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Abstract. Let {¢;};°, be an increasing nonconstant sequence of positive real numbers. Under
certain conditions on this sequence we prove the following inequality
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where n,m € N and r is a positive number, a,! denotes [, a;. The upper bound is the best possible.
This inequality generalizes the Martins’ inequality. A special case of the above inequality solves an open
problem by F. Qi in Generalization of H. Alzer’s Inequality, J. Math. Anal. Appl. 240 (1999), 294-297.
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1. Introduction

It is well-known that the following inequality

n+1 ( Z /,H]i >1 <+\1/(7n;'r1—), (L.1)

holds for » >0 and n€ N. We call the left-hand side of this inequality Alzer’s
inequality [1], and the right-hand side Martins’s inequality [5]. Alzer’s inequality
has invoked the interest of several mathematicians, we refer the reader to [3, 6, 11,
13] and the references therein. Recently, Qi and Debnath [10] proved: Let n,me N
and {a;};°, be an increasing sequence of positive real numbers satisfying

(k + 2)alr<+2 - (k + l)alchrl S (ak+2)r
(k+ 1)aj | — kay, k41

(1.2)
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for a given positive real number r and k€ N. Then
., 1 a 1/r
a << (/m) ¥y af ) . (13)
nem N\ (1/(n+m)) 371" af

The lower bound of (1.3) is the best possible.
In [9], [12], [14], [15], Qi and others proved the following inequalities:

k41 n+k 1/n n+m+k ~\ 1/(n+m) k
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where n,m €N and k is a nonnegative integer.
In [8, 10], Qi proved: Let n and m be natural numbers, k a nonnegative integer.

Then

n+k n+k 1 n+m+k 1/r

T —— i 1.5
n+m-+k ( Z;I /n—l—m4 l) ’ (1.5)

where r is any given positive real number. The lower bound is the best possible.
An open problem in [7] and [8] asked for the validity of the following inequal-

ity:
n+k n+m+k 1/r n A
( / ) < (n+ k) /k! 7 (16)
=kt n+mz Sy " (n+m+ k) /k!

where r >0, n,meN, ke Z".
The purpose of this paper is to verify and generalize the above inequality (1.6),
that is

Theorem 1. Let {a;}:", be an increasing nonconstant sequence of positive real
numbers satisfying

(1) for any positive integer £ > 1,
aq a1

— > L 1.7
apt1 ay ( )

(2) for any positive integer £ > 1,

() > &)

Then, for any natural numbers n and m, we have

n+m 1/r o
. < —_ 1.9
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where ris a positive number, n,m€ N, and a,! denotes [[;_, a;. The upper bound
is the best possible.

Notice that if a positive sequence {a;} -, satisfies inequality (1.7), then we call
it a logarithmically concave sequence. The proof of Theorem 1 is motivated by [5].
As a corollary of Theorem 1, we have:
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Corollary 1. Let a be a positive real number, b a nonnegative real number, k a
nonnegative integer, and m,n € N. Then, for any real number r > 0, we have

| ntk | itk 1/r " HZ’:“‘ (ai + b)
(— > (ai+ b)’/ > (ai+ b)r> < s . (1.10)
n n

& n+m .~ +m n+m+tk, .
i=k+1 i=k+1 Vo (ai+b)

By letting a = 1 and b = 0 in (1.10), we recover inequality (1.6).

2. Lemmas
To prove our main results, the following lemmas are necessary.

Lemma 1. For any positive integers { and n such that 2 < ¢ < n, let {a;};°, be
an increasing nonconstant sequence of positive real numbers satisfying inequality
(1.8), then we have

ay Ay
<
1/(e-1) = 1/(n—1)"
(ar_1!) /(e=1) (ap1)) /(n=1)

(2.1)

Proof. 1t suffices to show

ay An+1
< . 22
(an_l!)l/(nfl) (an!)l/n ( )

The above expression is equivalent to

Ap+1 > (an!)l/n
a, (an_lg)l/(n*l)’

(2.3)

which is further equivalent to

Ap1 " Ay
> — 2.4
( a > (@, )"/ 0D 24)

Now we prove (2.4) by induction. For n = 2, inequality (2.4) follows from
inequality (1.8) directly. Suppose inequality (2.4) holds for n = m. Then

Am+1 " am
> dm 2.5
< am ) (am71|)1/(m—1) ( )

m(m—1)
Am+1 1
— "> — 2.6
( am ) /am ap! (2:6)

By inequality (1.8), we have

m+1 m
Am4-2 * S A1 (2 7)
Am+1 - [ ’ .
o m(m+1) - A1 m(m—1) i1 m (2 8)
Am+1 g am am ' )

is equivalent to

which implies
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Therefore, from inequality (2.6), we obtain

(am+2/‘1$+l>m(m+l) > (aerl/am)m(mil) > (2.9)
iy ay a!
Dividing by a,,+ on both sides of inequality (2.9) yields
m(m+1) 1
(am+2/a$ill) > ? (210>
am+1 Ap+1-
that is
m+1
< Zm+2 ) > am+11/m ’ (2. 1 1)
m+1 (am!)

which completes the induction. O

Lemma 2. For any positive integers £ and n such that 1 < { < n, let {a;};-, be
an increasing nonconstant sequence of positive real numbers satisfying inequal-
ities (1.7) and (1.8), then we have

ay an

< . 2.12
((l[!)l/é (a”!>1/}’l ( )
Proof. Since 1 < ¢ < n, by inequality (1.7), we have

R (2.13)

ag+1 An+1

and, from Lemma 1, we have
ay a4 Ay api1

. < . . 2.14
acet (a)"" T aner (a,)'" @14
The proof is complete. ]

Lemma 3 (Konig’s inequality [2, p. 149]). Ler {a;};_, and {b;}\_, be decreas-
ing nonnegative n-tuples such that

k k
1o < [[an 1<k<n, (2.15)
i=1 i=1

then, for r >0, we have
k

k
di< >, 1<k<n (2.16)
i=1 j

i=1
Remark 1. This is a well-known result due to Konig used to give a proof of
Weyl’s inequality (cf. Corollary 1.b.8 of [4, p. 24]).

By a close inspection of the original proof of Konig’s inequality in [4], it
follows that the equality in (2.16) holds if and only if @; = b, for all 1 < i < n.
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3. Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. Inequality (1.9) holds for n =1 by the power mean
inequality and its case of equality. For n > 2, inequality (1.9) is equivalent to

1 n+1 1/r n an! ;
- < Vo 1
(”121: /’H'l ) V! G

which is equivalent to

Set
bjn+1 = Ojp+2 =+ = Ojntn = M7 0 <] < (33)
n+l/an+1!
_ = _ G <j< 1 3.4
Cin1)+1 = Cint1)+2 = " = Cj(nt1)+(n+1) = 7, Pk O0<jsn—1 (34)
!
Direct calculation yields
n(n+1) n n
Z bzr = bjrn+k
i=1 j=0 k=1
=n - < an+17j )r
n+1 r
ai
=n <+|7 (3.5)

and

S —weny (o) (36)

i=1 i=1

Since {a;};°, is increasing, the sequences {b; } "1 and {cl} 1 are decreas-
ing. Therefore, by Lemma 3, to obtain inequality (3 2), it is sufﬁ01ent to prove
inequality

bl = ! (3.7)

forl<m<nmn+1).
It is easy to see that b,,(,+1)! = cy(us1)! = 1. Thus, inequality (3.7) is equivalent
to

n(n+1) n(n+1

)
IT v < H ci (3.8)

i=m 1=

for l <m<nn+1).
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For 0</<n and 0<j<n-—1, we have 1<(n—On+(n—j) =
(n—=0)n+1)+ € —j)<n(n+1). Then

n(n+1) ‘+1 N
a ay.
H bi = W—{Wil)7 (3.9)
i=(n—0)n+(n—j) (@npr!) ™
n(n+1) (ag)"_“j”(ag 1')rz+1
o = s (3.10)
i=(n—0)(n+ 1)+ ((—j) (ap!)
n(n+1) n(n+1)
EED R
i=(n—0)(n+1)+(0—)) i=(n—0—1)(n+1)+(n+1-+0—))
j—l+1 | n+1
a day.

(@)™

where ag = 1.
The last term in (3.11) is bigger than the right term in (3.10), so, without loss of
generality, we can assume j</{. Therefore, from formulae (3.9) and (3.10),
inequality (3.8) is reduced to
() @) (@) T _ (@)™ )

¢ ~ ) j+1 9

(ant) (@) (an) ™

(3.12)

that is

(aHl)J (an+l')"+l < (a,,+1)[(a,,!)”

(ag)(ary ! N (a,,!)Hn+l

this is further equivalent to

: (3.13)

, it
(ars1) ™ (@n )™ < (ans1)"
=

j—(41 il | £
agl(ag)”"(a,)) ™ (ay!)r

Using inequality (2.12) and inequality (1.7) yields

(3.14)

1
' n+l
(an+l )] < apt1 < a4 (3_15)
(an!)n ay ay

for ¢ < n. Thus, in order to prove (3.14), it suffices to prove the following

inequality
(aé+l )j+1 ae+1 -1 < (an+l )é (3 16)
(a[!> (aé>j—é+1 ay X R .
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which is equivalent to

ar+1 < An+1 . (3.17)

1= 1
(ast)’ (an!)"
This follows from inequality (2.1). Inequality (1.9) follows.
Note that, since the sequence {a;}, . is nonconstant, inequality (1.9) is strict.
In fact, considering Remark 1, in our case we only need to verify by (,41) < Cp(nt1)-
It is easy to verify by,.1) < Cu(n+1) Which is equivalent to (@)™ < (ape )Y,
By the L’Hospital rule, an easy calculation produces

1< ] ndm 1/r al
li Z r r = 3.18
im (30 /) e (3.13)
thus, the upper bound is the best possible. The proof is complete. ]

Proof of Corollary 1. Tt suffices to show the sequence {a;};°, =
{a(k +1i) + b};2, satisfies the inequalities (1.7) and (1.8) for any nonnegative
integer k. It is easy to show

all+k+1)+b - a(l +k)+b
all+k)+b ~all+k—1)+b
for any positive integer ¢ > 1 and nonnegative integer k. Inequality (1.7) holds for
the sequence {a;};~, = {a(k +1i) + b}2,.
Now consider the function

(3.19)

f(x) :xln(l + ) x>0 (3.20)

xX+c

with ¢ > 0 a constant. Then

N 1 B X
f(x)_ln<1—|—x+c> GroGterD) (3.21)

(2c+ Dx+2c(c+1)
(x+c)(x+c+1)>°

Thus f’(x) is decreasing. From lim,_,« f’(x) = 0, we deduce f’(x) >0 and f(x) is
increasing, and the function

f'x) =— (3.22)

1 X
1+—F 23
(+x+k—|—b/a> (323)
is increasing for x > 0. Hence
a(l+k+1)+b ‘> al+k)+b \' (3.24)
a(l+k)+b “\all+k—1)+b '

holds for any positive integer £>1 and nonnegative integer k. Inequality (1.8)
holds for the sequence {a;};-, = {a(k + i) + b}2,.
Corollary 1 follows. The proof is complete. O
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Remark 2. The main result in [10], inequality (1.2) and (1.3) of this paper, can
be further generalized to the following form, and we will leave the proof to the
reader since it is similar to the one in [10].

Theorem 2. Let n,me N, A, = Y"1 | \i, \i >0 and {a;};°, be an increasing
sequence of positive real numbers satisfying:

Agp2ari2 — Me1ars > N2 Git2

= 3.25
Aiprargr — Aray Akl Gig ( )

for any given positive real number r and k€N, then the following inequality
holds

1 n
a, < A_nzi=1)\iai

~ .
1 ntm y
an+m An+m Zl:l Alal

(3.26)

The lower bound of (3.26) is the best possible.

Remark 3. Recently, some new inequalities for the ratios of the mean values of
functions were established in [16].
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