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Abstract. In studies of the elliptic restricted three-body problem, the true anomaly of the motion of 
the primaries is often used as the independent variable. The equations of motion then show invariancy 
in form from the circular case. It is of interest whether other independent variables exist, such that the 
invariant form of the equations is maintained. It is found that true anomaly is the only such variable. 

In the elliptic restricted three-body problem, it is conventional to use true anomaly f 
as the independent variable in the equations of motion. For the classical or circular 
restricted problem, this variable is identical with the mean anomaly, l. Szebehely and 
Giacaglia (1964) have shown that use o f f  in the elliptic problem results in invariancy 
of the form of the equations of motion. 

In the circular problem, the equations of motion may be written: 

z" + 2iz' = gradz f2 (z). (1) 

Here z = x + iy defines position in the (uniformly) rotating coordinate system, where the 
following quantities are taken as unity for purposes of normalization: mean motion 
of the primaries, the sum of their masses, the semimajor axis of their orbit. Primes 
denote differentiation with respect to l. 

Then, 

f2 (z) = �89 (x 2 + y2) q 
1 - #  # 

+ �89 (1 - u) 
Y1 Y2 

z = (x #)2 + y2 r 2 (x + 1 /z)z + y2; r 1 - -  , -- _ _  

# is the mass of the smaller primary. 
Also, gradz- (~/Sx)+ i(~/~y). Separating Equation (1) into real and imaginary parts 

given the coupled equations of motion in x and y. 
Now consider the elliptic problem. According to Szebehely and Giacaglia, the 

equations of motion may be written: 

~" + 2i(' =gradr co ((), (2) 

where primes denote differentiation with respect to f. Here ~ = ~ + it1 defines position 
in a (nonuniformly) rotating system; ~ and q are pulsating coordinates, normalized 
with respect to r, the variable distance between primaries. Note that r - ( 1 - e  z) x 
(1 + e cos f ) -  ~ where e is eccentricity of the orbit of the primaries. The same three 
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quantities as in the circular case are taken as unity, and the potential function co(()is 
given by 

co(() = (1 + e cos f )  -~ f2 ((), (3) 

where f2(0 is formally equivalent to f2(z). Note that the primaries are fixed in this 
coordinate system, having locations (~, r/) = (#, 0) and ( 1 -  #, 0), respectively. 

It now is of interest whether a more general independent variable 0 exists such that 
the form of the equations of motion in the elliptic problem is still preserved. It will 
then still be possible to write the equations of motion in the form 

d2Q do 
~- 2 i -  = grado P (0), (4) 

dO 2 dO 

where P is a scalar function of the pulsating complex position 0, which is normalized 
with respect to r = r(O). It is not required that P (0) = 9 (0)f2 (0). 

Following Szebehely (1967) this problem will be studied. 
Consider a nonuniformly rotating coordinate system whose angular position, in 

inertial space, is defined by the independent variable 0. In inertial space, the equations 
of motion are written 

d 2 Z  _ t a l k2  Z -  Z 1 _ m2k2 Z - -  Z 2 , ( 5 )  

d l  2 R 3 R2 3 

where Z =  X+ iY, Ri= ( X -  Xj) 2 + ( Y -  yj)2 and (Xj, Yj) is the location of the jth 
primary. Introducing the rotating system, the equations of motion become 

__ Z - - Z l  k2 z - z 2  (d0~ 2 d20 d2z dO dz - k2ml m2 ~ z - iz 
d l  2 f- 2 dl dl R 3 R32 \dl,] dl  2 '  

(6) 

where z is the position in the rotating system, Z =  z e  ~~ 

Now let O=z/r and r=r(O). Transform from coordinates z, l to coordinates 0, 0: 

d0~ 2 (d20 d__0) (d2r 
at]  k , ~  b 2i + 0 k, di2 

dE0 
x t" 

(d0~2~ ( d o )  
r r \ d l  ] ,]+ - ~ + i o  x 

( d/2 drd0)dl dl k2(r 2 0-01f~ 0 -_ 02~,], 2 = m ,  (7) 

where f2=(1 / r2 ) (0 -0 j ) .  The location 0j of the jth primary is not constant in the 
rotating system, but is a function of 0. 

In order that Equation (7) be expressible in the form of Equation (4), it is necessary 
(but not sufficient) that 

d20 dr dO 
r 2 = O. (S)  

dl 2 dl dl 

Equation (8) is equivalent to the condition 

dO 
r 2 = const, (9) 

dl 
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which is precisely the condition for conservation of angular momentum in the motion 
of the primaries. Taking the constant as unity gives the conclusion, 0 =f. This, then, 
is the most general independent variable for which the equations of motion, Equa- 
tion (5), are expressible in the form (4). The sufficiency of the condition (8) then is 
established from consideration of the equations of motion for the two primaries. 

In conclusion, it may be stated that the use of the independent variable f in the 
elliptic problem, or of the variable l in the circular problem, is justifiable on the grounds 
that no other independent variable would allow expression of the equations of motion 
in the 'standard form', Equation (4). Thus, use of, for example, eccentric anomaly E, 
cos f, etc. are ruled out. 
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