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Summary. Epstein-Barr virus (EBV) causes infectious mononucleosis in adoles-
cents and is associated with malignant B lymphocyte proliferation in AIDS
patients, patients undergoing immune suppression for organ transplantation,
and SCID mice. In vitro, EBV transformed, latently infected lymphoblastoid
B cell lines (LCLs) contain EBV episomes and express nine virus encoded
proteins. Six are nuclear proteins (EBNAs) and three are the integral membrane
proteins, LMP1, LMP2A, and LMP2B. To determine if LM P2 was essential for
in vivo growth, SCID mice were injected with LCLs containing wild-type EBV
(LMP27) or with LCLs transformed with EBV containing mutations in either
LMP2A or LMP2B (LMP27). SCID mice injected with the LMP2* or LMP2~
LCLs were monitored for tumor development, length of time to tumor develop-
ment, and phenotypic characterization of the resulting tumors. No difference was
observed in any of the above parameters between LMP2* and LMP2~ LCLs
demonstrating that LMP2 is not essential for the in vivo growth of EBV
transformed B lymphocytes in SCID mice.

Introduction

Epstein-Barr virus (EBV) is a human herpesvirus which latently infects and
transforms human primary B lymphocytes in vitro and, following primary
infection in vivo, EBV is maintained as a latent infection in B cells (for review see
[17,30]). EBV is associated with several human cancers including Burkitt’s
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lymphoma, nasopharyngeal carcinoma, and Hodgkin’s disease in normal indi-
viduals (for review see [17, 30]). In immunocompromised patients, EBV is
associated with a variety of proliferative diseases including B cell lymphop-
roliferative disorders (LPDs), oral hairy leukoplakia (OHL), and smooth muscle
tumors (for review see [ 17, 30]).

In vitro, EBV transformed latently infected B lymphocytes (LCLs) express
nine viral encoded proteins from the episomally maintained viral genome: the
Epstein-Barr nuclear antigens (EBNAs) EBNA1, EBNA2, EBNALP, EBNA3A,
EBNA3B, and EBNA3C and the integral latent membrane proteins (LM Ps)
LMP1,LMP2A,and LMP2B (for review see [17,30]). EBNA1, LMP1, LMP2A,
and LMP2B are the only latently expressed proteins consistently detected in
EBYV proliferative disorders in vivo [3, 5, 7, 11, 12, 15, 35, 37, 46, 47, 51, 52].
Similarly, EBNA1 and LMP2A messages are the only EBV-specific messages
detected in PCR analysis of B lymphocytes from individuals harboring latent
EBYV infections [39, 49], thus implicating an important role for these gene
products in in vivo EBV infection and related disease.

EBV recombinant molecular genetic experiments have demonstrated that
neither LM P2A or LM P2Bis a mediator of the B lymphocyte growth transform-
ation that accompanies latent in vitro infection [23—-25]. However, analysis
of LCLs infected with LMP2 mutants has specified a role for LMP2A in
modulating EBV latency in EBV infected LCLs [29]. The LMP2A primary
amino acid sequence includes 119 amino acids at the amino terminus, twelve
hydrophobic domains of a least 16 amino acids, each of which traverses the
plasma membrane, and a 27 amino acid carboxyl terminal domain (Fig. 1, [ 18,
19, 45]). The 119 amino acid cytoplasmic amino terminal domain, unique to
LMP2A, is essential for the function of LMP2A. EBV'LMP2A* LCLs are
blocked in surface immunoglobulin (slg) stimulated calcium mobilization, and
lytic activation as compared to EBV*LMP2A~ LCLs [29]. Given that LMP2A
is detected in latently infected B cells in vivo, a possible role for LM P2A in the
growth of latently infected B cells in vivo can be argued.

B cell lymphomas develop in SCID mice following reconstitution with
peripheral blood lymphocytes (PBLs) from EBV negative donors with subse-
quent infection with EBV [6, 36], or by reconstitution with PBLs from EBV
seropositive individuals and by transfer and subsequent growth of LCLs in
SCID mice [6, 32-34, 36, 40, 44]. These tumors are of human B cell origin,
contain EBV genomes and express EBV latent genes, and express a similar
pattern of cell surface markers as that seen in LPDs in immunocompromised
individuals [40, 44]. The phenotype of these B cell tumors in SCID mice differs
from that seen when the same EBV transformed cells are grown in tissue culture
[13,40-42]. In particular, the B cell lineage activation antigens CD20 and CD23
are reduced in SCID tumors [13,40], and there is an increase in CD38 expression
[40] relative to the same LCLs grown in vitro. CD23 is expressed on mitogen
stimulated or EBV-infected B lymphocytes, but not on mature plasma cells
[48,50]. CD38 is found only on pre-B cells and plasma cells, but not on activated
B cells [1, 50]. Also associated with the SCID tumors is a large production of



In vivo growth of EBV transformed B cells 709

human Ig [13, 38] and a reduction in the expression of EBNA2 and LMP1
[40, 42]. Thus, there is a shift to a more differentiated plasma cell when EBV
infected lymphocytes are grown in, or isolated from, SCID mice relative to the
same infected B lymphocytes grown in vitro. In addition, previous studies have
shown EBNAZ2 is a critical determinant for tumor growth in SCID mice [9].
Thus, SCID mice represent a potentially useful model system for exploring the in
vivo growth characteristics of in vitro transformed B lymphocytes latently
infected with EBV containing mutations in LM P2.

In this report, three sets of specifically mutated EBV recombinants have been
used to evaluate the role of LMP2A and LMP2B in B cell growth following
transfer of LCLs into SCID mice. The mutations stop translation of LMP2A
after the 19th codon (19S) [23], after the 260th codon of LMP2A or the 141st
codon of LMP2B (260S) [24], or delete codons 120 to 260 of LM P2A or codons
1to 141 of LMP2B (ES) [25] (Fig. 1, 195, 260S, and ES). EBV with each of these
mutations is able to transform primary B lymphocytes in vitro and the trans-
formed B lymphocytes are indistinguishable in their growth in vitro from cells
transformed by wild-type EBV as measured by growth at low cell densities in
media supplemented with lower amounts of serum or when cells are grown in soft
agar [23—-25]. LCLs infected with each of the LM P2 mutations were not altered
in their in vivo growth properties in SCID mice when compared to LCLs infected
with wild-type EBV.

Results

To verify that LMP2A and LM P2B are expressed in B cell tumors which develop
in SCID mice following injection of EBV transformed LCLs, 3 x 10° wild-type
infected LCLs which had been maintained in vitro for 6 months were injected
into two SCID mice. Six weeks after injection, the mice were sacrificed and RNA
was prepared as described [8] and subjected to a multiprobe ribonuclease
protection assay as previously described [16, 40, 42]. The EBNA2, LMPI,
EBNAT1 and cellular ribosomal protein (rp) L32 riboprobes used for the protec-
tion assay have previously been described [40, 42]. The LMP2 riboprobe,
nucleotides 545—-706 [45], was designed to detect both the LMP2A and LMP2B
mRNAs and was made as previously described [42]. Transcripts for each of the
EBYV latent genes were readily detected in tumors prepared from each of the
injected SCID mice (Fig. 2).

To investigate if LMP2 may be a determinant of in vivo growth in SCID
mice, lytic replication was induced in LCLs infected with the 19S, 260S, and
wild-type EBV (Fig. 2, WT, 19S, 260S) by treatment with TPA and electropora-
tion with pSVNaeZ as previously described [23]. The plasmid pSVNaeZ
encodes the immediate-early transactivor Zta of lytic replication and induces
lytic phase in latently infected LCLs [10, 14, 23, 43]. B lymphocytes from two
separate donors were purified as previously described and infected with virus
from the induced LCLs [26]. Different donors were used for the establishment of
LCLs infected with the 19S or 260S LMP2 mutant viruses. Wild-type EBV
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Fig. 1. Schematic representation of the predicted structure of LMP2A (top of each panel)
and LMP2B (bottom of each panel) and the various mutants in the cell plasma membrane in
EBYV infected B cells. W T The wild—type LMP2A and LMP2B proteins are indicated. Sites
of insertion of the translation stop codons are indicated as well as the relevant amino acid
numbers. 19S Expected LMP2 protein products in 19S mutant infected LCLs [23]. 260S
Expected LMP2 truncation products in 260S mutant infected LCLs. Expression of the 260S
truncation product was previously confirmed and was altered in its subcellular location
when compared to wild-type infected LCLs as described in the text [24]. ES Expected LM P2
protein products in ES mutant infected LCLs. The deletion of the EBV genomic sequences
does not leave the LMP2A coding domain in frame. The LMP2A amino terminal truncation
product which may be expressed was not detected in ES infected LCLs [25]

infected LCLs from the same donors were derived in parallel. LCLs emerged 3 to
6 weeks after infection and were expanded. Ten different LCLs for each mutant
and appropriate donor matched wild-type infected LCLs were identified and
expanded. The presence or absence of the LM P2 mutation was confirmed by
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PCR [23, 24]. After establishment of mutant and wild-type LCLs in vitro (within
60 days post initial outgrowth), the LCLs were analyzed for their ability to
induce tumors in SCID mice. LCLs were washed once with sterile phosphate
buffered saline (PBS), resuspended in PBS, and 5 x 10° cells per LCL were
injected intraperitoneally into four-week-old male SCID mice. Recipient SCID
mice were maintained in micro-isolator cages in a sterile environment. Mice were
monitored daily for signs of LCL outgrowth and related illness (signs include
weight loss, inactivity, ruffled fur, abdominal swelling, and palpable abdominal
masses). When clinical symptoms became apparent, or when the mice were in
obvious distress, the animals were sacrificed and analyzed for signs of lympho-
proliferative disease, organ infiltration, and tumor formation.

Nine of ten independent 19S LM P2 mutant infected LCLs were capable of
initiating tumors in SCID mice at a rate that was indistinguishable from the nine
of ten wild-type control LCLs that also induced tumors (Table 1). Most animals
were sacrificed when illness and/or palpable tumors became apparent. In all
cases there were signs of lymphoproliferative disease and tumorigenesis, which
included visible tumor masses, organ infiltration, abdominal ascites, or subcu-
taneous tumors at the site of injection. Nine of ten independent 260S LM P2
mutant EBV infected LCLs were also found to efficiently induce lymphop-
roliferative disease and tumor formation following injection into SCID mice
with similar kinetics as 19S or the 19S wild-type control infected LCLs (compare
42.4 days with 45.4 days and 39.2 days, Table 1). The wild-type control LCLs
(Table 1, WTY) derived in parallel with the 260S LCLs had a somewhat shorter
mean number of days to tumor formation than the other LCLs (compare 27.9
days to 42.4 days, 45.4 days, and 39.2 days, Table 1). The SCID mice that showed
no clinical signs of LCL-related disease were sacrificed after 52 days and found
to have no internal signs of lymphoproliferative disease or tumorigenesis. The
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Table 1. Tumor development in SCID mice injected with 19S, 260S, and
control wild-type EBV infected LCLs

Virus? Mean number of days to tumor formation®
19S 39.2 (52, 30%, 28, 36, 33, 40, 46*, 48, 40)
WTe 45.4 (52, 52, 36, 52, 48*, 35, 52, 35, 47%)
260S 42.4 (40, 40, 52, 33*, 52,47, 47, 40, 31%)
WT¢ 27.9 (26, 23%, 33, 27, 26, 27, 24*, 34, 31)

* Mice which died before being sacrificed

*Wild-type and mutant infected LCLs were constructed with the
parental P3HR1 virus and are more fully described in [23, 24]

® 10 four week old male SCID mice were each injected with 5 x 10° cells
of 1 of 10 recently derived, independent EBV infected LCLs. Numbers in
parentheses are results for each mouse in the group which developed
tumors, reflecting days until overt signs of illness or, where indicated (*),
number of days until the animal died. One mouse from each group did not
develop a tumor

¢ Wild-type EBV infected LCLs derived in parallel from the same donor
as the 19S LCLs

4 Wild-type EBV infected LCLs derived in parallel from the same donor
as the 260S LCLs

absence of tumor development in 10% of the injected SCID mice is consistent
with the occurrence of breakthroughs which occur in approximately 10% of
SCID mice; these so-called leaky mice cannot be successfully reconstituted with
human cells [2]. To confirm that the resulting tumors arising from the mice
injected with LM P2 mutants contained the LM P2 mutation, PCR analysis was
performed on LCLs established in vitro from tumor samples. No reversion was
detected thus suggesting that the LM P2 mutations were maintained following in
vivo growth (data not shown).

To further investigate the growth properties of LCLs infected with LM P2
mutant EBV the following experiment was performed. Two ES LCLs (Fig. 1, ES)
and two wild-type LCLs which had been derived from the same donor cells and
maintained in vitro for 3 to 6 months were evaluated for tumor formation in
SCID mice following intraperitoneal injection. Four groups of four SCID mice
each were injected with 3 x 10° of each wild-type or mutant infected LCL.
Animals were monitored and sacrificed when illness and/or palpable tumors
became apparent. All four animals injected with the ES5 LCL developed tumors
within 33 days after injection with a mean of 29.5 days (Table 2). Three of four
animals injected with the ES4 LCL developed tumors with a mean of 76 days
(Table 2). Both wild-type LCLs caused tumors following injection. WT3 LCL,
similarly to the ES5 LCL, developed tumors within 33 days with a mean of 26
days (Table 2). In contrast, WT20 injected animals developed tumors within 76
days with a mean of 60.75 days (Table 2) similar to the rate seen with ES4 LCL.
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Table 2. Tumor development in SCID mice injected with ES and control
wild-type EBV infected LCLs

Virus? Mean number of days to tumor formation®
ES4¢ 76 (68%, 92, 68)

ES5 29.5 (28, 30%*, 33, 27)

WT3 26 (23%, 24, 24, 33)

WT20 60.75 (75%, 48%*, 76, 44)

* Mice which died before being sacrificed

*Wild-type and mutant infected LCLs were constructed with the
parental B95-8 virus and are more fully described in [25]. All LCLs were
derived in parallel from the infection of the same donor cells

4 four week old male SCID mice were each injected with 3 x 10° cells
of each LCL. Numbers in parentheses are results for each mouse in the
group which developed tumors, reflecting days until overt signs ofillness, or
where indicated (*), number of days until the animal died

¢ One mouse did not develop tumor

These results indicated that LCLs infected with EBV containing the ES mutation
in LMP2 caused tumor formation in SCID mice following injection in a similar
manner as observed with wild-type LCLs.

Previous observations had indicated that LCLs grown in vitro when injected
into SCID mice down modulate the expression of the B cell activation markers
CD20 and CD23 and upregulate the expression of the plasmacytoid marker
CD38[13, 40, 41]. Differences in the expression of CD23 and CD38 in LCLs or
in tumor cells were determined for ES4, ES5, WT3, and WT20. Tumor cells were
dispersed by collagenase treatment of minced tissue as previously described [6,
40]. Flow cytofluorometric (FCF) analysis on a FACScan following immunos-
taining with FITC conjugated anti-CD23 mAb (BU38, The Binding Site, Birmin-
gham, U.K.), and PE-conjugated anti-CD38 mAB (Becton Dickinson, Bedford,
MA) was performed on tumor cells and LCLs grown in vitro as previously
described [6, 40]. The presence of contaminating mouse cells was excluded by
staining tumor cells for HLA class 1 antigen with biotinylated anti-H-2K*
(Pharmingen, San Diego) followed by streptavidin-PerCP (Becton-Dickinson,
Bedford, MA). Representative plots from the FCF analysis are shown in Fig. 2
and Table 3 is a summary of the mean fluorescent intensities (MFI) for the
cells analyzed. As was previously described, CD23 expression decreased in
wild-type tumor cells when compared to the same LCL grown in vitro. There
was a reduction of the MFI from 714 to 199 for WT3 and 320 to 132 for WT20
(Table 3). There was no qualitative difference when the LM P2 mutant cells were
analyzed. Reduction of the MFI of 668 to 110 for ES4 and 998 to 227 for ES5 was
similar to that observed for the wild-type cells (Table 3). Also as previously
described, CD38 expression increased in wild-type tumor cells when compared
to the same LCL grown in vitro. Increase of MFI was from 131 to 631 for WT3
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Table 3. Mean fluorescence intensities for LCLs and tumor samples

Marker?®
Cell line CD23 CD38
WT3 714 134
WTS3 tumor 199 631
WT20 320 87
WT20 tumor 132 146
ES4 668 267
ES4 tumor 110 587
ES5 998 494
ESS5 tumor 227 760

*Expression of the B cell surface markers CD23 and CD38 were
examined by FCF analysis as previously described [6, 40]. In tumor
samples, the presence of contaminating mouse cells were excluded by
staining for HLA class I antigen

and 87 to 146 for WT20 (Table 3). The LM P2 mutant infected LCLs behaved
similarly. For ES4 there was an increase of the MFI for CD38 from 267 to 587
and for ES5 an increase from 494 to 760 was observed (Table 3). These data
indicate there was no differences in the differentiation in LM P2 mutant LCLs
injected into SCID mice when compared to wild-type LCLs.

Discussion

Previous studies demonstrated that LCLs infected with LM P2 mutants grew
equally well in vitro as wild-type infected LCLs as measured by growth at low
cell densities in media supplemented with lower amounts of serum or when cells
are grown in soft agar [23—25]. Analysis of LCLs infected with the LMP2
mutants has specified a role of LM P2A in maintaining EBV latency in vitro. The
119 amino acid cytoplasmic domain, unique to LMP2A, is essential for the
function of LMP2A. EBV + LMP2A + LCLs are blocked in slg mediated
calcium mobilization, tyrosine phosphorylation, and activation of lytic viral
replication as compared to EBV + LM P2A- LCLs. LM P2A functions as a nega-
tive regulator of the Src family PTK lyn, and the Syk PTK, while LMP2B may
regulate LM P2A function by modulating LM P2A function since it lacks the 119
amino acid cytoplasmic domain present in LM P2A. Truncation of LM P2A after
the fifth transmembrane domain results in diffuse plasma membrane localization
and an intermediate calcium phenotype when compared to EBV + LMP2A +
and EBV + LMP2A- LCLs confirming the importance of the multiple mem-
brane domains in the fully aggregated phenotype [21,25]. Our model of LM P2A
regulation of EBV latent infection hypothesizes that the LMP2A amino terminal
domains, when aggregated and complexed with the Syk and the Src family
PTKs, resembles crosslinked cell surface receptors in the plasma membrane of
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Fig. 3. Expression of the B cell markers CD23 and CD38 in LCLs and tumor cells for wild-
type (A) and ES infected (B) LCLs. Cells were prepared and subjected to FCF as described in
the text
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EBYV infected cells [22, 28]. This results in down modulation of the enzymatic
activities of the the Syk and Src family PTKs [27]. Other LM P2A associated
proteins not yet identified may be equally affected. In immunoprecipitation
studies, LM P2A associates with at least eight unidentified phosphoproteins of
varying molecular weights [4, 20, 21].

These observations and the identification of the LMP2A and EBNAI
mRNAs as the only EBV-specific mRNAs detected in normal individuals
harboring EBV latent infections [ 39, 497, argue for an important role for LM P2
in vivo. In addition, it was demonstrated in this study that the LM P2 genes are
expressed in SCID tumors following injection of wild-type infected LCLs. To
begin to test for a role of LMP2 in vivo, three different LM P2 mutants were
analyzed for in vivo growth in the SCID mouse model system of EBV LPD. The
first mutant, 19S, expresses LM P2B but does not express LM P2A as the result of
a termination codon inserted after LM P2A amino acid 19 [23]. Both LMP2A
and LMP2B are truncated in the 260S mutation, LM P2A after 260 amino acids
and LMP2B after 141 amino acids [24]. In the ES mutation, both LMP2A and
LMP2B are deleted resulting in the absence of both proteins or detectable
truncation products [25]. Using LCLs with each of the LM P2 mutations, it was
determined that neither LMP2A or LMP2B is a key determinant for tumor
growth in SCID mice as measured by days to tumor formation. In addition, it
was shown that the LMP2 mutant LCLs behaved in a similar fashion to
wild-type infected LCLs in regard to changes in expression of developmentally
regulated B cell surface markers CD23 and CD38.

The absence of an effect of the LM P2 mutations in the SCID mouse model
of EBV LPD is somewhat surprising. If LMP2 is important for maintaining
latency in vivo the ability of LCLs transformed by the LM P2 mutants may have
been expected to be severely hampered in their ability to form tumors in SCID
mice. This would be a result of a larger fraction of cells in the LM P2 mutant
infected cells undergoing lytic replication and thus susceptible to cell death
induced by lytic virus replication. In normal hosts, only the transcripts of the
LMP2A and EBNA1 mRNAs have been detected [39, 49] and the cells are
in a nonactivated state [31]. In the SCID mouse model of EBV induced LPD,
previous studies have shown that the tumors which arise consist of two distinct
populations [13, 40, 41]. One population in which only latent EBV trans-
cripts are found and which express levels of CD23 and CD38 (CD23™ CD38™)
similar to that when the same LCLs are grown in vitro [42]. In these same
CD23™ CD38™ cells, there is a reduction in the expression of the EBNAI,
EBNA2and LMP1 transcripts [42]. In the other population, there is a reduction
in the expression of CD23 (CCD23") and higher levels of CD38 (CD38") and
only lytic transcripts are detected [42]. Further, in this CD23"°CD38" popula-
tion, 87% of the cells were positive for gp350 mRNA expression by in situ
hybridization [42]. Since neither of these populations represents the pattern
of viral gene expression seen in normal latently infected human hosts, it may
not be surprising that no difference was detected between wild-type and
the LM P2 mutant infected LCLs in the SCID mouse model of EBV LPD.
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It is worth noting that SCID mice do not accurately mimic “normal” EBV
human hosts in several ways. First, there are no functional T cells present that are
capable of applying immune regulatory pressure on the latently infected LCLs,
which is likely to affect the pattern of latent gene expression and/or reactivation
of lytic infection. Second, SCID mice are out of necessity maintained in a patho-
gen-free environment, and are therefore unlikely to encounter typical B-cell
mitogens which might otherwise impact EBV gene expression or reactivation.
We have hypothesized from our in vitro studies that the major role of LMP2A in
latent EBV infection may be to prevent activation of lytic EBV replication by cell
surface mediated signal transduction [22, 28]. The likely importance of this
function is in preventing lytic replication in latently infected B lymphocytes as
they circulate in the peripheral blood, bone marrow, or lymphatic tissues where
they might encounter antigens, super-antigens, or other ligands which could
engage B cell receptors and could activate EBV lytic replication. Until better
models of EBV latent infection in which only EBNA1 and LM P2A are expressed,
it may be difficult to delineate the role of LM P2 in vivo using currently available
in vitro models of in vivo EBV latent infection.
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