let B(X, r) denote the ball
centered at X with radiusr, i.e.,

B(x,r) ={xe X:|Ix—=X| =r},

and define B(y, r) analogoudly for y € Y.
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We denote the set of real numbers by i and the set of nonnegative real numbers

We associate with X and Y the dual spaces X* and Y* of linear functionals defined
on X and Y, respectively, and whose (dual) norms are denoted by |u| . for u € X*
and ||w|l« for w € Y*. Let ¢ € X*. In order to maintain consistency with standard
linear algebranotation in mathematical programming, wewill consider c to beacolumn
vector in the space X* and will denote the linear function c(x) by c'x. Similarly, for
A e L(X,Y) and f € Y*, we denote A(x) by Ax and f(y) by fly. We denote the
adjoint of A by A'.

We now recall some facts about norms. Given a finite dimensional linear vector
space X endowed with anorm ||x|| for x € X, the dual norm induced on the space X*
isdenoted by ||z||. for z € X*, and is defined as:

Izl = max{z'x : [Ix]| < 1}, (10)

and the Holder inequality z'x < ||z||.|/x]|| follows easily from this definition. We also
point out that if A = uv!, thenit iseasy to derivethat | Al = ||v]l«ull.
If Cisaconvex conein X, C* will denote the dual convex cone defined by

C*={ze X*:Z'x > Oforany x € C}.

We will say that a cone C is regular if C is a closed convex cone, has a nonempty
interior, and is pointed (i.e., contains no line).

Remark 1. If Cisaclosed convex cone, then C isregular if and only if C* isregular.

The “strong aternative” system of (FPy) is:

SAg) Als e C3
(St bls < O.X (11)
A separating hyperplaneargument yiel dsthe following partial theorem of the alternative
regarding the feasibility of the system (FPg):

Proposition 1. If (SAq) isfeasible, then (FPg) isinfeasible. If (FPg) isinfeasible, then
the following “ weak alternative’ system (12) isfeasible:

Als e C¥,
b's <0 (12)
s#0.

When the system (FPy) is well-posed, we have the following strong theorem of the
alternative:

Proposition 2. Suppose p(d) > 0. Then exactly one of the systems (FPg) and (SAg) is
feasible.
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We denote the set of solutions of (SAq) as Ag, i.€.,
Ag={seY*: Alse C¥%, bls<0}.

Similarly to solutions of (FPy), we consider a solution § of the system (SAq) to be

reliable if the ratio dis&z”é;‘Ad) is not excessively large. (Because the system (SAq) is
homogeneous, it makes little sense to bound ||§||. from above or to bound dist(§, 3Aq4)
from below, as all solutions can be scaled by any positive quantity.) In[13] it is shown

that when the system (FPy) isinfeasible, there existsapoint § € Aq such that

ISl
™) < c4C(d), (13)
where the scalar quantity c4 depends only on the width of the cone C%. (The concept of
thewidth of aconewill be defined in the next paragraph.) Algorithm CLS will compute
a solution § with a bound of the same order as (13).
Let C be a regular cone in the normed linear vector space X. We will use the
following definition of the width of C:

Definition 1. If C isaregular conein the normed linear vector space X, the width of
Cisgivenby:
c =max{L : B(x,r) CC} .
[l

We remark that Tc measures the maximum ratio of the radius to the norm of the center
of an inscribed ball in C, and so larger values of t¢ correspond to an intuitive notion
of greater width of C. Note that ¢ € (0, 1], since C has a honempty interior and C
is pointed, and ¢ is attained for some (X, ) as well as along the ray (X, of) for all
« > 0. By choosing the value of « appropriately, we can find u € C such that |u]| = 1
and t¢ isattained for (u, zc).

Closely related to the width is the notion of the coefficient of linearity for acone C:

Definition 2. If Cisaregular coneinthe normed linear vector space X, the coefficient
of linearity for the cone C is given by:

Bc = sup inf utx
ue X* xeC (249)
lulls = 1 [Ix|| = 1.

The coefficient of linearity Sc measures the extent to which the norm ||x|| can be
approximated by a linear function over the cone C. We have the following properties
of Bc:

Remark 2 (see [13]). 0 < Bc < 1. There exists 0 € int C* such that |G|« = 1 and
Bc = min{a'x : x € C, ||| = 1}. For any x € C, Bcl|x|| < u'x < ||x|. The set
{x € C: u'x = 1} isabounded and closed convex set.

In light of Remark 2 we refer to U as the norm linearization vector for the cone C. The
following proposition providesinsight into the relationship between the width of C and
the coefficient of linearity for C*:
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Proposition 3 (see [14])Supposethat C isaregular conein the normed linear vector
space X, and let t¢ denote the width of C and let 8¢+ denote the coefficient of linearity
for C*. Then ¢ = Bc+. Moreover, ¢ is attained for (u, zc), where u is the norm
linearization vector for the cone C*.

We now pauseto illustrate the above notions on two relevant instances of the coneC,
namely the nonnegative orthant %"} and the positive semi-definite cone §fk. We first

consider the nonnegative orthant. Let X = %" and C = %'} = {x € X" : x> 0}. Then
we can identify X* with X andin so doing, C* = 9} aswell. If || x| isgivenby the L1
norm ||X| = ZT:l IXj |, then note that ||x|| = e'x for all x € C (where e is the vector
of ones), whereby the coefficient of linearity is Bc = 1and G = e. If instead of the L
norm, the norm ||x|| isthe L , norm defined by:

N 1/p
Xl p = (Dxnp)
j=1

1
for p > 1, thenit is straightforward to show that O = (n<_p_1))eand the coefficient of

1
linearity is Bc = n<P 1). Also, by setting u = g, it is straightforward to show that the
1
widthistc =n" ».
Now consider the positive semi-definite cone, which has been shown to be of
enormous importance in mathematical programming (see Alizadeh [2] and Nesterov

and Nemirovskii [22]). Let X = Sk denote the set of real k x k symmetric matrices,
andson = KK andlet C = K £ {x € 9K x > 0}, wherex > Oisthe Léwner
partial ordering, i.e., X = w if X — w isapositive semi-definite symmetric matrix. Then
C isaclosed convex cone. We can identify X* with X, andin so doing it is elementary
toderivethat C* = S™K. For x e X, let A(x) denotethek-vector of ordered eigenvalues

of x. For any p > 1, let the norm of x be defined by

1
k p
X[ = IXllp = (ZIM(X)IP)

=1

(see[19], for example, for a proof that ||x|| p isanorm). When p = 1, |X||1 is the sum
of the absolute values of the eigenvalues of x. Therefore, when x € C, ||X||1 = tr(x) =

k

> Xii where x;j istheijth entry of the real matrix x (and tr(x) is the trace of x), and

i=1

so ||x]|1 is a linear function on C. Therefore, when p = 1, we have 0 = | and the
1_

coefficient of linearity is fc = 1. When p > 1, it is easy to show that 0 = (k(p 1))|

1
has [[T]l« = [|0]lq = 1 (where1/p+ 1/q = 1) and that Bc = k(_p_l). Also, it is easy

to show by setting u = | that thewidthiszc = k.
We will make the following assumption throughout the paper concerning the cone
Cx and the norm on the space Y:
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Assumption 1. Cx C Xisaregular cone. Thecoefficient of linearity g for theconeCx,
and thewidth t of the cone Cx, together with corresponding normlinearization vectors f
(for theconeCx) and f (for theconeC} ) areknownandgiven.Fory e Y, [lyl| = [lYll2.

Suppose C is a regular cone in the normed vector space X, and U is the norm
linearization vector for C. Given any linear function c'x defined on x € X, we define
the following conic section optimization problem:

(CSOPc) min ctx
X
st. xeC
o'x = 1.

(15)

For the algorithm CLS developed in this paper, we presume that we have available
an oracle that can solve (CSOPc, ) efficiently, that is, the upper bound on the number
of operations the oracle takes to solve (CSOPc, ) is not excessive, for otherwise the
algorithm will not be very efficient. Let Tc denote an upper bound on the number of
operations performed in acall to the oracle.

We now pausetoillustrate how an oraclefor solving (CSOP¢) is easily implemented
for two relevant instances of the cone C, namely 91", and SO, Wefirst consider 9i'7.. As
discussed above, when ||x|| is given by L p norm with p > 1, the norm approximation
vector 0 isapositivemultiple of the vector e. Therefore, for any ¢, the problem (CSOP¢)
is simply the problem of finding the index of the smallest element of the vector ¢, so
that the solution of (CSOPc) is easily computed as xc = €, wherei € argmin{cj : j =
1,...,n.ThusTc =n.

We now consider §_§Xk. As discussed above, when ||x]| is given by x| = [[X]lp =
1

(ZT:l [Aj ()] p) ® with p > 1, the norm approximation vector G is a positive multiple

of the matrix 1. For any ¢ € Sk, the problem (CSOPc) corresponds to the problem
of finding the normalized eigenvector corresponding to the smallest eigenvalue of the
matrix ¢, i.e., (CSOP¢) is a minimum eigenvalue problem and is solvable to within
machine tolerance in O(k3) operationsin practice (though not in theory).

Solving (CSOP) for the Cartesian product of two conesis easy if (CSOP) is easy to

solve for each of the two cones: supposethat X = V x W with norm ||X|| = || (v, w)|| =
lv]l + lw|l, and C = Cy x Cw whereCy C V and Cywy C W areregular cones with
norm linearization vectors Gy and Gy, respectively. Then the norm linearization vector
for thecone C is = (Uy, Uw), Bc = min{Bc,, Bcy}, and Tc = Tc, + Tcy, + OD).

We end this section with the following remark which givesageometricinterpretation
of the distance from a given point to the boundary of aclosed convex set, which will be
often used in this paper.

Remark 3. Let She aclosed convex setin ™ and let f € ™ be given. The distance
from f tothe boundary of Sis denoted as

dist(f, 89 = min(||f — 2] : z € 9S). (16)

If f ¢ Sthendist(f,09 =min{||f—2z|:z€ S.If f € Sthendist(f, 99 = max{r :
B(f,r) c S.
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3. A generalized von Neumann algorithm for a conic linear system
in compact form

In this section we consider a generalization of the algorithm of von Neumann studied
by Dantzig in [6] and [7], see also [10]. We will work with a conic linear system of the
form:

(P Mx=g
xeC (17
ix = 1,

whereC c Xisaclosed convex conein the (finite) n-dimensional normed linear vector
space X, and g € Y where Y is the (finite) m-dimensional linear vector space with
Euclidean norm ||y|| = |lyll2, and M € L(X, Y). We assume that C is a regular cone,
and the norm linearization vector G of Remark 2 is known and given. (The original
algorithm of von Neumann presented and analyzed by Dantzig in [6] and [7] was
developed for the casewhen C = %!} and 0 = e.) We will refer to asystem of the form
(17) asaconic linear system in compact form, or simply a compact-form system.
The “alternative” systemto (P) of (17) is:

(A) Mts —T(gls) € intC*, (18)
and a generalization of Farkas' Lemmayields the following duality result:
Proposition 4. Exactly one of the systems (P) of (17) and (A) of (18) has a solution.

Notice that the feasibility problem (P) is equivalent to the following optimization
problem:
(OP) min{lig— Mx||: x € C, a'x = 1}.

If (P) hasafeasible solution, the optimal value of (OP) isO; otherwise, the optimal value
of (OP) is strictly positive. We will say that a point x is “admissible” if it is afeasible
point for (OP),i.e., x € C and 0'x = 1.

We now describe a generic iteration of our algorithm. At the beginning of the
iteration we have an admissible point X. Let v bethe “residual” at the point X, namely,
v = g— MX. Noticethat ||v|| = ||g— MX|| isthe objectivevalue of (OP). The algorithm
callsan oracleto solvethe following instance of the conic section optimization problem
(CSOPc) of (15):

min 2'(g — Mp) = min v'(gd' — M)p
p p
st. peC st. peC (19)
ip=1 itp=1,

where (19) is an instance of the (CSOP¢) with ¢ = (—M! + tig!)v. Let p be an optimal
solution to the problem (19), and w = g — M p.

Next, the algorithm checks whether the termination criterion is satisfied. The ter-
mination criterion for the algorithm is given in the form of a function STOP(-), which
evaluatesto 1 exactly when its inputs satisfy some termination criterion (some relevant
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examples are presented after the statement of the algorithm). If STOP(-) = 1, the
algorithm concludes that the appropriate termination criterion is satisfied and stops.

On the other hand, if STOP(-) = 0, the algorithm continues the iteration. The
direction p — X turns out to be a direction of potential improvement of the objective
function of (OP). The algorithm takes astep in the direction p — X with step-size found
by constrained line-search. In particular, let

X(A) =X+ A(p—%), 1 €[0,1].

Then the next iterate X is computed as X = X(A*), where A* is chosen to minimize the
size of theresidual at X:
A% = argmin; ¢o, 11119 — MXQ) |
= agmin, ¢ ;0,419 — M(X + A(p — X)) | = argmin, (o, 1)1 (1 = 1)V + Aw||.
Noticethat X isaconvex combination of thetwo admissible pointsx and p and therefore

X is also admissible. Also, A* above can be computed as the solution of the following
simple constrained convex quadratic minimization problem:

; Y 12— min 3205 — a2 “te- = —12
Aem[(l)fll] (1 —2v+Arw] Agg(lﬂ]?» [v—w|®+ 200 (w — v)) + ||[v]|°. (20)
The closed-form solution of the program (20) is easily seen to be

10— w2’

(21)
The formal description of the algorithm is as follows:

Algorithm GVNA

— Data: (M, g, x%) (where x? is an arbitrary admissible starting point).

— Initialization: The agorithm isinitialized with x°.

— lteration k, k > 1: At the start of the iteration we have an admissible point xk-1 :
xk=lec, atxk-1 =1,
Step 1 Compute vk—1 = g — Mxk~1 (theresidual).
Step 2 Call the oracle to solve the following instance of (CSOPc):

min (W1)t(g — Mp) = min <Yt — M)p

p p
st. peC st. peC (22)

itp=1 ip=1

Let p“~1 be an optimal solution of the optimization problem (22) and w*—1 =
g— Mp“~L. Evaluate STOP(-). If STOP() = 1, stop, return appropriate output.
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Step 3 Else, let

W = argmin, o9 — MEET AP =X ) (29

k=1t k=1 . k—1
_ min W) (v w )’ 1
”vk—l _ wk—1||2

and
K — xk=1 4 )Lk—l(pk—l — Xk 1,

Step4 Letk < k+1,goto Step 1.

Note that the above description is rather generic; to apply the algorithm we have to
specify thefunction STOP(-) to beused in Step 2. Some examples of function STOP(-)
that will be used in this paper are:

1. STOP1(vkt, wk=1) = 1if (*"1)twk~1 > 0, STOP1 = O otherwise. If thevectors
v&=1, wk=1 satisfy termination criterion STOP1, then it can be easily verified that
thevector s = —”—lv’,t—iu isasolutiontothe alternative system (A) (see Proposition 5).
Therefore, algorithm GVNA with STOP = STOP1 will terminateonly if the system
(P) isinfeasible.

2. STOP2(¢1, k1) = 1if WYtyk-1 > N8 STOP2 = 0 otherwise. This
termination criterion is a stronger version of the previous one.

3. STOP3(WK 1, wk=1 k) = 1if Wk Htwk=1 > 0ork > I, where | is some pre-
specified integer, STOP3 = 0 otherwise. This termination criterion is essentially
equivalent to STOP1, but it ensuresfinite termination (in no morethan | iterations)
regardless of the status of (P).

Proposition 5. Suppose v*~1 and wk~1 are as defined in Steps 1 and 2 of algorithm
GVNA. If (vk=1)tyk=1 = 0, then (A) has a solution and so (P) isinfeasible.

Proof. By definition of wk—1,
0 < " Hlw = e Higa' - Pt < (g ~ M)p

forany pe C, 0'p = 1. Hence, (gi' — M)'vk~1 ¢ intC* ands = —”—lv’,t—iu isasolution
of (A).
O

Analogousto thevon Neumann algorithm of [6] and [7], weregard algorithm GV NA
as“elementary” in that the algorithm does not perform any sophisticated computations
at each iteration (each iteration must perform a few matrix-vector and vector-vector
multiplications and solve an instance of (CSOPc) ). Furthermore the work per iteration
will below so long as the number of operations performed by the oracleis small. Each
iteration of algorithm GV NA requires at most

Tc + O(mn)
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operations, where T¢ is the number of operations performed by the oracle. The term
O(mn) derives from counting the matrix-vector and vector-vector multiplications. The
number of operations required to perform these multiplications can be significantly
reduced if M and g are sparse.

It can be easily seen that the size of the residual ||v|| is non-increasing, since the
interval of the line-search in (23) includes . = 0. In fact, the size of the residua will
decrease when either of the three termination criteriaaboveisused. Therate of decrease
depends on the termination criterion used and on the status of the system (P). In the
rest of this section we present three lemmas that provide upper bounds on the size of
the residual throughout the algorithm. The first result is a generalization of Dantzig's
convergenceresult [6].

Lemma 1 (Dantzig [6]). If algorithm GVNA with STOP = STOP1 (or STOP =
STOP3) has performed k (complete) iterations, then

ot
| < M QUH.
Bcvk

Proof. First note that if x is any admissible point (i.e., x € C and G'x = 1), then

mt
< ox _ 1
x|l < Fe ﬁc,andso

(24)

_ _ M — l:lt
19— Mx|l = I(gat — M)x| < IM — ga'f - x|} < M =801

(25)
From the discussion preceding the formal statement of the algorithm, all iterates of
the algorithm are admissible, so that XX € C and ttxk = 1 for all k. We prove the bound
on the norm of the residual by induction on k.
Fork =1,
M — gat M — gat

pc Bcv/1

where the inequality above derives from (25).

; ; k—1 IM—gt'| iterati
Next suppose by inductionthat ||v*~ || < okl . Attheend of iterationk we have

W40 = llg — Mx| = (1= 2% (g — MX ) + 25 g — Mp“ |
(26)
= (@ = A HU AT

where pk~1 and wk—1 were computed in Step 2. Recall that A~ was defined in Step 3
as the minimizer of ||(1 — A)vK1 + Aw*1| over al A € [0, 1]. Therefore, in order
to obtain an upper bound on ||vK||, we can substitute any A € [0, 1] into (26). We will
substitute A = . Making this substitution, we obtain:

-1 1
> K1y Ewk—l

1
1) < = 2llk— Dkt 4wkl (27)
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Squaring (27) yields:

1

197 < 15

Since the algorithm did not terminate at Step 2, the termination criterion was not met,

i.e., in the case STOP = STOP1 (or STOP = STOP3), (W Dtwk—1 < 0. Also, since

p“Lisadmissible, |wk 1| = |g— MpL| < ”ME%”. Combining these results with
the inductive bound on [|[v*~1|| and substituting into (28) above yields

1 M —gdl2 |M—gdl|? 1 |M—gdt)?
Bak—1) B¢ k Be

(k= D22 4 2+ 2k - DEH WD) (29)

O

We now develop another line of analysis of the algorithm, which will be used when
the problem (P) is“well-posed.” Let

H=Hm={Mx:xeC, 'x=1}, (29)
and noticethat (P) isfeasible precisely when g € . Define
r=r(M,g) =inf{lg—hl| :h e dH}. (30)

Asitturnsout, thequantity r playsacrucial rolein analyzing the complexity of algorithm
GVNA.

Observethatr (M, g) = 0precisely whenthevector gisontheboundary of theset .
Thus, whenr = 0, the problem (P) has afeasible solution, but arbitrarily small changes
in the data (M, g) can yield instances of (P) that have no feasible solution. Therefore
whenr = 0 we can rightfully call the problem (P) unstable, or in the language of data
perturbation and condition numbers, the problem (P) is“ill-posed.” We will refer to the
system (P) as being “well-posed” whenr > 0.

Notice that both H = Hy andr = r(M, g) are specific to a given data instance
(M, g) of (P), i.e, their definitions depend on the problem data M and g. We will,
however, often omit problem data M and g from the notation for # = Hm andr =
r(M, g). It should be clear from the context which data instance we are referring to.

Inlight of Remark 3, when (P) has afeasible solution, r (M, g) can be interpreted as
the radius of the largest ball centered at g and contained in the set .

We now present an analysis of the performance of algorithm GV NA in terms of the
quantity r =r(M, g).

Proposition 6. Suppose that (P) has a feasible solution. Let v* be the residual at
point xK, and let pK be the direction found in Step 2 of the algorithm at iteration k + 1.
Then (v)'(g — MP) +r (M, g)[|v¥|l < 0.

Proof. If vk = 0, the result follows trivially. Suppose v* # 0. By definition of r(M, g),
there existsapoint h € H such that g — h + r(M, g)H—EET = 0. By the definition of #,
h = Mx for some admissible point x. It follows that

k

v
—Mx=-r(M,g)——.
g M- 91k
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Recall that p* € argmin,{(v¥)'(g— Mp) : p € C, 'p = 1}. Therefore,

oK

WG — MpY < W9 — Mx) = —@W)tr(M, O = (M- 9 llvkl,

and rearranging yields

W9'(g— MpY) +r(M, g)llv¥| < 0.

O

Proposition 6 is used to prove the following linear convergence rate for algorithm
GVNA:

Lemma 2. Suppose the system (P) is feasible, and that r(M, g) > 0. If GVNA with
STOP = STOP1 (or STOP = STOP3) has performed k (complete) iterations, then

k([ Fcrig)?
1041 < pe (et

(31)
Proof. Let x bethecurrentiterate of GVNA. Furthermore, let v = g— MX betheresidual
at the point X, p be the solution of the problem (CSOP¢), and w = g — M p. Suppose
that the algorithm has not terminated at the current iteration, and X = X + A*(p — X) is
the next iterate and v isthe residual at X. Then

1912 = (L — 290 4+ A* 0] = W20 — )2 + 200 @ — v) + 915, (32)

where A* = min { 'ﬁ:ff;l‘fﬁ 1}. Since the algorithm has not terminated at Step 2, the

termination criterion has not been satisfied, i.e., in the case of STOP = STOP1 (or
STOP = STOP3), v'w < 0. Therefore

“tem o “12 ot S 2 st S o2
v(w—w) < [f-vw+ (wl|®—vw) =lv-w|,

so that ’ﬁtﬁ;’l“’g < landA* = 200 gpituting this value of A* into (32) yields:

lo—w|?

2112 — (bt 2
o < IP1EI2 = @) 33

10 — ]2

Recall from Proposition 6 that o' < —r(M, g)||7]. Thus, [|o]|2(|@||2 —r(M, g)) isan
upper bound on the numerator of (33). Also, || — wl|? = ||8]|>+ | ||? — 20w > ||w]|?.
Substituting thisinto (33) yields

IBI2(1B1% = (M, 92 _ < i, g)2> >

w12 12

BcrM, 9 \?\
(1_ (ngat— Mu) ) o

112
[vl* <

IA
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where the last inequality derives from (25). Applying the inequality 1 —t < et for

2
_ ( BcriM.9) i
t= (—t—ng —MH) , we obtain:

- _(ﬂcr(M,g)>2
lol° < llv]|7e oo -Mi

or, substituting o = %1 and o = vk,

fcriM.g)\?
10K < ||vk_1||e_%(_‘_ngﬂ 57 (39)
Applying (34) inductively, we can bound the size of the residual [|v¥| by
BcriMg) )2
1081 < 10ge S ien)
O

We now establish abound on the size of the residual for STOP = STOP2.
Lemma 3. If GYVNAwith STOP = STOP2 has performed k (complete) iterations, then

WK < 4M — gt
T vk

Proof. Let x bethecurrentiterate of GVNA. Furthermore, let v = g— MX betheresidual
at the point X, p be the solution of the problem (CSOP¢) and w = g — M p. Suppose
that the algorithm has not terminated at the current iteration, and X = X + A*(p — X) is
the next iterate and v isthe residual at X. Then

19012 = 1(1— A"+ 2 D)2 = )20 — w))? + 220 (@ — ) + [[o)%, (35)

where A* is given by (21). Consider two cases:

Case 1. | w2 < w'v. It can be easily shown that in this case A* = 1. Substituting this
value of A* into (35), algebraic manipulationsyield

1011B&

16|M — gut||?’ (39

1917 = llwll = iz - ” < llol* -
The second inequality in (36) follows from the assumption that the algorithm did not

terminate at the present iteration, i.e., in the case of STOP = STOP2, v'w < @ The
last inequality follows since

o _ IM—gu'|?® _ 8|M — gu'|?
19117 < s < .
pe BE
The need for the last inequality may not be immediately clear at this stage, but will
become more apparent later in this proof.
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Case 2: ||||? > @'7. It can be easily shown that in this case A* = ﬁ‘;ﬁ;}ﬁ’g. Substituting
thisvalue of A* into (35) yields:

- _ (W' — v))?
1912 = [19l1” = —————
lw — vl
Since o' < @,Wehave:
ot — ) > bl
p— 2 b
so that o a
~ 2< -2 ||U|| <15 2 ”U” ﬁc
Ioll* < vl Ao -2 = vl 16]M — gat |2’
since -
- - - - _ 4IM —gu'||
1 — o1 < 1907 + lwl|® + 2]3]| - 1wl < ——5——
C
(the last inequality results from an application of (25) for ||v|| = ||g — MX| and
lwll = llg— Mpl).
Combining Case 1 and Case 2, we conclude that
~4 4M — it
ol < 1912~ L, wherey £ AR 9L 37)
Y Bc

Next, we establish (using induction) the following relation, from which the statement
of thelemmawill follow: if the algorithm has performed k (complete) iterations, then

2
kg2 _ Y
€< =—

- (38)

v

First, note that [v1]|2 < ”M;i%ut”z < ”—12 thus establishing (38) for k = 1. Suppose
C
that (38) holds for k > 1. Then, using the relationship for v and v established above

with v = v*1 and v = v¥, we have:
k)14
W2 < k)2 = -,
14
or, dividing by [[v*1)12 - |v¥)12,
1 _ 1 IBNIE 1 1
K12~ okt 2 okt 2y T okt 2 27
Therefore,
1 1 N 1 _k N 1
P12 T k|2 2 T 2y
and so
k+1y2 v
057717 < K1

thus establishing the relation (38), which completes the proof of the lemma.
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4. Elementary algorithms for homogeneous conic linear systems

In this section we develop and analyze two elementary algorithms for homogeneous
coniclinear systems: algorithm HCI (for Homogeneous Conic I nequalities) which solves
systems of the form

(HCl) M'seintC*, (39)

and algorithm HCE (for Homogeneous Conic Equalities) which solves systems of the
form

(HCE) Mw = 0,
w € C. (40)
Here the notation is the same as in Sect. 3, and we make the following assumption:

Assumption 2. C C X isaregular cone. The width z¢ of the cone C and the coef-
ficient of linearity Sc for the cone C, together with vectors 0 and u of Remark 2 and
Proposition 3 are knownand given. For y € Y, |lyll = ||Yll2.

Both algorithms HCI and HCE consist of calls to algorithm GVNA applied to trans-
formations of the appropriate homogeneous system. Algorithms HCI and HCE will be
used in Sect. 5 in the development of algorithm CLS for general conic linear system
(FPg).

4.1. Algorithm HCI for homogeneous conic inequality system (HCI)

In this subsection we will assume that the system (HCI) of (39) is feasible. We
denote the set of solutions of (HCI) by Sy:

Su £ (s: Mis e intC*).

The solution s returned by algorithm HCI is “sufficiently interior” in the sense that the

ratio % is not excessively large. (The notion of sufficiently interior solutions
is very similar to the notion of reliable solutions. However, we wish to reserve the

appellation “reliable” for solutions and certificates of infeasibility of the system (FPq).)
Observe that the system (HCI) of (39) is of the form (18) (with g = 0). (HCI) isthe
“alternative” system for the following problem:

(PHCI) Mx = 0
xeC (41)
a'x = 1,

which isasystem of the form (17). Following (30) we define
r(M, 0) 2 inf{|[h|| : h € 3%}, (42)

where, asin (29), H 2 {Mx : x € C, U'x = 1}. Applying a separating hyperplane
argument, we easily have the following result:
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Proposition 7. Suppose (HCI) of (39) isfeasible. Then (PHCI) of (41) isinfeasibleand
r(M, 0) = min{||[Mx|| : x € C, Gtx =1} > O.

Algorithm HCI, described and analyzed below, consists of a single application of
algorithm GVNA to the system (PHCI) and returns as output a sufficiently interior
solution of the system (HCI).

Algorithm HCI

— Data: M
— Run agorithm GVNA with STOP = STOP2 on the data set (M, 0, x%) (where x°
isan arbitrary admissible starting point). Let v bethe residual at the last iteration of

algorithm GVNA.
— Defines= —-2. Return's.

~ Tl

Theorem 1. Suppose (HCI) isfeasible. Algorithm HCI will terminate in at most

16|/M 12
- M| (43)
iterations of algorithm GVNA.

Let s be the output of algorithmHCI. Thens € Sy and
IS« - 2|[M|
dist(s, 9Su) ~ Bcr(M,0)
Proof. Suppose that algorithm GVNA (called in algorithm HCI) has completed k iter-
ations. From Lemma 3 we conclude that
4M
ok < ML
Bcvk

wherevk = —MxXistheresidual after kiterations. From Proposition 7,r (M, 0) < ||Mx||
for any admissible point x. Therefore,

(44)

4|M

r(M,0) < k) < 2L

Bcvk
Rearranging yields

16/ M2
T BEr(M, 02’
from which thefirst part of the theorem follows.
Next, observethat ||s||« = 1. Therefore, to establish the second part of the theorem,

we need to show that dist(s, dSy) > %,\'\,’,'l’lm. Equivalently, we need to show that for
any q € Y* such that [|q[l« < 1, M'(s + ﬁczru(,{\,l"l’lo) q) € C*. Let p be an arbitrary vector
satisfying p € C, it p = 1. Then

(fo Ber(MO) \\' Bcr(M,0)
(M (s+ 2IM] q)) P=sMp+ =5y A MP (49)
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Observe that by definition of s

—o'tMp _ twk g
— 2 — > —,
[vll vl 2
where 1 = 1K1 is the residual at the last iteration of algorithm GVNA. (The first
inequality follows since p is an admissible point, and the second inequality follows
from the fact that the termination criterion of STOP2 is satisfied at the last iteration.)
On the other hand,

M, 0 M. 0 M.0
Pt M.0) iy > T MO) oM ipt = —F M9

2[[M| 2|Mi| 2
Substituting the above two boundsinto (45), we conclude that

' Bcr(M.0) \\' |8l r(M,0)
(M (s+ P a)) o= 7 -5 =0

\

Mp =

4.2. Algorithm HCE for homogeneous conic equality system (HCE)
We denote the set of solutions of (HCE) of (40) by Wy, i.e.,

WMé{w:szo, w e C}.

We assumein this subsection that (HCE) isfeasibleand M hasfull rank. The solution w
returned by algorithm HCE is “sufficiently interior” in the sense that the ratio gghal
is not excessively large. (The system (HCE) has atrivial solution w = 0. However this
solution is not a sufficiently interior solution, since it is contained in the boundary of
the cone C).

WedefineH = {Mx : x € C, |x|| < 1} (note the similarity with %y of (29)), and

p(M) 2 dist(0, 97) = max{r : B(O,r) C H). (46)
The following remark summarizes some important facts about p(M):

Remark 4. Suppose p(M) > 0. Then the set {w € Wy : w # 0} is non-empty, and M
has full rank. Moreover, p(M) < |[M| and

I(MMYH 1| < (47)

p(M)?’
This follows from the observation that p(M)2 < A1(MM?), where 11(MM?) denotes
the smallest eigenvalue of the matrix MM,

We will assume for the rest of this subsection that p(M) > 0. Then the second
statement of Remark 4 implies that the earlier assumption that M has full rank is
satisfied. In order to obtain a sufficiently interior solution of (HCE) we will construct
atransformation of the system (HCE) which has the form (17), and its solutions can be
transformed into sufficiently interior solutions of the system (HCE). The next subsection
containsthe analysis of the transformation, and its results are used to devel op algorithm
HCE in the following subsection.
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4.2.1. Properties of a parameterized conic system of equalities in compact form. In
this subsection we work with a compact-form system

(HCEg) Mx =0
xeC (48)
ix = 1.

The system (HCEp) is derived from the system (HCE) by adding a compactifying
constraint 0'x = 1. Remark 4 implies that when p(M) > 0 the system (HCEy) is
feasible.

We will consider systems arising from parametric perturbations of the right-hand
side of (HCEp). In particular, for a fixed vector z € Y, we consider the perturbed
compact-form system

(HCE;) Mx = §z
xeC (49)
ix = 1,

wherethescalar § > 0isthe perturbation parameter (observethat (HCEy) can beviewed
as an instance of (HCE;) with the parameter § = 0, justifying the notation). Since the
case when z = Oistrivial (i.e., (HCEs;) is equivalent to (HCEy) for all values of §), we
assumethat z # 0. The following lemma establishes an estimate on the range of values
of § for which theresulting system isfeasible, and establishes bounds on the parameters
of the system (HCE;) interms of 6.

Before stating the lemma, we will restate some facts about the geometric interpre-
tation of (HCE;) and the parameter r (M, §z) of (30). Recall that the system (HCE;) is
feasible precisely when 6z € H 2 {Mx : x e C, 0'x = 1}. Also, if the system (HCE;)
isfeasible, r (M, §z) can beinterpreted astheradius of the largest ball centered at §z and
contained in . Moreover, using the inequality Bc||x|| < G'x < ||x|| for al x € C, it
follows that

Bcr(M, 0) < p(M) <r(M,0).

Lemma 4. Suppose (HCEp) of (48) isfeasible,and z € Y, z # 0. Define
8 = max{s : (HCE;) isfeasible}. (50)

Then plflz\ﬂ) < r(M’uo) < 8§ < +o00. Moreover, if p(M) > 0, then § > 0, and for

any § e [0, S_], the system (HCE;) is feasible and |[M — 8z0'|| < |[M]| + §8|/z| and
1M, = (52 p(M).

Proof. Since # is compact and z is nonzero, § iswell defined and finite. Note that the
definition of § impliesthat 6z € 9. To establish the lower bound on §, note that for
any y € Y suchthat ||ly|| < 1,r(M, 0)y € H. Therefore, if wetakey = %, we have

Izl

107 e H, and s0 (HCE;) isfeasiblefor § = {042 Hence, § > {00 > 200,

The bound on ||M — 6zd'| is asimple application of the triangle inequality for the
operator norm, i.e,, [|[M — 6z0'(| < M| + 8]1z|| - |01« = M| 4 8]|z]l.
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Finally, suppose that (M) > 0. Then § > 0. Let § € [0, §] be some value of the
perturbation parameter. Since § < §, the system (HCE;) is feasible. To establish the
lower bound onr (M, §z) stated inthelemma, it is sufficient to show that aball of radius

‘Ss;ar(M, 0) centered at 5z is contained in . Suppose y € Y issuch that ||y|| < 1. As
noted above, §z € 7 andr (M, 0)y € . Therefore,
§—34 S - b
8z + Tr(M, Oy= g(82) + (1— §> r(M,0)y) € H,
since the above is a convex combination of sz and r(M, 0)y. Therefore, r(M, §z) >

(M, 0) = S%‘Sp(M), which concludes the proof.
a)

We now consider the system (HCE;) of (49) with the vector z 2 Mu, whereu is
as specified in Assumption 2. The system (HCE;) becomes

(HCEs) Mx = —§Mu
xeC (51)
alx = 1.

The following proposition indicates how approximate solutions of the system (HCE;)
of (51) can be used to obtain sufficiently interior solutions of the system (HCE).

Proposition 8. Suppose p(M) > 0and § > 0. Suppose further that x is an admissible
point for (HCE;), and in addition x satisfies

1 M)2
IMX + SMul| < E(STC[)H(MI)I .
Define
w2 (I = M{(MMY ™M) (x + u). (52)
Then Mw = 0 and
lw—(X+3duwl < :—2L3Tc (53)

whichimpliesthat w e C, dist(w, 9C) > 35tc, and [lw|| < 387c + ﬂ% + 6.

Proof. First, observe that w satisfies Mw = 0 by definition (52). To demonstrate (53)
we apply the definition (52) of w to obtain

lw — X+ 8w = M MMH ™ M + 8wl < [M]] - [(MMY) ™Y - [M(x + 8u)|

_ dep(M)? - M- [(MMH™H - Stcp(M)? - [((MMY 7Y _ 4t

S_

B 2[M| 2 2

since [|(MMY) ™! < —&> from Remark 4.
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Thelast three statements of the proposition are direct consequences of (53). Notice
that B(x + 8u, dtc) € C since B(u, 7¢c) € C and x € C. Combining thiswith (53) and
the triangle inequality for the norm we conclude that w € C and dist(w, 9C) > %Sm.
Also,

1 1
lwl < [lw— (X+ 8w + [IX +8ul| < 58tc + — + 6,
2 Bc

which completes the proof.
]

Noticethat w defined by (52) isthe projection of x + su onto the set {w : Mw = 0}
with respect to the Euclidean norm on the space X. Although the norm on the space X
may be different from the Euclidean norm, we will refer to the point w defined by (52)
asthe projection of x + u. It isinteresting to note that it is not necessary to have § < &
for Proposition 8 to be applicable.

4.2.2. Algorithm HCE. Algorithm HCE applies algorithm GVNA to a sequence of
problem (HCE;) of (51) with decreasing values of &, until the output provides a suffi-
ciently interior solution of (HCE).

The formal statement of algorithm HCE is asfollows:

Algorithm HCE

— Data: M
— lterationk, k> 1

Step1 § = 5 2 21k compute 1(5):

A 9 1 1
0= {2;3—8 0 (grer (”ﬂ)ﬂ 59

Step2 Run GVNA with STOP = STOP3 with | = [(8) on the data set
(M, —8Mu, x%) (where x° is an arbitrary admissible starting point).

Step 3 Let x bethelast iterate of GVNA in Step 2.
Set w = (I — MY(MMYH™IM) (X + u). If [|w — (X + 8u)|| < 37c8, stop.
Return w.
Else, set k < k + 1 and repeat Step 1.

Thefollowing proposition states that when p(M) > 0agorithm HCE will terminate
and return as output a sufficiently interior solution of (HCE).

Theorem 2. Suppose (HCE) satisfies p(M) > 0. Algorithm HCE will terminate in at

most
IIMIIﬂ
logy | ——= | | +2 55
[ gz(p(M) 59
iterations, performing at most

4 [ 216 M2 ( 401M| ) [ <||M|| ﬂ
a | I — 2 56
3L(M)2ﬂé "oyeepe ) | %% oy ) | T (56)

iterations of algorithm GVNA.
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Algorithm HCE will return a vector w € X with the following properties:

1. we Wy, o
- wcp

2. dISt(w, 8(5:) > SMT

3wl < 53,

4wl

dist(w,aC) — p(M)ctc”

Proof. We begin by establishing the maximum number of iterations algorithm HCE will
perform. Suppose that x is an admissible point for the system (HCE;) for some value
8 > 0. Theresidual at point x is defined in algorithm GVNA asv = —§Mu — Mx =
—M(x 4 8u). From Proposition 8, having a residual with a small norm will guarantee
that the projection w of the point x4 su will satisfy the property ||w — (X438u)|| < %zca.
In particular, it is sufficient to have ||v|| < € with

1. p(M)?

= 2ot . (57)
2 7 M|l

We now arguethat if § < %’G(TM”) then Step 2 of algorithm HCE will terminate in 1(8)

iterations and produce an iterate with the size of the residual no larger than ¢ given

by (57).

Suppose 0 < § < 400 Let 5 be as defined in (50). Applying Lemma 4 for
—Mu we conclude that the system (HCE;) is feasible for any 8 < [0, ], and

> ﬁ’mﬁ > ﬂ(Th/II\) > 28. Hence the system (HCE;) is feasible, and furthermore

>IN

~ 3
IM + sMud'l| < 1+ 8)[M]| < §||M||
(sinces < 1), and

F(M, —SMu) = (‘3%‘3) (M) = %p(M).

Sincethe system (HCE;) isfeasible, from Proposition 5it must betruethat algorithm
GVNA with STOP = STOP3 will perform | = 1(§) iterations, where

)2 | o |n<—1 (1+i>> . 18imp? In( 20M1> (1+i>>
| 28282\ 21c8? Bcs)) |~ pM)2pE T\ p(M)?ec Bcs))’

(58)

since§ < %T\(TMH) Applying Lemma 2 we conclude that after 1(8) iterations of GVNA
theresidual v'® satisfies:

1(5) ( Bcr (M. —5Mu) 1) ( FcpM)

2 2
0 < oope Rt )” < @ + smuge s (557)

<

2 2 BepM))?
(L o) ) (5 _ st
2[[M]|
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We conclude that if 0 < § < %’G(TM') then algorithm GVNA of Step 2 of HCE will
perform I(§) iterations and w defined in Step 3 will satisfy the termination criterion of
HCE.

In principle, agorithm HCE might terminate with a solution after as little as one
iteration, if the point w defined in Step 3 of that iteration happensto be sufficiently close
to the point x 4+ §u. However, in the worst case algorithm HCE will continue iterating
until the value of § becomes small enough to guarantee (by the analysis above) that
the corresponding iteration will produce a point satisfying the termination criterion. To
make this argument more precise, recall that during the kth iteration of the algorithm
HCE, § = sk = 217K Hence, HCE is guaranteed to stop at (or before) the iteration
during which value of § falls below % ‘ﬁ(TMH) for thefirst time. In other words, the number
of iterations of HCE that are performed is bounded above by

min{k: 21k < }LM)}

~ 2 M
Therefore algorithm HCE will terminate in no more than
IM]| ﬂ
K=llog,| ——=)|+2 59
o0 9

iterations, which provesthefirst claim of the theorem. Also, notice that throughout the
algorithm,

g . 1M
4 M|

To bound the total number of iterations of GVNA performed by HCE, we need to
bound the sum of the corresponding 1(8)’s:

K K [g.4¢ /4 k-1
Ky _ il <
; 5=2 { 8p2 |n<8fc <1+ Bc >>—‘ ' 0

k=1

(60)

It can be shown by analyzing the geometric series S F_; 4% that the sum in (61) satisfies
Y1165 < 41(8%) + K. Therefore

K

52109 = 5| gz ™ (e (1 e )) | £ ¥
T3 2828502\ 2t (84)? Bcsk

4 72|m)2 (8||M||2 ( 4IMm| )) [ (nMuﬂ

— | 1 | - 2
53{/}('\4)2;3(2; "oz U paee )) | % oy ) | T
[ 72/Mm2 m( 40[M |3 ) 4'09 <||M||) o
p(M)28Z  \ p(M)31c e 2\ p(M

[ 216/ M |12 ( 40|M| > [ <||M|| ﬂ
| | —_ 2. 62
sz "\ pheepc ) | 1% oy ) | T (62)

IA
[CVRRE

IA
Wl
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The second inequality in (62) follows from (60). We have thus established the second
claim of the theorem.

It remainsto show that the vector w returned by algorithm HCE satisfies conditions 1
through 4. Let §X denote the value of § during the last iteration of HCE. Applying
Proposition 8 combined with (60) we conclude that conditions 1 and 2 are satisfied.

Furthermore, L L 3 L c
wl| < S8+ =+ < S+ =< —,
ol 2 Bc 2 Bc T 2Bc

which establishes condition 3, and

loj ettt o 1 1
o 2 PBeresK

dist(w, aC) — TrcsK T
<2<1 4|M| 1) 11 M|
<2t ) =

2 p(M)Bctc  tc p(M)Bctc

which establishes condition 4 and completes the proof of the theorem.

5. Algorithm CLS for resolving a general conic linear system

In this section we indicate how algorithms HCI and HCE can be used to obtain reliable
solutions of a conic linear system in the most general form. A general conic linear
system has the form
(FPy) Ax=Db
X € Cx

of (1), and the “strong alternative” system of (FPq) is

(SAq) Als e C%
bls< 0

of (11). We develop agorithm CLS, which is a combination of two other algorithms,
namely algorithm FCL S (Feasible Conic Linear System) whichisused to find areliable
solution of (FPg), and algorithm ICLS (Infeasible Conic Linear System), which is used
tofind areliable solution to the alternative system (SAq). Wefirst proceed by presenting
algorithmsFCLSand ICL S, and studying their complexity. We then combine al gorithms
FCLS and ICLSto form algorithm CL S and study its complexity.

Recall that Assumption 1 is presumed to be valid.

5.1. AlgorithmFCLS

Algorithm FCLS is designed to compute a reliable solution of (FPy) of (1) when the
system (FPy) is feasible. Consider the following reformulation of the system (FPy):

—bo+ Ax=0

6 >0, xeCx. (63)
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System (63) is of the form (HCE) of (40) under the following assignments:

~M=[-bA]
—C=m+XCX,

with norms defined as follows:

— 1@, ) =10 + IX]l, (8,X) €N x X
— vl = llvll2, veEY.

Then the norm approximation vector for C iseasily seentobel = (1, f) with c = 8.
Moreover, thewidth of the cone C is ¢ = == > 37 andisattained at u = (. f).

Proposition 9. Suppose (FPq) of (1) is feasible and p(d) > 0. Then the system (63) is
feasible, M has full rank, and we have

M = [id]l, and p(M) = p(d),
where p(M) is defined in (46).
Proof. Feasibility of the system (63) istrivially obvious. Theexpressionfor || M| = ||d||
follows from the definition of the operator norm. The last statement of the proposition
is a dlightly altered restatement of Theorem 3.5 of [30]. Since p(M) = p(d) > O,
Remark 4 impliesthat M has full rank.

O

We use algorithm HCE to find a sufficiently interior solution of the system (63) and
transform its output into areliable solution of (FPy), as described below:

Algorithm FCLS

— Data:d = (A, b)
Step1 Apply algorithm HCE to the system (63). The algorithm will return a vector
W= (0, X.
Step2 Definek = g Return X (areliable solution of (FPy)).

Lemma 5. Suppose (FPq) is feasible and p(d) > 0. Then algorithm FCLS will termi-
nate in at most

4 [2160(002 (800(d)

I 2
3| 2 = ﬂ + log, C(@)] + (64)
iterations of algorithm GVNA. The output X will satisfy

1. X € Xy,
2% = B9 -,
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3. dist(X, 9Cx) > %T(d)

Xl 22C(d)
4 FExico =

Proof. To simplify the expressions in this proof, define « 2 dist(w, 0C) =
dist ((é, %), 304 x cx)).

From Theorem 2 we conclude that algorithm HCE in Step 1 will terminate in at
most

41216C(d)2 . /80C(d)
é[ 7 In( 5 >—‘+[I0920(d)'|~|—2

iterations of algorithm GV NA, which establishes the first statement of the lemma.
Next, from Theorem 2 we concludethat the vector i = (8, X) returned by algorithm
HCE in Step 1 setisfies:

~ - - cp(M) T
—bo + Ax =0, @, N Cx, a > > , 65
+ AX 0,%) e Ny xCx, a> 8IM| >16(2(d) (65)
~ - 5 5 1@, %l 1M 22C(d)
Ol + Il < 50— = o < = : 66
o1+ X 26c 2B a p(M)Bctc Bt (66)

Note in particular that (65) impliesthat 6 > « > 0, so that X is well-defined, and
AX = b, X € Cx, which establishes statement 1.
Next,
x| ol —6 o 22C(d)

%]l = =——F—=<—-1=

— 1,
0 0 o Bt

which proves 2.
To prove 3, definet 2 ”‘3‘7”(1+ [IX]). Then asimple application of (66) impliesthat
t> %- Further, let p € X bean arbitrary vector satisfying || p|| < t. Then
~ ~ ~ o N o~ ~
[opll <6 -t=0- — 1+ X)) == @+ IIX]) =«,
[[wll llwll

and so X + 6p € Cx, and hence X + p = “;p € Cx. Therefore, dist(X, 8Cx) > t >
sy establishing 3.
Finally,

IXI X0 WX Jlwl - fwll_ 22C(d)

<= _ <_- _ <

dist(x,9Cx) — t a1+ &) = « Bt

s

which establishes 4.
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5.2. AlgorithmICLS

Algorithm ICLS is designed to compute a reliable solution of (SAqg) of (11) when the
system (FPy) is infeasible. Consider the following compact-form reformulation of the
system (FPq):

—bo+ Ax=0
04+ fix=1 (67)
6 >0, xeCx.
The dternative system to (67) is given by
—bls>0
Als ¢ intCy. (68)
System (68) is of the form (HCI) under the following assignments:
-M=[-bA]
- C= St+ X C)(,

with norms defined as follows:

= 10, )1 = 10] + IIXIl, (0,X) € R x X
= vl =lvll2, veY.

Then the norm approximation vector for C iseasily seentobel = (1, ) with c = 8.

Proposition 10. Suppose the system (FPy) isinfeasible and p(d) > 0. Then the system
(67) isinfeasible, and we have
IM[| = [idIl,
pd) <r(M,0) < %}j)
wherer (M, 0) is defined in (42).

Proof. Suppose the system (67) has a solution (6, X). Since the system (FPy) is infea-
sible, we must have & = 0. Then the perturbed data vector d + Ad = (A + €b f_t, b)
where ¢ > 0 gives rise to the system (FP4+ad) Which has a solution X/e. The size
of the perturbation ||AA, Ab|| = ||ebf_t, 0|l = €||b|] can be made arbitrarily small.
This indicates that the system (FPq) is ill-posed, contradicting the assumptions of the
proposition. Thus, the system (67) has no solution.

The expression for ||[M|| = |/d| follows from the definition of the operator norm.
Next we establish the boundsonr (M, 0). Since the system (67) isinfeasibler (M, 0) is
computed as

r(M, 0) = min |0 — M(@ X)|| = min ||bd — AX||
o+ flx=1 o+ flx= (69)
6 >0, xeCx 6 >0, xeCx,

which is exactly program Pg(d) of [13] (for the case when Cy = {0}). Therefore,
applying Theorem 13 of [13] we conclude that gr(M, 0) < p(d) < r(M, 0), that is,
p(d) <T(M.0) < 2.

]
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We use algorithm HCI to compute a sufficiently interior solution of the system (68)
and show that it isareliable solution of (SAq), as described below:

Algorithm ICLS

— Data:d = (A, b)
Step 1 Apply agorithm HCI tothe system (68). Thea gorithmwill returnavector s.
Step 2 Return s (areliable solution of (SAq) ).

Lemma 6. Suppose (FPy) isinfeasibleand p(d) > 0. Then algorithm ICLSwill termi-
nate in at most

16C(d)?
/32
iterations of GVNA. The output s satisfiess € Aq and
sl _ 2c(d)
dist(s,0Aq) = B
Proof. From Theorem 1 we conclude that algorithm HCI in Step 1 will terminatein at

most
18[M1> | _ llw(d)zJ
BEr(M, 02 | ~ | p2
iterations of GVNA, which establishes the first statement of the lemma. Furthermore,
the output s satisfiess € Sy and
lISll« - 2[[M| _ 2C(d)
dist(s,9Su) ~ Bcr(M,00 — B
Since Sy € Ag, theresult follows.

(70)

5.3. Algorithm CLS

Algorithm CLS described below is a combination of algorithms FCLS and ICLS. Al-
gorithm CLSis designed to solve the system (FPy) of (1) by either finding a reliable
solution of (FPy) or demonstrating theinfeasibility of (FPy) by findingareliablesolution
of (SAq). Sinceit is not known in advance whether (FPy) is feasible or not, algorithm
CLS runs both algorithms FCLS and ICL S in parallel, and terminates when either one
of thetwo algorithmsterminates. Theformal description of algorithm CLSisasfollows:

Algorithm CLS

— Data: d = (A, b)
Step 1 Runalgorithms FCLSand ICLSin parallel onthedataset d = (A, b), until
one of them terminates.
Step 2 If agorithm FCLS terminates first, return its output X. If algorithm ICLS
terminatesfirst, return its output s.
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Although Step 1 of algorithm CLS calls for algorithms FCLS and ICLS to be run
in parallel, there is no necessity for paralel computation per se. Observe that both
algorithms FCLS and ICLS consist of repetitively calling the algorithm GVNA on
a sequence of data instances. A sequential implementation of Step 1 is to run one
iteration of algorithm GVNA called by algorithm FCLS, followed by the next iteration
of algorithm GV NA called by the algorithm ICLS, etc., until one of theiterationsyields
the termination of the algorithm.

Combining the complexity results for algorithms FCLS and ICLS from Lemmas 5
and 6 we obtain the following complexity analysis of algorithm CLS:

Theorem 3. Supposethat p(d) > 0 and Assumption 1 is satisfied. If the system (FPq)
isfeasible, algorithm CLSwill terminate in at most

8 [216C(d)? in (8@

3 B2 6
iterations of GVNA, and will return a reliable solution X of (FPg). That is, X will have
the following properties:

ﬂ + 2[log, C(d)| + 4

— X e Xy,
o 22C(d)
- Xl = == = 1,
it p
— dist(X, 9Cx) > mergy
_ IR 22C(d)
dist(X.9Cx) — pr -
If the system (FPy) isinfeasible, algorithm CLSwill terminate in at most
1 2
2{ 6C(d) J
/32

iterations of GVNA, and will return a reliable solution s of (SAq), thus demonstrating
infeasibility of (FPg). That is, s will satisfy the following properties:

—Se Ad1
_ sy 206
dist(s.0Ad) — B -

Proof. The proof is an immediate consequence of Lemmas 5 and 6. The bounds on the
number of iterations of algorithm GV NA in the theorem are precisely doublethe bounds
in the lemmas, due to running algorithms FCLS and ICLS in parallel.

]

6. Discussion

Discussion of complexity bound and work per iteration.Observe that algorithm
CLS (as well as algorithms FCLS and ICLS) consists simply of repetitively calling
algorithm GVNA on a sequence of data instances (M, g), al with the same matrix
M = [—b A], and with right-hand side of theform g = 0 or g = —§Mu for a sequence
of values of the parameters §. Viewed in this light, algorithm CLS is essentially no
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more than algorithm GVNA applied to a sequence of datainstances all of very similar
form. The total workload of algorithm CLS, as presented in Theorem 3, is the total
number of iterations of algorithm GVNA called in algorithm CLS. In this perspective,
algorithm CLS is “elementary” in that the computation at each inner iteration is not
particularly sophisticated, only involving some matrix-vector multiplications and the
solution of one conic section optimization problem (CSOPc, ) per iteration of GVNA.
Each iteration of algorithm GVNA used in algorithms FCLS and ICLS uses at most
Tcy + O(mn) operations, where Tc,, is the number of operations needed to solve an
instance of (CSOPc,) and the term O(mn) derives from counting the matrix-vector
and vector-vector multiplications. The number of operations required to perform these
multiplications can be significantly reduced if the matrices and vectors involved are
sparse.

In addition to running algorithm GVNA, algorithm CLS (in particular, algorithm
FCLS) computes several projections using formula (52). This computation cannot be
considered elementary since it involves the inverse of the square matrix MM? and re-
quires O(md) iterations. However, since the matrix M used by algorithm FCLS is the
same in all projection computations, this step of the algorithm can be implemented by
computing the projection matrix P 2 - MYMMYH—IM “off-line’ (before calling
algorithm CLS). Then the projectionsrequired by the algorithm FCL S can be computed
by means of matrix-vector multiplication. Since algorithm FCLS will perform no more
than O(In(C(d))) computationsof Euclidean projections (see Theorem 2), the multipli-
cationsinvolving P will not increase the computation time significantly even though P
isnot likely to have a nice sparsity structure.

A practical elementary algorithm? This paper has positively addressed two theoretical
questions regarding elementary algorithms and the condition number C(d). It remains
to be seenif algorithm CLS, or any other elementary algorithm for solving the problem
(FPq), will be competitivein practice with algorithms such as interior-point methods on
a suitable class of problems. Each iteration of algorithm CLS will perform only afew
operationswhen the oracle for solving the problem (CSOP) is efficiently implemented,
and when the original problem data is sparse. Furthermore, the number of operations
performed in each iteration of CLS is less affected by the growing dimension of the
problem then it would be for an interior point algorithm. Therefore, a study of the
practical performance of algorithm CL S on problem classesinvolving large, sparse, and
well-structured problems may be atopic of future research investigation.

In this vein, recent literature contains both theoretical and practical studies of sev-
eral algorithms for obtaining approximate solutions of certain structured convex op-
timization problems that can be also considered elementary in the above sense, and
moreover, are of similar natureto the algorithm CL S. See, for example, Grigoriadisand
Khachiyan[17,18] and Villavicencio and Grigoriadis [39], who consider algorithmsfor
block angular resource sharing problems, Plotkin, Shmoys, and Tardos [27] and Karger
and Plotkin [20] who consider algorithms for fractional packing problems, and Bien-
stock [4,5] and Goldberg et al. [16], where results of computational experiments with
these methods are discussed. Similar to algorithm CLS, each iteration of the algorithms
above maintains an “admissible” point (i.e., a point that satisfies a pre-specified subset
of problem constraints) and consists of acall to an oracle to solve alinear optimization
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subproblem similar to (CSOP), and uses the oracle output to generate a direction and
a new iterate with reduced violations in the remaining constraints. In addition to calls
to the oracle, most computations performed at each iteration consist of matrix-vector
multiplications involving the original data. Most recently, Ben-Tal, Margalit, and Ne-
mirovski [3] also use an elementary algorithm (the general mirror descent scheme) to
successfully solve very-large-scaleimage reconstruction problems.

The many applications of the problems considered in the aforementioned papers
include network design problems, multi-commaodity network flows, scheduling, combi-
natorial optimization, image reconstruction, etc. The dimensionality of such structured
problems arising in practice is often prohibitively large for theoreticaly efficient al-
gorithms such as interior-point methods to be effective. However, the computational
experiencewith the above elementary a gorithms has shown that elementary algorithms
can be a superior aternative (see, in particular, [5] and [3]). The complexity analysis
as well as the practical computational experience of this body of literature lends more
credenceto the practical viability of elementary algorithmsin general, when applied to
large-scale, sparse, well-structured, and well-conditioned problems.

Other formats of conic linear systemslnthis paper, we have assumed that the problem
(FPy) has“primal standardform” Ax = b, x € Cx, whereCy isaregular cone. Instead,
one might want to consider problemsin “standard dual form” b — Ax € Cy, x € X,
or the most general formb — Ax € Cvy, x € Cx. Elementary algorithms for problems
in these forms, with the cones Cy and/or Cx assumed to be regular, are addressed in
detail in [9]. In general, these problems can be approached by converting them into
primal standard form above and applying algorithm CL S as described in this paper. The
technique for converting problems of general formb — Ax € Cy, X € Cx into primal
standard form was originally suggested by Pefiaand Renegar [26] and can beinterpreted
asintroducing scaled slack variablesfor thelinear constraints. Thisapproachisextended
to problems in standard dual form in [9]. In some cases, however, the problem can be
treated by an elementary algorithm directly, without converting it into standard form.
These approaches are also presented in detail in [9].

Converting Algorithm CLS into an optimization algorithm. Converting algorithm
CLS into an optimization algorithm is a logical extension of the work presented in
this paper. Suppose that we are interested in minimizing a linear function ctx over the
feasible region of (FPg). Then algorithm CLS could be modified, for example, with the
addition of an outer loop that will add an objective function cut of the form c'x < c'x
whenever asolution X is produced at the previousiteration. Thismay be atopic of future
research.

lll-posed problem instances.The complexity bound of Theorem 3 relies on the fact
that (FPy4) is not ill-posed, i.e., p(d) > 0. The agorithm CLS is not predicted to
performwell (and in fact, is not guaranteed to terminate) in cases when p(d) = 0. This
does not constitute, in our view, a weakness of the algorithm, since such problems are
exceptionally badly behaved in general. In particular, an arbitrarily small perturbation
of the data can change the feasibility status of such problems, which makes it rather
hopel ess to compute exact solutions or certificates of infeasibility.
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