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The purpose of this review is to define animal models of chronic venous disease and to dem-
onstrate how animal studies can impact our understanding and treatment of this disorder. To this
end an extensive literature search was conducted highlighting potential animal models of chronic
lower extremity venous disease. Scientific investigations using animals to study particular as-
pects of this disease are also reviewed. This review was conducted by members of the Com-
mittee on Research of the American Venous Forum to help provide direction for future venous
research endeavors. Useful models of chronic venous occlusive disease involve controlled
ligation of a major lower limb vein and multiple tributaries. Such a model can provide sustained
venous hypertension and studies using this model have confirmed that an isodiametric graft can
provide early hemodynamic relief. Models of primary, postphlebitic, and isolated chronic deep
venous insufficiency are available for study. Valve repair or transplantation can positively impact
the insufficiency observed in these models. Investigations into valve substitutes have generally
been disappointing or are undergoing early evaluation. In conclusion, animal models for the
study of some aspects of chronic venous disease do exist and have already affected our clinical
approach to patients. The scientific study of basic pathophysiology, diagnostics, end-organ
response, and long-term surgical treatments of this disorder in well-controlled animal experi-

ments have not been conducted. (Ann Vasc Surg 1998;12:487-494.)

INTRODUCTION

A clear understanding of the pathophysiology of
lower extremity chronic venous disease is lacking
and one of the major reasons is a deficiency of ani-
mal models that mimic the human condition. As a
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result, experimental animal studies to address the
surgical treatment of this problem on a scientific
level have been scarce and substantial clinical ad-
vancement in the treatment of this disorder has
been hindered.

A renewed interest in the study of chronic ve-
nous diseases provides an impetus to review infor-
mation on available animal models. A review of
lessons learned from surgical investigations con-
ducted in these models may provide a glimpse into
what impact such studies have had and may have in
the clinical arena. The direction of future animal
studies is also considered.

LITERATURE REVIEW
Obstructive Models

During the 1970s, the study of extensive acute ve-
nous thrombosis was in full swing. Selective control
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of a canine’s femoral vessels while the remainder of
the leg was subjected to tourniquet occlusion pro-
vided one model of total venous occlusion.* If the
femoral vein was occluded for 24 hours, one could
expect a 33.3% mortality. Reducing this period of
occlusion to 6 hours followed by femoral vein
declamping resulted in a restoration of arterial flow
without concomitant venous thrombosis. The study
limbs demonstrated severe swelling, ecchymosis,
and approximately 40% of limbs had extensive skin
blebbing. A second canine model required ligation
of all veins from the ipsilateral iliocaval junction to
the femoral vein distal to the profunda including
the contralateral hypogastric vein. The result was a
30% 1-day mortality.? The high mortality and ex-
tensive limb damage resulting from such model de-
signs were optimal for the study of phlegmasia ce-
rulea dolens but unacceptable for long-term inves-
tigations.

Simple ligation of the femoral vein resulted in a
dramatic increase in peripheral venous pressure im-
mediately following ligation (20-40 torr increase).
This was short-lived, however, in that the pressure
dropped to one-half and then to two-fifths of the
maximal pressure increase within 4 and 72 hours,
respectively.®® Simple iliac vein ligation had a simi-
lar fate.® No venous dilation nor lower limb edema
was noted in these animals. An ipsilateral or cross
femorofemoral vein bypass resulted in the immedi-
ate correction of distal venous hypertension.*® A
lack of sustained elevated venous pressure distal to
the ligature in these models was considered a factor
in the overall poor primary patency of attempted
reconstructions (29%).° Simple ligation of one ma-
jor lower limb vein does not produce sustained dis-
tal venous hypertension necessary for a chronic oc-
clusive model.

A large diameter (1.5 cm) high-flow side-to-side
femoral artery to femoral vein fistula constructed
distal to a femoral vein ligature increased the distal
venous pressure to near arterial levels.” Although
venous hypertension is generated, this model does
not reflect the clinical condition in that the hyper-
tension is unrelenting and is of uncharacteristic se-
verity.

Controlled ligation of multiple lower extremity
veins provides a more realistic and workable model
of chronic venous hypertension. In a greyhound,
ligation of the external and internal iliac veins in
addition to all side branches to just above the caudal
femoral vein resulted in elevated distal venous pres-
sures at rest and during exercise that was sustained
for at least 15 weeks.® Lower limb edema resolved
by 6 weeks but there was increased venous pattern-
ing over the lower abdomen. Several short-term
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(=4 hours) studies using this model have clarified
some aspects of the surgical treatment of venous
occlusive disease.’** Cross femoral vein to femoral
vein bypass of a diameter less than that of the af-
fected limb outflow tract only partially relieves dis-
tal venous hypertension and graft flow is poor.® The
addition of a distal arteriovenous fistula (dAVF) in-
creased graft flow (400 ml/min) but also increased
distal venous hypertension (8-9 times normal).® An
isodiametric conduit relieved distal venous hyper-
tension.®'® The addition of a high-flow dAVF
(L1200 ml/min) was detrimental to venous pres-
sure and induced undesirable physical symptoms.*°
A more peripheral dAVF ([(200-400 ml/min) aug-
mented flow without detrimental effects on distal
venous pressures.*’ An isodiametric cross femoral
vein bypass using external jugular vein in addition
to a sequential AVF resulted in a normalization of
resting and postexercise distal venous pressures by
6 weeks and maintained this improvement after
AVF ligation (follow-up 6 weeks).® This model ap-
pears acceptable for investigating several aspects of
the surgical treatment of chronic venous occlusive
disease. Furthermore, studies already performed
with this model clearly suggest that an isodiametric
graft is required to maintain normal venous hemo-
dynamics and that a dAVF of moderate flow may be
helpful to maintain early patency.

Extensive ligation of bilateral hypogastric veins
as well as the external iliac and all branches includ-
ing the superficial femoral vein (SFV) on one side in
a rabbit resulted in elevated distal venous pressures
(b mmHg higher than the normal side) for at least
8 weeks.*? The creation of a small diameter (infe-
rior epigastric vein to side of superficial femoral ar-
tery) dAVF that was ligated after 2 weeks reduced
distal venous pressure postligation by almost one-
half when compared to control limbs. It was theo-
rized that the improvement noted resulted from an
increase in venous collateral size or number. This
model may provide a less costly, yet surgically use-
ful alternative for the study of chronic occlusive
disease.

Insufficiency Models

Primary venous valvular incompetence is a recog-
nized clinical entity. Interestingly, the crossbred
merino sheep have totally or partially incompetent
external jugular vein valves in [70% of cases.*®
Merely decreasing the valve circumference ([(24%)
with a Venocuff® can restore competence. A sug-
gestion that progressive dilation of the vein circum-
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Table I. Transplantation of valve containing venous segments to the superficial femoral or popliteal

vein
Delay to
usable Useable Overall Competent
model model patency valves
Method Reference (weeks) (%) Donor valve (%) (%)
Sclerosing agents
5% ethanolamine 15 6-11 30 EJV/CSFV 0 0
1% sotradecol 16 6-8 100* EJV/CSFV 95 NAT
Trauma and stasis 15 6+ 83 CSFV 50 50
15 6+ 83 CSFV 70 65+
15 Regraft® NA EJV 40 80*
17 6+ 98 CSFV 67 39
17 6+ 98 CSFV 100 75%
Valvulotomy 18-20 3 100 EJV 100 100
18-20 3 100 Experimental/EJV 100 87**
18,19,217" 3 oo EJV 20 20
18,19,217" 3 [1noo EJV 83 83

EJV, external jugular vein; CSFV, contralateral superficial femoral vein.

*Ligated femoral vein; therefore no recanalization possible.
TAt least 12% had no valves at sacrifice.

*24-72 systems therapeutic heparin.

SOnly used after original transplant had failed.

**Adjuvant distal arteriovenous fistula.

MTransplant to popliteal vein location.

ference may be responsible for some cases of ve-
nous valvular insufficiency was addressed in this
model by creating a 1 cm side-to-side AVF proximal
to a competent valve. With a 45% increase in vein
circumference, all four originally competent valves
became incompetent within 7 days.*®

A rat model was used to demonstrate that pro-
longed venous hypertension can lead to valvular
incompetence and eventually complete cusp de-
struction.** A side-to-side femoral AVF was surgi-
cally constructed and the proximal femoral and epi-
gastric vein were then ligated. There was a 25%
mortality from early cardiac failure. In those sur-
viving, it was observed that the venous valves distal
to the obstruction allowed retrograde flow within 1
day but demonstrated no obvious anatomic alter-
ation. Eventually, however, cusp elongation, sepa-
ration, and leakage were observed. At 4 months, it
was difficult on gross inspection to recognize where
valves had originally been located. This is an ex-
treme hypertensive model which demonstrates
what may happen to veins and their valves when
subjected to prolonged high intravenous pressures.
It is possible that following valve destruction and
subsequent ligation of the fistula, this could be use-
ful as a chronic insufficiency model but the opera-
tive mortality is most likely prohibitive.

Models of chronic venous insufficiency were ini-

tially created by attempting to mimic a thrombo-
phlebitic event. The injection of sclerosing agents
was one such approach. An isolated segment of
femoral vein was emptied of blood and filled with
5% ethanolamine for approximately 5 minutes and
then declamped.*® Only 30% of animals were tech-
nically useful for transplantation due to densely ad-
herent collaterals and surrounding soft tissue in-
flammation. No autogenous valve containing vein
transplant remained patent or competent in short-
term follow-up (Table 1). A more mild process was
induced by injecting 1% sotradecol into a 4 cm seg-
ment of ligated femoral vein.'® Transplantation of a
long length (10-19 cm) of valve containing external
jugular vein was accomplished by avoiding the
areas of sclerosis. Continuous patency rates were
not documented and in at least 12% of cases no
valves could be found at sacrifice (Table 1). Throm-
bosis of the transplanted venous segment routinely
lead to valvular incompetence. These experiences
lead to the conclusion that a sclerosis model of deep
venous insufficiency has an unpredictable outcome
and is difficult to approach surgically in any event.

Subjecting a major lower limb vein to trauma
and stasis was another method used to create a ve-
nous insufficiency model. This approach involved
isolating a 2.5-4 cm long segment of femoral vein,
emptying it of blood, and then crushing the vein
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with a needle holder. The isolated segment was
filled with blood, bulldog clamps are applied above
and below the area of trauma, and the dogs were
reoperated in 2-4 days to remove the bulldog
clamps.*®>*’” Recanalization generally resulted in an
acceptable model for venous valve transplantation
(Table I). The addition of 24 hours of perioperative
systemic heparinization to the venous valve trans-
plantation improved the primary patency rate to
[B5% with a reported valve competency rate of
[I70%. Interestingly, if the transplant occluded, re-
grafting with an external jugular vein valve-
containing segment and utilizing 24 hours of sys-
temic heparinization demonstrated a 40% patency
yet a 80% overall competency rate.*® It was impos-
sible to determine if the competent valves noted
after venographically proven graft thrombosis had
actually been involved with the thrombotic process.
It appears that this model may mimic the clinical
situation, can be used for valve transplantation ex-
periments, and may require perioperative and pos-
sibly even prolonged heparinization for optimal re-
sults. A second interesting observation is that not all
venous valves are rendered incompetent when sub-
jected to a thrombotic event.

A greyhound model of lower limb venous valvu-
lar insufficiency with a low model failure rate
(Table 1) and uniquely studied by intravenous pres-
sure measurements has been described.*®*° This
model was created by introducing a valvulotome
into the lower limb venous system via a lateral sa-
phenous vein cutdown at the paw and advancing it
proximally into the inferior vena cava. The dog was
then elevated to a standing position and the valvu-
lotome was rapidly pulled distally to disrupt all of
the venous valves. This is a model of isolated deep
venous insufficiency since the greyhound has no
significant superficial or perforator veins nor a large
calf muscle to complicate the picture. The intrave-
nous pressure measurements (venous filling time
[VFT], ambulatory venous pressure [AVP], 90% of
venous refilling time [VRTgy]) mimicked tracings
found while studying patients with venous insuffi-
ciency.*®'° Transplanting a competent contralateral
SFV valve-containing vein segment to the SFV lo-
cation on the incompetent side resulted in correc-
tion of the VFT and improvement in the VRTy, but
the AVP was not improved.?° Transplantation of an
external jugular vein (EJV) valve into an incompe-
tent popliteal venous system generally resulted in
thrombosis unless a dAVF was added (Table 1).%*
With the use of a temporary dAVF (0750 ml/min),
five of six grafts were patent with normal appearing
valves on gross inspection. The AVP was consistent
with a normal limb and there was improvement of
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the VRT4,.2* Using this model it does appear that
venous valve transplantation can impact the ve-
nous hemodynamics of limbs with chronic venous
insufficiency. The final hemodynamic result is de-
pendent upon the location of valve implantation.
The more distal the valve transplant, the greater the
improvement in AVP. Another lesson learned was
that the more distal the valve transplant, the more
critical was the need for an adjuvant dAVF or at
least some adjuvant method to maintain early pa-
tency.

Venous Valve Substitutes

The remaining major surgical study of lower ex-
tremity chronic venous disease in animals has been
a search for a venous valve substitute.

A venous valve constructed from autogenous
vein in the fashion of Eiseman and Malette®® has
been investigated as a substitute for a normal ve-
nous valve of the lower extremity (Table Il). The
technique basically involves an intusseption of the
vein into itself with an appropriate cusp made by
two sutures placed at 180° angles from each other
to hold the inner vein wall in the correct posi-
tion.?%2% In all reported studies, only operative hep-
arinization was administered and no long-term an-
ticoagulation was provided. Short-term patency
was excellent with 90%-100% of valves competent
at physiologic pressures. When used to correct the
hemodynamic consequences of chronic venous in-
sufficiency by transplantation to the SFV location,
the VRTy, was improved modestly but not the VFT
that suggested that the valve was not as hemody-
namically responsive as a native valve.?° A modifi-
cation of this type of venous valve involved thin-
ning the adventia and a part of the media to result
in a thin valve cusp after intusseption.?* The valve
opened at a pressure of <3 cm water and closed at a
pressure between 3 and 5 cm of water and could
withstand physiologic pressure changes. Without
the aid of prolonged heparinization, a thin layer of
thrombus along the cusp wall resulted in valve in-
competence. These studies suggest that autog-
enously constructed venous valves may be a rea-
sonable substitute for native valves. However, it
must be cautioned that some of these valves appear
more prone to thrombosis and less responsive in a
hemodynamic sense than is a native valve.

An off-the-shelf valve for use in transplantation
would greatly facilitate the surgical process. At-
tempts to provide such a valve have been investi-
gated (Table II). Transplantation of a valve contain-
ing vein from one dog as a fresh allograft to another
while ignoring rejection issues resulted in failure.*”
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Table Il. Experimental venous valves as substitutes for an autogenous valve

Overall
Trans- Overall compe-  Systemic
Refer-  Donor plant patency tence antico- Pressure
Material ence material site n (%) Follow-up (%) agulation tested to
Autograft
E-M* type 23 SFV SFV 6 100 1-112 days 100 0 250 cm/H,0
valve
E-M* type 20 EJV SFV 7 100 6-88 weeks 90 0 —
valve
Modified 24 EJV SFV 6 100 1 week 33 0 300 mmHg
E-M* type
valve
24 EJV SFV 3 100 7-13 days 100 Chronic 300 mmHg
heparin
Allograft
Fresh 17 SFV SFV 14 7 4 weeks 0 Heparin —
24 hours
Glutaraldehyde 25 SFV SFV 10 80 7 weeks 25 dAVF' —
preserved
Cryopreserved 29 SFV SFV 4 50 3 weeks* 50 dAVF —
SFV SFV 4 100 3 weeks* 100 dAVF —
Heterograft
Glutaraldehyde 26 Umbilical vein  Jugular 10 0 3 days 0 Coumadin  —
vein
Mandril fitted
Synthetic
Mandril fitted 26 Liquid Jugular 10 0 8 days 0 Coumadin 120 mmHg
pellethane vein
Manufactured 27 Platinum or SFV 3 100 B months 100 0 100 mmHg
pyrite-carbon
covered
titanium
28 Platinum or SFV 3 0 3-24 months 0 0 100 mmHg
pyrite-carbon
covered
titanium

SFV, superficial femoral vein; EJV, external jugular vein; dAVF, distal arteriovenous fistula.

*Eiseman-Malette.*®
TAdjuvant continuously functioning dAVF.
*Post dAVF ligation.

Glutaraldehyde preserved allografts even when
supported by a continually functioning dAVF but
became incompetent in short order.?® The umbilical
vein can be frozen, cleaned, and then fitted over an
aluminum mandrel and fixed with glutaraldehyde
to sculpture it into a bicuspid valve.?® All 10 im-
plants failed within 3 days. The same aluminum rod
design was used to fashion liquid pellethane into a
venous valve. All implanted valves clotted in 8
days.?® Platinum or pyrite carbon-covered titanium
center-hinged bileaflet valves have been implanted
into the femoral location of three dogs.?’ The pa-
tency and competence of these valves appeared to
be good in early follow-up.?” Two-year results,
however, demonstrated the valves to be rendered
nonfunctional by extensive neointimal hyperpla-

sia.?® The most recent studies have concentrated
again on allografts but preserved by a more gentle
process. Dog erythrocyte antigen (DEA) matched
cryopreserved venous valves have been trans-
planted into canine models with lower limb venous
insufficiency. Supported by a dAVF for 3-6 weeks,
the transplants have remained patent and compe-
tent for [3 weeks following dAVF ligation.?° Lower
limb venous hemodynamics were improved similar
to that observed after implantation of an Eiseman/
Malette type valve. No long-term studies are avail-
able for this valve. Even though the cryopreserved
allograft venous valve has shown some early prom-
ise, as yet, all other off-the-shelf prototypes either
preserved allograft or synthetic have not proven to
be a viable substitute for a native venous valve.
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DISCUSSION

The optimal animal model for the study of chronic
venous disease would, of course, exactly mimic the
human condition. The animal would have a natural
propensity for venous thrombosis or primary ve-
nous disease which would translate into obstruc-
tion or insufficiency in a delayed but timely fashion.
A close similarity in the animal’s clotting cascade
and platelet interactions to that of the human
would simplify the study of surgical treatment and
adjuvant postoperative requirements. The animal
would have a lower extremity that closely re-
sembles the human with a functional calf muscu-
lature. Walking upright would be beneficial such
that the sequelae of the disease could be observed
over time. Finally, the animal would be sufficiently
tall (when standing) to allow hemodynamic study
and sufficiently large to allow surgical interven-
tions. This ideal model does not exist.

One of the controversial areas of any animal re-
search involving vascular conduits (bypass grafts,
valve substitutes, etc.) is the coagulation, platelet,
and hematologic differences within mammalian
species. This is an area largely ignored in previous
animal studies of chronic venous disease. There is
information available, however, and one excellent
review considers a majority of these variables for
most species amenable to surgical interventions
from the rabbit to the nonhuman primate.° In se-
lect areas, one or another species has coagulation
and other hematologic parameters similar to man
and could be selected for study based on this knowl-
edge. Certainly, if one is utilizing the often studied
dog model, normalization of platelet reactivity with
the use of antiplatelet agents would be reasonable3!
and has been recognized as important by many in-
vestigators. As the study of valve substitutes using
synthetics or processed allografts becomes more ac-
tive, the study of nonhuman primates may become
imperative to address venous coagulation concerns.
A nonlethal method of testing these materials in
this high-cost model has been reported and should
be considered.®? As our ability to modify the coagu-
lation systems of animals becomes more refined,
less traumatic models of acute deep venous throm-
bosis®>®> may create animals with chronic disease.
This serendipitous event may provide a more real-
istic model with which to study the sequelae and
surgical treatment of chronic venous disease. A
more in-depth discussion of this topic is beyond the
scope of the current manuscript but certainly any
future research in which thrombosis is such a cru-
cial event must address these concerns.

No current animal model mimics man’s ability to
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walk upright nor possess the human calf muscle
pump so important in human venous hemodynam-
ics. Many animals, however, are sufficiently large to
approach surgically and some sufficiently tall to al-
low hemodynamic testing and specific surgeries
such as valve transplantation. It was a learning ex-
perience to find that a greyhound could be used as
a hemodynamic model of venous insufficiency
while the shorter statured mongrel was not appro-
priate since intravenous pressure changes were not
sufficiently different to separate a normal from an
abnormal limb. Certainly, nonhuman primates do
more closely resemble man in some aspect but may
not be appropriate models from a practical stand-
point. The cost of purchase and maintenance must
be considered as must the ease of surgical and an-
esthetic care. Obviously, these factors have cur-
rently made the dog the primary model for the
study of venous surgery. It may be that the throm-
bus-prone canine may be the optimal model for
most research but when specific cardiovascular, co-
agulation or hematologic functions become of pri-
mary concern then other animals including nonhu-
man primates may be more appropriate.

The availability of chronic lower extremity ve-
nous disease models has allowed some in-depth
evaluation of surgical bypass procedures in the
acute setting as enumerated in the body of this
work. However, little research yet exists on the ba-
sic pathophysiology of chronic venous occlusive
disease of the lower extremity. Evaluation of cur-
rent models could provide hemodynamic informa-
tion vital to the manufacture of more precise clini-
cal diagnostic tools. Our lack of ability to precisely
characterize and define this disease has been a ma-
jor clinical obstacle to improved treatment. The
long-term study of venovenous bypass grafts espe-
cially with hemodynamic correlation is still lacking.
This is especially true of synthetic grafts, conduits
prone to thrombosis in the venous system, yet pos-
sibly the only graft of sufficient diameter to correct
the hemodynamic consequences of significant clini-
cal venous occlusive disease.’® Animal models are
particularly well suited for studying such conduits,
modifications to them (e.g., endothelial seeding®* +
genetic engineering or graft coatings with agents
such as thrombolytics or heparin), and the study of
any potential new materials (e.g., stents,® specific
polymers). Adjuvants to surgery can also be evalu-
ated in appropriately chosen animal models (e.g.,
low molecular weight heparin, low dose warfarin).
A more in-depth study into the proper size and time
to closure of the often useful dAVF is fruitful
ground for animal investigation. One may also ex-
plore the actual need for bypass grafting in view of
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the possibility of enhanced collateral size (e.g., an
isolated dAVF,*? drugs to enhance collateral dilata-
tion [nitric oxide®®]), or new collateral growth if
veins mimic the response of arteries (vascular en-
dothelial derived growth factor®”).

Realizing that animal studies of chronic venous
insufficiency have set the framework for clinical in-
vestigations and have confirmed several clinical im-
pressions, still much remains a mystery and is ame-
nable to animal investigation. A basic understand-
ing of the underlying pathophysiology and
appropriate diagnostic tools for it's evaluation are
lacking in the clinical arena and can be studied in
appropriate animal models. The proper location of
competent valves in the lower extremity (SFV to
tibial) as well as the need for more than one valve
for the correction of chronic venous insufficiency
requires study. Evaluation of the optimal method to
ensure long-term valve function is a much needed
area of controlled investigation. The optimal size
and time to closure for an adjuvant dAVF can be
more precisely determined. Other adjunctive mea-
sures of potentially more benefit (e.g., low molecu-
lar weight heparin) require experimental consider-
ation. Is external support of valves useful in the
long term or is it detrimental due to local scarring?
The area of valve substitutes is a field conducive to
and requiring animal investigation (e.g., cryopre-
served valves, histocompatible fresh allografts, syn-
thetics + coatings). These are but a few of the areas
concerning chronic venous insufficiency still await-
ing scientific study.

The area of animal investigation most ignored
but possibly of prime importance is the study of the
end-organ response to chronic venous disease. The
majority of clinical problems associated with deep
venous disease are manifested ultimately in the tis-
sues around the ankle. Edema, skin dermatitis, and
ulceration are three obvious sequelae. Several hy-
pothesis have been proposed to explain the events
leading to these sequelae based upon observations
of the microvascular in humans.®®** However, to
confirm these hypothesis, research must be per-
formed in an intact living animal where control of
multiple variables is possible. The complex interac-
tions that must take place to result in the final
pathologic condition can be observed in no other
manner. There are models available for the short-
and long-term study of at least some aspects of the
end-organ response to chronic venous occlusive
disease.*?**® Short-term studies of venous insuffi-
ciency could be conducted in the anesthetized up-
right dog.*®° An animal model of long-term ve-
nous insufficiency with obvious clinical sequelae in
the lower extremity is presently elusive. Such stud-
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ies are basic to our understanding of the impact of
venous disease on the lower leg and to allow some
method of formulating potential treatments to
modify it. We need to know the histological and
functional effect of this disease on large to small
arterioles, venules, capillaries, lymphatics, skin,
muscle, and subcutaneous tissue. Does chronic ve-
nous disease eventually lead to lymphatic destruc-
tion and little chance of permanent cure? What im-
pact does chronic venous disease have on blood-
born products entering the limb (e.g., white cells,
platelets, macromolecules) and how is the intersti-
tial fluid and the matrix in which it lies altered?
What effect do different drugs have on these adap-
tations to the disease state (e.g., pentoxyfilline*’)?
What effect does surgical treatment have on the
end-organ at various stages of the disease? Would
earlier intervention prevent a progression of the
disease process to a state of no return?

This review provides a historical perspective of
the animal models available for the study of lower
limb chronic venous disease. Previous studies using
these models have directed and continued to direct
the surgical care of this disorder. However, most
aspects of chronic venous disease have not been
studied by the scientific method and it appears that
animal models are often indispensable to these in-
vestigations. It is hoped that bright young minds
will choose to address some of the very difficult
questions that remain concerning a very old yet
very misunderstood disorder.

REFERENCES

1. Stallworth JM, Najib A, Kletke RR, Ramirez A. Phlegmasia
cerulea dolens: An experimental study. Ann Surg 1967;165:
860-868.

2. Bernhard VM, Gelford ET, Corhran GA, Schmahl TM. Iso-
lated arteriovenous limb perfusion in experimental iliofem-
oral venous thrombosis. Curr Topics Surg Res 1970;2:503-
510.

3. Hobson RW, Howard EW, Wright CB, Collins GJ, Rich NM.
Hemodynamics of canine femoral venous ligation: Signifi-
cance in combined arterial and venous injuries. Surgery
1973;74:824-829.

4. Wright CB, Swan KG. Hemodynamics of venous repair in
the canine hind limb. J Thorac Cardiovasc Surg 1973;65:
195-199.

5. Wright CB, Swan KG. Hemodynamics of venous occlusion
in the canine hindlimb. Surgery 1973;73:141-146.

6. Harris J. Cross leg venous graft for the relief of unilateral
lower limb venous obstruction. Surg Gynecol Obstet
1965;1232-1236.

7. Dart CH, Johnson G, Peters RM, Wamack NA. Hemody-
namic effects of femoral venous occlusion before and after
an acute arteriovenous fistula. Ann Surg 1966;164:190-196.

8. Lalka SG, Malone JM, Cosentino C, Reinert RL, Bernhard
VM. Canine model for surgical correction of chronic venous
hypertension. J Surg Res 1988;44:359-370.



494  Dalsing et al.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Lalka SG, Cosentino C, Malone JM, Reinert RL, Bernhard
VM. Hemodynamics of revascularization for iliofemoral ve-
nous occlusion: A short-term canine model. J Vasc Surg
1988;8:592-599.

Lalka SG, Unthank JL, Lash JM, McGue JG, Cikrit DF, Saw-
chuk AP, Dalsing MC. Hemodynamic effects of varied graft
diameters in the venous system. Surgery 1991;110:73-79.
Lalka SG, Unthank JL, McGue JG, Cikrit DF, Sawchuk AP,
Dalsing MC. Arteriovenous fistulas as adjuncts to venous
bypass grafts. J Invest Surg 1991;4:125-136.

Sawchuk AP, Dalsing MC, Emerick SC, Waller BF, Reilly
MK, Broadie TA. A temporary distal arteriovenous fistula
improves venous hemodynamics in a model of venous oc-
clusion. Surgery 1987;102:256-262.

Jessup G, Lane RJ. Repair of incompetent venous valves: A
new technique. J Vasc Surg 1988;8:569-575.

Van Bemmelen SP, van Papendrecht AAH, Hodde KC, et al.
A study of valve incompetence that developed in an experi-
mental model of venous hypertension. Arch Surg 1986;121:
1048-1052.

Waddell WG, Prudhomme P, Ewing JB, et al. Venous valve
transplantation in postphlebitic and post-thrombotic veins.
Arch Surg 1967;94:826-834.

Cerino M, McGraw JY, Luke JC. Autogenous vein graft re-
placement of thrombosed deep veins. Experimental ap-
proach to the treatment of the postphlebitic syndrome. Surg
1964;55:123-134.

McLachlin AD, Carroll SE, Meads GE, et al. Valve replace-
ment in the recanalized incompetent superficial femoral
vein in dogs. Ann Surg 1965;162:446-452.

Lalka SG, Unthank JL, Dalsing MC, Cikrit DF, Sawchuk AP.
Venous hemodynamics in a chronic venous valvular insuf-
ficiency model. Arch Surg 1990;125:1579-1583.

Dalsing MC, Zukowski AJ, Unthank JL, Lalka SG, Sawchuk
AP, Cikrit DF. Details of a canine venous insufficiency
model. J Invest Surg 1994;7:85-93.

Dalsing MC, Lalka SG, Unthank JL, Grieshop RJ, Nixon C,
Davis T. Venous valvular insufficiency: Influence of a single
venous valve (native and experimental). J Vasc Surg 1991;
14:576-587.

Dalsing MC, Lalka SG, Zukowski AJ, Unthank JL, Sawchuk
AP, Cikrit DF. Valve transplantation to the canine popliteal
vein: The utility of a distal arteriovenous fistula and the
hemodynamic result of a single functional valve. J Vasc Surg
1994;20:736-743.

Eiseman B, Malette W. An operative technique for the con-
struction of venous valves. Surg Gynecol Obstet 1953;97:
731-734.

Wilson NM, Rutt DL, Browse NL. In situ venous valve con-
struction. Br J Surg 1991;78:595-600.

Rosenbloom MS, Schuler JJ, Bishara RA, Ronan SG, Flani-
gan DP. Early experimental experience with a surgically cre-
ated, totally autogenous venous valve: A preliminary report.
J Vasc Surg 1988;7:642-646.

Kaya M, Grogan JB, Lentz D, Tew W, Raju S. Glutaralde-
hyde-preserved venous valve transplantation in the dog. J
Surg Res 1988;45:294-297.

Hill R, Schmidt S, Evancho M, Hunter T, Hillegass D, Sharp
W. Development of a prosthetic venous valve. J Biomed
Mater Res 1985;19:827-832.

Taheri SA, Rigan D, Wels P, Mentzer R, Shores RM. Experi-
mental prosthetic vein valve. Am J Surg 1988;156:111-114.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Annals of Vascular Surgery

Taheri SA, Schultz RO. Experimental prosthetic vein valve.
Long-term results. Aniology 1995;46:299-303.

Burkhart HM, Fath SW, Dalsing MC, et al. Experimental
repair of venous valvular insufficiency using a cryopreserved
venous valve allograft aided by a distal arteriovenous fistula.
J Vasc Surg 1997;26:817-822.

Didisheim P. Hematologic differences among certain mam-
malian. In Herring M, Glover JL, eds. Endothelial Seeding in
Vascular Surgery. Orlando, FL: Grune & Stratton, 1987, pp
7-16.

Kaplan S, Marcoe KF, Sauvage LR, et al. The effect of pre-
determined thrombotic potential of the recipient on small-
caliber graft performance. J Vasc Surg 1986;3:313-320.
Shoenfeld NA, Yeager A, Connolly R, et al. A new primate
model for the study of intravenous thrombotic potential and
it’s modification. J Vasc Surg 1988;8:49-54.

Wakefield TW, Wrobleski SK, Sarpa MS, Talor FB, Esmon
CT, Cheng A, Greenfield LJ. Deep venous thrombosis in the
baboon: An experimental model. J Vasc Surg 1991;14:588-
598.

Menconi MJ, Wheeler HB, Rohrer MJ, et al. Experimental
femoral vein reconstruction with expanded polytetrafluor-
ethylene grafts seeded with endothelial cells. Cardiovasc
Surg 1993;1:362-368.

Parsson H, Norgren L, lvancev K, et al. Thrombogenicity of
metallic vascular “stents” in arteries and veins—An experi-
mental study in pigs. Euro J Vasc Surg 1990;4:617-623.
Bowman AJ, Chen CP, Ford GA. Nitric oxide mediated
venodilator effects of nebivolol. Br J Clin Pharmacol 1994;
38:199-204.

Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S,
Ferrara N, Symes JF, Isner JM. Site-specific therapeutic an-
giogenesis after systemic administration of vascular endo-
thelial growth factor. J Vasc Surg 1995;21:314-324.
Browse NL, Burnand KG. The cause of venous ulcerations.
Lancet 1982;2:243-245.

Coleridge-Smith PD, Thomas P, Scurr JH, Dormandy JA.
Causes of venous ulceration: A new hypothesis. Br Med J
1988;296:1726-1727.

Michael CC. Microvascular permeability, ‘“‘venous’ stasis
and edema. Int Angiol 1989;8:9-13.

Falongi V, Eaglstein WH. The “‘trap” hypothesis of venous
ulceration. Lancet 1993;341:1006-1007.

Bell DR, Mullins RJ: Effects of increased venous pressure on
albumin- and IgG-excluded volumes in muscle. Am J Phys-
iol 1982;242:H1044-H1049.

Renkin EM, Joyner WL, Sloop CH, Watson PD. Influence of
venous pressure on plasma-lymph transport in the dog’s
paw: Connective and dissipative mechanisms. Microvasc Res
1977;14:191-204.

Burnand KG, Clemenson G, Whimster |, Gaunt J, Browse
NL. The effect of sustained venous hypertension on the skin
capillaries of the canine hind limb. Br J Surg 1982;69:41-44.
Leach RD. Venous ulceration, fibrinogen and fibrinolysis.
Ann R Coll Surg Engl 1984;66:258-263.

Bryla P, Piotrowicz W, Galkowska H, Olszewski WL. Effect of
acute venous hypertension on erythrocyte, leukocyte, and
plasma protein extravasation in the dog hindlimb. Lymphol-
ogy 1989;22:67-75.

Colgan MP, Moore DJ, Shanik DG. New approaches in the
medical management of venous ulceration. Angiology 1993;
44:138-142.



