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Abstract. The Upper Bound Conjecture is verified for a class of odd-dimensional sim-
plicial complexes that in particular includes all Eulerian simplicial complexes with isolated
singularities. The proof relies on a new invariant of simplicial complexes—a short simplicial
h-vector.

1. Introduction

The goal of this note is to prove an extension of the Upper Bound Theorem for (simplicial)
polytopes. The main tool in the proof is a certain new invariant of simplicial complexes,
which is a simplicial analog of a short cubical h-vector introduced by Adin [1].

We start by recalling several definitions. A (finite) simplicial complex � is pure if each
maximal face of � has the same dimension. A pure simplicial complex � is Eulerian
if for every face F of � (including the empty face) the Euler characteristic of its link is
equal to the Euler characteristic of the sphere of the same dimension, that is,

χ(lk F) = 1 + (−1)dim(lk F).

In particular, by Poincaré duality, every odd-dimensional homology manifold is Eulerian.
(Recall that a simplicial complex � is a homology manifold if its geometric realization X
possesses the following property: for every p ∈ X and every i < dim X , Hi (X, X − p) =
0, while Hdim X (X, X − p) ∼= Z. Here Hi (X, X − p) denotes the i th relative singular
homology with coefficients Z.)

The Upper Bound Conjecture (abbreviated UBC) proposed by Motzkin in 1957 (see
[6]) asserts that among all d-dimensional (simplicial) polytopes with n vertices, the
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number of i-dimensional faces (for every i = 1, . . . , d − 1) is maximized by the cyclic
polytope Cd(n). Over the last 40 years this conjecture has been treated extensively by
many mathematicians: in 1970 McMullen [5] proved the UBC for polytopes; McMullen’s
result was preceded in 1964 by a surprising work of Klee, where he verified that the
UBC holds for all Eulerian complexes with a sufficiently large number of vertices, and
conjectured that it holds for all Eulerian complexes [4]; in 1975 Stanley proved the UBC
for arbitrary triangulations of spheres [9], [11], and in 1998 Novik verified the UBC for
triangulations of odd-dimensional manifolds and several classes of even-dimensional
manifolds [7].

In this note we prove the UBC for a class of odd-dimensional simplicial complexes
that in particular includes all odd-dimensional Eulerian complexes whose geometric
realization has isolated singularities. More precisely, we obtain the following theorem
in which fi (�) denotes the number of i-dimensional faces of a complex �, the values
βi (�) = dim(H̃i (�)) denote the reduced Betti numbers of � over a field of characteristic
0, and Cd(n) is a d-dimensional cyclic polytope on n vertices.

Theorem 1. Let � be a pure (2k + 1)-dimensional simplicial complex on n vertices,
such that for every vertex v of �, the link of v is either a homology manifold whose Euler
characteristic is 2, or an oriented homology manifold satisfying the following condition:

βk(lk v) ≤ 2βk−1(lk v) + 2
k−3∑
i=0

βi (lk v).

Then fi (�) ≤ fi (C2k+2(n)) for i = 1, 2, . . . , 2k + 1.

The main ingredient in the proof is a new invariant of simplicial complexes, h̃(�) =
(h̃0, h̃1, . . . , h̃dim(�)), which is a simplicial analog of the short cubical h-vector introduced
by Adin (see [1]). We give its definition and list some of its properties in the next section.
Section 3 is devoted to a proof of Theorem 1. Section 4 contains several remarks and
additional results on the UBC and the h̃-vector.

2. The h̃-vector

In this section we introduce the notion of the h̃-vector for pure simplicial complexes and
list some of its properties. We begin by recalling definitions of f -vectors and h-vectors.
For a (d − 1)-dimensional simplicial complex �, its f -vector, denoted f (�), is the
vector ( f−1, f0, f1, . . . , fd−1) where fi counts the number of i-dimensional faces. In
particular, f−1 = 1, f0 is the number of vertices of �, and f1 is the number of edges.
The h-vector of �, denoted h(�), is the vector (h0, h1, . . . , hd) where

hi (�) =
i∑

j=0

(−1)i− j

(
d − j

d − i

)
f j−1(�), i = 0, 1, . . . , d. (1)
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Equivalently,

f j−1(�) =
j∑

i=0

(
d − i

d − j

)
hi (�), j = 0, 1, . . . , d. (2)

Adin [1, eqns. (1), (11)] defined for any cubical complex C its short cubical h-vector,
denoted h(sc)(C) = (h(sc)

0 , h(sc)
1 , . . . , h(sc)

dim(C)). It was later observed by Hetyei that if C
is pure, then h(sc)(C) = ∑

v∈V h(lk v), where V is the set of vertices of C . (Note that
the links of the vertices in a cubical complex are simplicial complexes, and hence the
h-vector h(lk v) is well-defined.)

Similarly to the short cubical h-vector, we define a short simplicial h-vector, denoted
h̃, as follows.

Definition 1. Let � be a pure (d − 1)-dimensional simplicial complex on the vertex
set V . Define

h̃(�) = (h̃0, h̃1, . . . , h̃d−1) :=
∑
v∈V

h(lk v),

so in particular h̃i (�) := ∑
v∈V hi (lk v).

The next lemma gives several properties of h̃.

Lemma 1.

(i) Let � be a pure (d − 1)-dimensional simplicial complex. Then

h̃i (�) =
i∑

j=0

(−1)i− j ( j + 1)

(
d − 1 − j

d − 1 − i

)
f j (�) (0 ≤ i ≤ d − 1)

and

fj (�) = ( j + 1)−1
j∑

i=0

(
d − 1 − i

d − 1 − j

)
h̃i (�) (0 ≤ j ≤ d − 1).

In particular, the f -numbers of a simplicial complex are non-negative linear
combinations of its h̃-numbers.

(ii) If � is a pure (2k +1)-dimensional simplicial complex such that the link of every
vertex is a homology manifold, then the f -numbers of � are non-negative linear
combinations of h̃0, h̃1, . . . , h̃k+1. In other words,

f j (�) =
k+1∑
i=0

b j
i h̃i (�), 0 ≤ j ≤ 2k + 1,

where the coefficients b j
i are independent of � and are non-negative.
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Proof. Since every j-dimensional simplex has j + 1 vertices, it follows that∑
v∈V

fj−1(lk v) = ( j + 1) f j (�), (3)

where V is the set of vertices of �. This equation together with relations (1) and (2)
(applied to the links of vertices) implies part (i).

Part (ii) is a consequence of (3) and [7, Lemma 6.1], which asserts that the f -numbers
of a 2k-dimensional homology manifold are non-negative linear combinations of its h-
numbers h0, h1, . . . , hk+1.

3. The Proof of the Upper Bound Theorem

In this section we prove Theorem 1. This will require the following facts and definitions.

Definition 2. A simplicial complex � is l-neighborly if each set of l of its vertices
forms a face in �.

It is well known that all d-dimensional cyclic polytopes are 
d/2�-neighborly, and that
all 
d/2�-neighborly d-dimensional polytopes with r vertices have the same h-vector:

hi = hd−i =
(

r − d + i − 1

i

)
for 0 ≤ i ≤ 
d/2�.

In the proof of Theorem 1 we will also use the following version of the Upper Bound
Theorem for even-dimensional homology manifolds.

Lemma 2. Let K be a 2k-dimensional homology manifold on r vertices. Furthermore,
assume that either χ(K ) = 2, or K is an oriented homology manifold such that

βk(K ) ≤ 2βk−1(K ) + 2
k−3∑
i=0

βi (K ). (4)

Then

hi (K ) ≤ hi (C2k+1(r)) for 0 ≤ i ≤ k + 1.

Proof. In the case of χ(K ) = 2, the lemma follows from Theorem 6.6 of [7] and the
Dehn–Sommerville relations for Eulerian complexes [3]. In the second case the result is
a part of the proof of Theorem 6.7 of [7].

We are now ready to verify Theorem 1. The argument is very similar to the proof of
a special case of the cubical UBC (see Theorem 4.3 of [2]). The only difference is that
we use the h̃-vector instead of the short cubical h-vector.

Proof of Theorem 1. Let � be a simplicial complex satisfying the conditions of the
theorem. By Lemma 1(ii), it suffices to check that h̃i (�) ≤ h̃i (C2k+2(n)) for 0 ≤
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i ≤ k + 1. To this end, note that for every vertex v of �, lk v is a 2k-dimensional
simplicial complex on at most n − 1 vertices that is either a homology manifold with
Euler characteristic 2, or an oriented homology manifold satisfying condition (4). Thus,
by Lemma 2,

hi (lk v) ≤ hi (C2k+1(n − 1)) for 0 ≤ i ≤ k + 1.

Since C2k+2(n) is a (k + 1)-neighborly polytope, it follows that the link of every vertex
of C2k+2(n) is a k-neighborly (2k + 1)-dimensional polytope on n − 1 vertices. Hence,

h̃i (�) =
∑

v

hi (lk v) ≤
∑

v

hi (C2k+1(n − 1)) = h̃i (C2k+2(n)) for 0 ≤ i ≤ k + 1,

implying the theorem.

Corollary 1. Let � be a (2k + 1)-dimensional oriented pseudomanifold on n vertices
such that the link of every vertex is either a 2k-dimensional homology manifold with
vanishing middle homology, or it is a 2k-dimensional homology manifold whose Euler
characteristic χ satisfies (−1)k(χ − 2) ≤ 0. Then

fi (�) ≤ fi (C2k+2(n)) for 1 ≤ i ≤ 2k + 1.

Proof. Any such complex � satisfies the assumptions of Theorem 1.

4. Additional Remarks and Results

1. Theorem 1 proves a special case of Kalai’s conjecture [7, Section 7] that the UBC holds
for all simplicial complexes having the property that every link (of a face) of dimension
2k (k = 1, 2, . . .) satisfies condition (4).

2. In his proof of the UBC for spheres [9], [11], Stanley showed that if K is a (d −1)-
dimensional homology sphere on n vertices, then

hi (K ) ≤ hi (Cd(n)) for 0 ≤ i ≤ d − 1. (5)

Since the f -numbers of any simplicial complex � are non-negative combinations of
its h̃-numbers (by Lemma 1(i)), arguing exactly as in the proof of Theorem 1, but
using (5) instead of Lemma 2, we obtain a new proof of the UBC for odd-dimensional
homology manifolds. This proof is shorter and more elementary than the one presented
in Theorem 1.4 of [7]. (It does not use any facts about Buchsbaum complexes!)

3. It would be interesting to clarify whether for a (2k + 1)-dimensional complex �

satisfying the assumptions of Theorem 1, the inequality hi (�) ≤ hi (C2k+2(n)) (0 ≤ i ≤
k + 1) necessarily holds. We have the expression

hr (�) =
r∑

j=0

(−1)r− j

(
2k + 2 − j

2k + 2 − r

)
f j−1(�)

= (−1)r

(
2k + 2

r

)
+

r−1∑
i=0

h̃i (�)

(
2k + 1 − i

2k + 2 − r

) r∑
j=i+1

1

j
(−1)r− j

(
r − i − 1

r − j

)
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= (−1)r

(
2k + 2

r

)
+

r−1∑
i=0

h̃i (�)

(
2k + 1 − i

2k + 2 − r

)∫ 1

0
xi (x − 1)r−i−1 dx

= (−1)r

(
2k + 2

r

)
+

r−1∑
i=0

(−1)r−i−1 (2k + 1 − i)! i!

(2k + 2 − r)! r !
h̃i (�).

Hence the coefficients of h̃-numbers in the expression for hr alternate in sign so that
short simplicial h-vectors are not sufficient to resolve this question.

4. Lower bounds. Let�be a simplicial complex, let Skeli (�)denote its i-dimensional
skeleton, and let χi (�) := χ(Skeli (�)) = ∑i

j=0(−1) j f j (�) denote the Euler charac-
teristic of Skeli (�). It was shown in [8] that if � is a (2k −1)-dimensonal manifold, then
(−1)iχi (�) ≥ 0 for 0 ≤ i ≤ 2k − 1. The proof relied on several facts about Buchsbaum
complexes. Using h̃-numbers we provide a short proof of the following related result.

Proposition 1. Let � be a (d − 1)-dimensional Buchsbaum simplicial complex (i.e.
a pure simplicial complex such that for every vertex v ∈ � the link of v is Cohen–
Macaulay). Then (−1)iχi (�) ≥ 0 for 0 ≤ i ≤ 
(d − 1)/2�.

Proof. Since lk v is Cohen–Macaulay for every vertex v ∈ �, it follows that hi (lk v) ≥
0 for i = 0, 1, . . . , d − 1, and, hence, h̃i (�) ≥ 0 for i = 0, 1, . . . , d − 1. Expressing
the f -numbers of � in terms of its h̃-numbers (Lemma 1(i)), we obtain

(−1)iχi (�) =
i∑

j=0

(−1)i− j f j =
i∑

l=0

(
i∑

j=l

(−1)i− j 1

j + 1

(
d − 1 − l

d − 1 − j

))
h̃l . (6)

It is straightforward to show that if 0 ≤ i ≤ 
(d − 1)/2� and 0 ≤ l ≤ i , then

1

i + 1

(
d − 1 − l

d − 1 − i

)
≥ 1

i

(
d − 1 − l

d − i

)
≥ · · · ≥ 1

l + 1

(
d − 1 − l

d − 1 − l

)
.

Hence for any 0 ≤ i ≤ 
(d −1)/2�, all coefficients of h̃-numbers in (6) are non-negative,
implying the proposition.

5. Semi-Eulerian complexes. One may also use short simplicial h-vectors and the
Dehn–Sommerville relations to give a new proof of the fact that all odd-dimensional
semi-Eulerian simplicial (or regular cell) complexes are Eulerian. This result was proven
more generally for posets in Exercise 3.69(c) of [10] by a very different approach.
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