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Abstract

Closed form expressions are developed for the thermoelastic curvature of the initially plane end faces of a
traction free cylinder subjected to arbitrary axisymmetric heat flux, the curved surfaces being assumed
insulated. The solution is developed from a potential function representation of displacement and tempera-
ture for an elastic layer. The reciprocal theorem is invoked to show that the tractions at the curved surface of
the cylinder vary linearly along the axis and they are removed by superposition of biaxial bending. It is found
that the curvature of the plane ends depends on the local heat flux and the mean heat flux, whilst the
cylindrical face distorts into a cone.

Introduction

Considerable experimental research has been directed to the resistance to heat flow
across an interface between two solids, generally known as “ thermal contact resistance”.
The most commonly used experimental system consists of two circular cylinders whose
plane or slightly crowned ends are pressed together [1,2,3]. The opposite extremities of
the cylinders are maintained at different temperatures, and care is taken to minimise
heat losses from the exposed cylindrical surfaces.

It was first recognised by Clausing [4] that the thermal distortion of the cylinders has
a significant influence on the contact conditions. In particular, it causes the thermal
contact resistance to depend on the direction of heat flow when the materials are
dissimilar. This phenomenon is known as “thermal rectification” [5,6].

In subsequent contributions to this subject, attempts have been made to assess the
magnitude of the effect, using approximations to the thermoelastic distortion of the
cylinders based on results for the semi-infinite solid or for uniform heat flux [7,8]. In
this paper, we shall show that the thermal distortion of the surfaces of the cylinder can
be described in closed form in terms of the heat fluxes across the ends, provided that
the cylindrical faces are insulated.

Statement of the problem

We consider the cylinder defined by 0 <z < ¢, r <a in cylindrical co-ordinates r, 6, z
as shown in Fig. 1. The surface r = a is assumed to be insulated, whilst on the end faces
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there is an arbitrary axisymmetric heat flux
oT
9= —k5-=g(r), 2=0 (1)
= q{(r )’ z=¢ (2)
where T is temperature and k the conductivity of the material. We assume that the
temperature has reached a steady state so that the total heat flux

Q=27r/0arqz(r)dr (3)

is constant for all values of z. Note that this imposes a constraint on the permissible
boundary conditions (1, 2) above. The axisymmetric boundary conditions guarantee
that the temperature field is axisymmetric throughout the cylinder.

All the surfaces of the cylinder are assumed to be free of tractions and the problem
is to find the distorted shape of the cylinder.

Solution

We develop the salution to the problem by superposition of a particular thermoelastic
solution and a corrective isothermal solution chosen to satisfy the traction free
condition for the cylinder. For the particular solution we take

do

u= 2k§ - Vo, (4)
32
a1+ V)T=-a—zi;, (5)
vi=0, (6)
| Qq(r)

1y C],(I’)

Figure 1. Geometry and boundary conditions of the problem.
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see [9], for which the stress components are

_2p 3¢ . %
o= dr 000_2”8r2’
0,,=0,4=0y, =0, = 0’ (7)

if 7 and hence ¢ are independent of 4.

The constants a, u, » are respectively the coefficient of thermal expansion, modulus
of rigidity and Poisson’s ratio for the material.

For this particular solution, the sum of the principal curvatures of any z plane is
proportional to the local heat flux [9,10]-i.e.

82u1+1%=a(1+u)q2’ ()
9r: r or k

as can be verified by substitution from Eqns. (4, 5) above.

If we apply this solution to the cylinder of Fig. 1, it is clear that the traction free
condition will be met except for the occurrence of non-zero normal tractions o,, on the
surface r = a. These tractions can be related to the temperature, since from Eqns. (5, 6),

9% 19 3¢
a(l-*-v)T—g——;ErE‘. (9)
Integrating Eqn. (9), we find
09 r
rar = a(l+ V)/(; T(r,z)dr, (10)
and hence
2au(1 +v) pr o
o, =— —"(rz——)fo T(r, z)dr (11)

from Eqn. (7).

Use of the reciprocal theorem

To develop an appropriate corrective solution, we first evaluate the integral in Eqgn. (11)
for r = a by applying the reciprocal theorem to the temperature field in the cylinder.
Consider the two identical cylinders shown in Figs. 2(a, b). Both cylinders are insulated
on the surface r = a. Cylinder (a) conducts a uniform unit flux

q.=1, (12)
corresponding to the temperature field
z
whilst cylinder (b) has an arbitrary axisymmetric temperature field with
9.=qo(r), T=Ty(r) at z=0, (14)

9.=q(r), T=T(r) at z=z. (15)
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Figure 2. Solutions to be compared by the reciprocal theorem: (a) uniform heat flux; (b) arbitrary
non-uniform heat flux.

The reciprocal theorem requires that

fs T,q.d8 = fs T,q,dS, (16)

where the integrals are taken over the entire surface of the cylinders and g¢,, g, are the
fluxes normal to S (taken as positive inwards).

The curved sides of the cylinders are insulated (q,, g, = 0), so the integrals only
contain contributions from the end faces. We find

Zw‘/(;arTO(r)dr—277./:rT1(R)dr
DY NI
—27rf0r A q,(r)dr (17)

2,0
- (18)

from Eqn. (3).
Equation (18) applies for all values of z, and hence we can write

‘ __ 9
./;T(r,z)dr— ek T & (19)
where
c=| Ty (r)dr (20)
0

is a constant.
From Eqn. (11), the tractions implied by the solution (4) are

. =2au(1+v)( Qz

e a? 27k

—C), r=a (21)
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and they can be suppressed by superposing the state of biaxial hydrostatic bending and
tension defined by

2au(1 +v) ( Qz )
0, = = - - C 3
%e a  \27k allr, 8, z, (22)
0,.=0,94=0,y=0,= 0.
The corresponding additional displacements are
_ a(l=w)r( Q: )
u= - (—ZWk c), (23)
a(l1-—»)Qr?
u,=——-7"-""—, 24
: dwa’k (24)

omitting an arbitrary rigid body displacement.

Distortion of the cylinder

The distortion of the cylinder is best described in terms of the curvature of the
generators » = @, and the plane faces z =0, /.
For any z plane and particularly the end faces, the sum of the principal curvatures is

3%u, +_1__8&= a(l+v)gq, N a(l—»)Q

9r2 r or k aalk (25)
from Eqns. (8, 24), i.e.

Fu, 10u, « ~

2 T (1 r)e.+(1-v)7}, (26)
where

g=Q/ma’ (27)

is the average heat flux through the cylinder.
The curvature of a generator of the cylinder, r =g, is

Pu, ¥

L= — 28
0roz? 0roz? (28)
by Eqns. (4, 23); and from Eqn. (5)
9%u, aT
ozl —a(l +V)E—0, (29)

since the surface r = a is insulated.

Thus, the generators remain straight and the cylinder deforms into a cone whose end
faces are distorted in accordance with Eqn. (26).

In particular, we note that if the heat flux is uniform across the section (g, = 7), the
right hand side of Eqn. (26) reduces to the constant 2ag/k and the end planes become
spherical - the heated plane convex and the cooled plane concave. This result is of
course obtainable by more elementary means, noting that for uniform heat flux there
are no induced thermal stresses.
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Discussion

Equation (26) shows that the curvature of the plane ends of the cylinder depends upon
the local heat flux and the mean flux over the cross section. This contrasts with the
result for the semi-infinite solid and the layer in which curvature depends upon local
heat flux alone [9,10)]. This difference has an important consequence when the direction
of heat flow is into the least distortive material [11]. In this case, the mismatch of
curvatures due to free expansion is such as to suggest that contact will be developed in
an annular region, with a central circle of separation. This is the.configuration assumed
by Jones et al. [8] and it is supported by their experimental results. We note, however,
that Eqn. (26) shows that their approximate treatment of the thermal distortion of the
cylinders will become progressively less accurate as the contact region becomes smaller.

By contrast, if we consider the contact of a flat rigid punch with a half space [12],
the relation between curvature and local heat flux rules out a solution with a central
separation region. Instead we find that a central region of “imperfect thermal contact”
[13] is developed. A similar configuration involving imperfect contact must be devel-
oped in the two-dimensional problem of two strips loaded on their plane ends, since in
two-dimensional problems, the relation between local curvature and heat flux applies
for simply connected bodies of any shape [11]. We also note that although the result of
Eqn. (26) argues the possibility of a central separation region for the two cylinder
problem with the appropriate direction of heat flow, an asymptotic analysis of the
transition between perfect thermal contact and separation [14] shows that an interven-
ing annulus of imperfect contact will also be required. However, experience with related
problems [13,15] suggests that this region will generally be small.
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