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Abstract. When an elastomeric material is deformed and subjected to temperatures above some

chemorheological value Tcr (near 100-C for natural rubber), its macromolecular structure

undergoes time and temperature dependent chemical changes. The process continues until the

temperature decreases below Tcr. Compared to the virgin material, the new material system has

modified properties (often a reduced stiffness) and permanent set on removal of the applied load. A

recently proposed constitutive theory is used to study the influence of chemorheological changes

on the inflation of an initially isotropic spherical rubber membrane. The membrane is inflated while

at a temperature below Tcr. We then look at the pressure response assuming the sphere’s radius is

held fixed while the temperature is increased above Tcr for a period of time and then returned to its

original value. The inflation pressure during this process is expressed in terms of the temperature,

representing entropic stiffening of the elastomer, and a time dependent property that represents the

kinetics of the chemorheological change in the elastomer. When the membrane has been returned

to its original temperature, it is shown to have a permanent set and a modified pressure-inflated

radius relation. Their dependence on the initial inflated radius, material properties and kinetics of

chemorheological change is studied when the underlying elastomeric networks are neo-Hookean or

Mooney–Rivlin.

Mathematics Subject Classifications (2000): 74F05, 74F25, 74D10, 74E94.
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1. Introduction

The temperature in an elastomeric structural component, such as a bushing, seal

or tire, can increase due to the environment in which it operates or due to internal

dissipation. When the temperature becomes sufficiently high the macromolecular

structure of the elastomer can change due to a process consisting of the scission

of macromolecules and their subsequent crosslinking to form new networks with

new stress free configurations.
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Tobolsky [11] presented results of experiments that provided significant

insight into this process. It occurs at elevated temperatures, is faster at higher

temperatures and stops when the temperature drops below some level. If the

material is stretched during scission and crosslinking and is then unloaded and

cooled, it develops a permanent set and has a modified stiffness. Tobolsky also

proposed a constitutive equation for uniaxial stretch at constant temperature

accounting for two material networks, the remainder of the original material

molecular network and a newly formed network. An extension of this

constitutive equation to arbitrary deformation and temperature histories to

account for continuous destruction and growth of material network has been

proposed and studied by Jones [6] and Shaw et al. [9].

Jones [6] demonstrated a facility to study the high temperature inflation of an

initially flat circular elastomeric membrane undergoing non-uniform deforma-

tion, and experimental work is ongoing. The results will be used to further

develop the constitutive model and are planned to be published separately.

The purpose of the present paper, however, is to illustrate the type of

phenomena that are expected in a simpler context (i.e., uniform biaxial defor-

mation) without the need to specify material parameters and their evolution laws.

In particular, the constitutive theory is used to study the influence of scission and

crosslinking on the inflation of an initially isotropic spherical rubber membrane.

The membrane is inflated while at a temperature below Tcr. We analyze the

pressure response assuming the sphere’s radius is held fixed while the

temperature is increased above Tcr for a period of time and then returned to its

original value. The inflation pressure during this process is expressed in terms of

the temperature, representing entropic stiffening of the elastomer, and a time

dependent property that represents the kinetics of scission in the elastomer. When

the membrane has been returned to its original temperature, it is shown to have a

permanent set and a modified pressure-inflated radius relation. In the case of neo-

Hookean response of the original and newly formed networks, explicit ex-

pressions are obtained for the dependence of permanent set and the modified

pressure-inflated radius relation on the initial inflated radius, material properties

and kinetics of scission and crosslinking. In the case of Mooney–Rivlin response,

a numerical study is presented.

The constitutive model is outlined in Section 2. The problem of the inflation of

a spherical membrane undergoing chemorheological changes is formulated in

Section 3. Section 4 discusses the response while the membrane is at a fixed

radius during time varying temperature and scission. After the membrane is

cooled to its original temperature, it has permanent set and a modified pressure-

inflated radius relation, which is developed in Section 5 for the case of Mooney–

Rivlin networks. Section 6 discusses this relation for neo-Hookean material

networks. It is shown that the pre-scission and post-scission pressure-inflated

radius relations have the same form, but differ by a scale factor. Section 7

treats Mooney–Rivlin networks. Although not addressed explicitly, other more
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realistic hyperelastic models for rubber behaviour could also be used in the

framework developed. It is shown that the pre-scission and post-scission

pressure-inflated radius relations have different forms. In an Appendix, the

difference is shown to be a result of the membrane material becoming

transversely isotropic. A numerical study for Mooney–Rivlin materials is carried

out in Section 8. Concluding comments are given in Section 9.

2. Constitutive Equation

Tobolsky [11] discussed experiments on rubber strips at elevated temperatures

that led to the conclusion that the rubber had undergone chemical changes in its

macromolecular structure. In these experiments a natural rubber strip at one

temperature, say 20-C, was subjected to a fixed uniaxial stretch and then held at

a higher fixed temperature in the range 100–150-C for a specified time interval.

The stress was observed to decrease with time. At the end of the time interval,

the specimen was unloaded and returned to its original temperature. The

specimen was observed to have a permanent stretch. Tests were carried out for

different applied stretches, temperatures and time intervals. It was concluded that

the decrease in stress was due to scission within the macromolecular network.

The permanent stretch was attributed to a new network that formed when the

macromolecules crosslinked in the stretched state of the original material.

Tobolsky implied that these events are significant for temperatures greater than a

temperature Tcr, the onset of the Fchemorheological range._
In the experimental work discussed by Tobolsky, specimens were generally

subjected to fixed uniaxial stretch at different constant temperatures. The purpose

was to understand the physical and chemical processes involved in scission and

crosslinking. Recently, a program has been underway to develop a constitutive

framework for rubber undergoing scission and crosslinking while subjected to

arbitrary homogeneous deformation and temperature histories. A brief summary

of the constitutive framework is presented here. The underlying constitutive

framework was developed by Wineman and Rajagopal [12] and Rajagopal and

Wineman [7] for deformation induced scission and crosslinking. For a detailed

discussion of the subsequent application of this framework to thermally induced

scission and crosslinking, see Jones [6] and Shaw et al. [9].

Consider a rubbery material in a stress free reference configuration at a

temperature To. It is assumed that a range of deformations and temperatures exists

in which the material response can be regarded as mechanically incompressible at a

fixed temperature, isotropic and nonlinearly elastic. If x is the position at current

time t of a particle located at X in the reference configuration, the deformation

gradient is F = @x/@X. The left Cauchy–Green tensor is B = FFT and Bj1

denotes its inverse. Then the Cauchy stress A is given by

A 1ð Þ ¼ �p 1ð ÞIþ 2
@W 1ð Þ

@I1

B � 2
@W 1ð Þ

@I2

B�1; ð2:1Þ
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where p(1) arises from the constraint that deformations are isochoric, I1, I2 are

invariants of B, W(1)(I1, I2, T ) is the Helmholtz free energy density associated

with the original material and T is the temperature, and the notation (j)(1)

denotes a quantity associated with the original material network. For brevity,

explicit notational dependence on the current time t is omitted.

No scission occurs for temperatures T < Tcr. All of the material is in its original

state and the total stress is given by (2.1). For temperatures T Q Tcr, scission of

the original microstructural network is assumed to occur continuously in time.

Let b(1)(t) denote the volume fraction of the original network remaining at time t.

Its properties are b(1)(0) = 1, db(1)/dt < 0 when T Q Tcr and db(1)/dt = 0 when T <

Tcr. Tobolsky’s experiments indicated that b(1)(t) does not depend on the uniaxial

stretch provided that it is less than 3 to 4. This was supported by the experimental

results of Scanlan and Watson [8] and Jones [6]. For the sake of simplicity and in

consideration of these experimental results, it is assumed that b(1)(t) depends only

on the temperature history and time, i.e., b 1ð Þ tð Þ ¼ ~bb 1ð Þ T sð Þ t
0

�
� ; t

� �

:
Now consider an intermediate time t̂t Z 0; t½ � and the corresponding deformed

configuration of the original material. Due to the formation of new crosslinks, a

network is formed during the interval from t̂t to t̂t þ d t̂t whose reference

configuration is the configuration of the original material at time t̂t: As suggested

by Tobolsky et al. [10] and Tobolsky [11], this is assumed to be an unstressed

configuration for the newly formed network. During subsequent deformation,

the configurations of the newly formed material network coincide with the

configurations of the original material network. Stress arises in this newly

formed material network due to its deformation relative to its unstressed

configuration at time t̂t: At time t > t̂t; the material formed at time t̂t has the

relative deformation gradient ĜG ¼ @x=@x̂x; where x̂x is the position of the par-

ticle in the configuration corresponding to time t̂t and x is its position at time t.

For simplicity, the new network is also assumed to be mechanically incom-

pressible at a fixed temperature, isotropic and nonlinearly elastic. Let the left

Cauchy–Green tensor B̂B ¼ ĜGĜGT be introduced for deformations of this network.

The Cauchy stress A (2) at time t in the network formed at time t̂t is then given by

A 2ð Þ ¼ �p 2ð ÞIþ 2
@W 2ð Þ

@ ^

I1

^

B� 2
@W 2ð Þ

@ ^

I2

^

B
�1
; ð2:2Þ

where p(2) arises from the constraint that deformations are isochoric and I
^

1, I
^

2 are

invariants of B̂B. W(2)( Î1, Î2 , T ) is the Helmholtz free energy density associated

with the newly formed network and can differ from that associated with the

original material.

Let a t̂tð Þ be a scalar-valued function that gives the rate at which new network

is formed at time t̂t: Thus, a(0) = 0, a t̂tð Þ > 0 when T Q Tcr and a t̂tð Þ ¼ 0 when

T < Tcr. The amount of new network that is formed during the time interval from

t̂t to t̂t þ d t̂t is a t̂tð Þd t̂t: Recent experimental results of Jones [6] indicate that the

new network also undergoes scission. Let b(2)(t, t̂t ) denote the volume fraction of
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the network formed at time t̂t that is remaining at time t. The properties of b(2) are

similar to those of b 1ð Þ: b 2ð Þ t̂t; t̂tð Þ ¼ 1, @b 2ð Þ t; t̂tð Þ
�

@t < 0 when T Q Tcr and

@b 2ð Þ t; t̂tð Þ
�

@t ¼ 0 when T < Tcr. It is assumed that b 2ð Þ t; t̂tð Þ is independent of

the deformation of the new network and depends on the temperature history from

the time it has formed, i.e. b 2ð Þ ¼ ~bb 2ð Þ T
�

s
�

t
t̂t

�
� ; t
ih

. The amount of crosslinks at

time t in the network that was formed at time t̂t is a t̂tð Þb 2ð Þ t; t̂tð Þd t̂t: The time

dependent functions a t̂tð Þ;b 1ð Þ tð Þ; b 2ð Þ t; t̂tð Þ describe the kinetics of scission and

crosslinking for a particular rubber. Specific forms for a t̂tð Þ; b 1ð Þ tð Þ; b 2ð Þ t; t̂tð Þ are

not presented here because they are not required for the development of the

qualitative results in the subsequent sections.

The total current stress in the macromolecular system is taken as the

superposition of the stress in the remaining portion of the original network and

the stresses in the networks that formed during the process of scission and

crosslinking. Then, combining (2.1) and (2.2),

A tð Þ ¼ �p tð ÞIþ 2b 1ð Þ tð Þ @W 1ð Þ

@I1

B tð Þ � @W 1ð Þ

@I2

B tð Þ�1

� �

þ 2

Z t

0

a
^
tð Þb 2ð Þ t; ^

tð Þ @W ð2Þ

@
^

I1

^

B t; ^
tð Þ � @W ð2Þ

@
^

I2

^

B t; ^
tð Þ�1

�

d ^
t:

�

ð2:3Þ

The term jpI is an isotropic stress that combines contributions from p(1) and p(2).

This constitutive framework defines a class of materials that have evolving

natural configurations. It has been presented without providing a corresponding

thermodynamic framework. In particular, specific kinetic laws are not provided

here for the evolution of a t̂tð Þ; b 1ð Þ tð Þ and b 2ð Þ t; t̂tð Þ. The importance of placing the

theory in such a thermodynamically consistent framework is recognized and is

left for future work.

3. Formulation

The theory of nonlinear elastic membranes has been presented by Green and

Adkins [4]. The formulation for spherical membranes contained therein is

extended here to materials described by the constitutive equation of Section 2.

Consider a spherical membrane in its reference state, where it is assumed to be

stress free and at a uniform temperature To < Tcr. The radius of its mid-surface is

Ro and its wall thickness is ho, with h o/Ro<< 1. A time dependent pressure, p(t),

acts on the inner surface of the membrane causing it to inflate. At times t > 0, it is

assumed that the membrane is spherically symmetric, the current radius of the

mid-surface is r(t) and the wall thickness is h(t). The condition ho/Ro<< 1

implies that the value of a physical variable on the mid-surface is the same as

that at any point through the thickness to within order O(ho/Ro).

At each point in the deformed membrane, the principal directions of stretch of

the original membrane network are tangent to the coordinate lines of a spherical
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coordinate system. The principal stretches in a radial surface are equal and are

given by l(t) = r(t)/Ro. For notational convenience, henceforth l(t) = l, r(t) = r,

etc. The membrane material is assumed to be incompressible so that the radial

principal stretch is given by

1r ¼ h=ho ¼ 1=12: ð3:1Þ

The stretch tensors B for the original network and B̂B for the network formed at

time t̂t are,

B ¼
1
�

14 0 0

0 12 0

0 0 12

2

4

3

5;
^

B ¼
14 ^

t
� ��

14 0 0

0 12
�

12 ^
t
� �

0

0 0 12
�

12 ^
tð Þ

2

6
4

3

7
5;

ð3:2Þ

from which it is seen that the principal stretch directions of the network

formed at time t̂t coincide with the principal stretch directions of the original

network.

On substituting (3.2) into (2.3), it is found that the principal directions of

stress and stretch coincide. The principal stresses on surfaces in the membrane

normal to the coordinate directions are equal and are denoted by A. Assuming

quasi-static motion, the balance between the forces arising from the internal

pressure and from the tensile stresses in the membrane wall gives

p ¼ 2�h

r
: ð3:3Þ

On using (3.1), (3.3) can be re-written as

pRo

2ho

¼ �

13
: ð3:4Þ

Each material element of the membrane is in an approximate state of plane stress

and equal biaxial extension. It follows from (2.3) and (3.2) that the relation

between the membrane stress and mid-surface stretch history is given by

� ¼ 2b 1ð Þ 12 � 1

14

� �

W
1ð Þ

1 þ 12W
1ð Þ

2

	 


þ 2

Z t

0

a
^
tð Þb 2ð Þ t;

^
t

� � 12

12ð ^
t Þ
� 14ð^

t Þ
14

�

W
2ð Þ

1 þ
12

12ð ^
t Þ
ÞW 2ð Þ

2

� �

d
^
t ;

�

ð3:5Þ
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where W 1ð Þ
� ¼ @W 1ð Þ�@I�, W 2ð Þ

� ¼ @W 2ð Þ�@ ÎI�, � = 1,2. W 2ð Þ
� is evaluated at

I1 ¼ 212 þ 1

14
; I2 ¼

2

12
þ 14 ð3:61Þ

and T :W 2ð Þ
� is evaluated at

^

I1 ¼ 2
12

12 ^tð Þ
þ 14ð^

tÞ
14

;
^

I2 ¼ 2
12ð^

tÞ
12
þ 14

14ð^tÞ
ð3:62Þ

and T.

Let it now be assumed that W(1)(I1, I2, T) = T W(1) (I1, I2) and W(2)(Î1, Î2 , T) =

T W(2) (Î1, Î2 ), which is the case for a number of strain energy density functions

presented in the literature that exhibit entropic stiffening [5]. Then, W 1ð Þ
� ¼

@W 1ð Þ�@I� and W 2ð Þ
� ¼ @W 2ð Þ�@ ÎI�, � = 1, 2. Let Co = 2W1

(1) (3, 3, To) =
2ToW1

(1) (3, 3) be a constant having the dimension of stress. The
dimensionless strain energy derivatives and pressure are defined as

w �ð Þ
� ¼ Wð�Þ�

�

W
1ð Þ

1 3; 3ð Þ; P ¼ pRo

2hoCo

: ð3:7Þ

Then, by (3.4) and (3.7),

P ¼ 1

13

�

Co

: ð3:8Þ

Equations (3.5) and (3.8) give the dimensionless pressure–stretch–temperature

relation for the membrane,

P ¼ b 1ð Þ tð Þ T tð Þ
To

1

13
12 � 1

14

� �

w
1ð Þ

1 þ 12w
1ð Þ

2

	 


þ T tð Þ
To

1

13

Z t

0

að ^
tÞb 2ð Þðt; ^

t Þ 12

12ð ^
t Þ
� 14ð^

t Þ
14

�

w
2ð Þ

1 þ
12

12ð ^
t Þ

w
2ð Þ

2

� �

d
^
t:

�

ð3:9Þ

4. Response During Scission and Re-Crosslinking

The membrane is assumed to contain an incompressible liquid that is used to

control its inflation and heating. Specifying the time dependence of the volume

of the contained liquid is equivalent to specifying r(t), assuming spherical

symmetry is maintained. Specifying the time dependence of the temperature of

the liquid is equivalent to specifying the temperature of the inner surface of the

membrane. Since ho/Ro << 1, it is assumed that the temperature in the membrane

is uniform and is the same as that at the inner surface at each instant.
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The temperature and inflation histories, shown in Figure 1, are:

The remainder of this section is concerned with the response of the membrane

preceding and during scission, when 0 e t < t4. The post-scission response when

t4 e t is discussed in later sections.

0 � t < t1 : T(t) = To, b(1) = 1, a = 0 and (3.9) reduces to

P tð Þ ¼ 1

13
12 � 1

14

� �

w
1ð Þ

1 þ 12w
1ð Þ

2

	 


: ð4:1Þ

This is the well known pressure–stretch relation for an isotropic membrane and

relates the time variation of the pressure to that of the stretch.

Temperature 0 e t e t1, T(t) = To,

t1 e t < t2, T(t) increases, T(t2) = Tcr,

t2 e t < t3, T(t) > Tcr, T(t3) = Tcr,

t3 e t < t4, T(t) decreases, T(t4) = To,

t4 e t, T(t) = To.

Inflation 0 e t < t1, l(t) increases, 1 tð Þ ¼ 1; t � t < t1,

t � t < t4; 1 tð Þ ¼ 1,

t4 e t, l(t) arbitrary.

 t

t1

t1

t2 t3 t4

t4

λ

λ

T

Tcr

To

 t

(a)

(b)

t

t

Figure 1. a) Prescribed stretch history, b) Temperature history.
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t1 � t < t2: T(t) e Tcr, b(1) = 1, a = 0, and 1 ¼ 1 t̂tð Þ ¼ 1 ¼ r=Ro. Then (3.9)

reduces to

P tð Þ ¼ T tð Þ
To

1

1
3

1
2 � 1

1
4

� �

w
1ð Þ

1 þ 1
2
w

1ð Þ
2

	 


: ð4:2Þ

The pressure required to hold the membrane at a fixed radius increases with the

temperature. This is a consequence of entropic stiffening of the original network.

t2 � t < t3: T(t) > Tcr and b(1)(t) decreases with time. Since a t̂tð Þ ¼ 0 for

0 � t̂t � t2 and 1 ¼ 1 t̂tð Þ ¼ 1 for t � t̂t � t, the integral in (3.9) vanishes.

Equation (3.9) becomes

P tð Þ ¼ b 1ð Þ tð Þ T tð Þ
To

1

1
3

1
2 � 1

1
4

� �

w
1ð Þ

1 þ 1
2
w

1ð Þ
2

	 


: ð4:3Þ

P(t) varies with time in a manner determined by that of b(1)(t)T(t). Its variation

would be similar to that observed in experiments on rubber strips in fixed

uniaxial extension (see Jones [6] and Shaw et al. [9]). For a constant uniaxial

stretch ratio, the force required to hold the strip increased at first with

temperature T(t) due to entropic stiffening, but then reached a maximum and

decreased as the response became dominated by the decrease of b(1)(t) due to

scission while T > Tcr.

t3 � t < t4 : T(t) < Tcr, b(1)(t) = b(1) (t3). As before, the integral in (3.9)

vanishes because l is held fixed and (3.9) reduces to

P tð Þ ¼b 1ð Þ t3ð Þ
T tð Þ
To

1

1
3

1
2 � 1

1
4

� �

w
1ð Þ

1 þ 1
2
w

1ð Þ
2

	 


: ð4:4Þ

t4 < t: The temperature has returned to To and the pressure required to

maintain the membrane at the fixed stretch 1 is

P ¼ b 1ð Þ t3ð Þ
1

1
3

1
2 � 1

1
4

� �

w
1ð Þ

1 þ 1
2
w

1ð Þ
2

	 


: ð4:5Þ

5. Post-Scission Response

During scission at constant stretch, a new network was formed in the fixed

inflated state of the membrane, but was not stretched and did not contribute to the

stress. When t > t4, there are two networks, one associated with the undeformed

membrane and one associated with its fixed inflated state during scission. If l and

P are now changed, both networks respond elastically. The membrane has a new

elastic regime, and a new P–l relation can be obtained from (3.9) by

incorporating the following: a(t) = 0 for 0 e t e t2 and t3 < t; b(1) = b(1)(t3) and
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b 2ð Þ ¼ b 2ð Þ t3; t̂tð Þ for t3 < t; 1 t̂tð Þ ¼ 1 for t1 � t̂t � t4; and T(t) = To for t4 < t.

Then, (3.9) reduces to

P ¼ b 1ð Þ t3ð Þ
1

13
12 � 1

14

� �

w
1ð Þ

1 þ 12w
1ð Þ

2

	 


þ
Z t3

t2

a
^
t
� �

b 2ð Þðt3; ^
t Þd ^

t � 1

13

12

1
2
� 1

4

14

 !

w
2ð Þ

1 þ
12

1
2

w
2ð Þ

2

� �

; ð5:1Þ

the post-scission P–l relation for T = To. Note that (5.1) reduces to (4.5) when

1 ¼ 1: In other words, (4.5) gives one point on the post-scission plot of P vs. l
determined from (5.1).

In the remainder of this study, it is assumed that the original and newly formed

networks have strain energy density functions of Mooney–Rivlin type, that is W
�ð Þ
�

are constants that are denoted by C
�ð Þ
� . Since C1

(1) = W1
(1)(3,3), (5.1) becomes

P ¼ b 1ð Þ t3ð Þ
1

13
12 � 1

14

� �

1þ 12� 1ð Þ
	 


þ C
2ð Þ

1

C
1ð Þ

1

Z t3

t2

a
^
t
� �

b 2ð Þðt3; ^
t Þd ^

t � 1

13

12

1
2
� 1

4

14

 !

1þ 12

1
2
�ð2Þ

� �

; ð5:2Þ

where

� 1ð Þ ¼ C
1ð Þ

2

C
1ð Þ

1

; � 2ð Þ ¼ C
2ð Þ

2

C
2ð Þ

1

ð5:3Þ

are the ratios of the Mooney–Rivlin constants for the respective networks. Let

N1 ¼ b 1ð Þ t3ð Þ ð5:41Þ

N2 ¼
C

2ð Þ
1

C
1ð Þ

1

Z t3

t2

a
^
t
� �

b 2ð Þðt3;
^
t Þd ^

t; ð5:42Þ

be dimensionless measures of the amount of original and new networks,

respectively. Then (5.2) can be written as

P ¼ N1

1

13
12 � 1

14

� �

1þ � 1ð Þ12
	 


þ N2

1

13

12

1
2
� 1

4

14

 !

1þ � 2ð Þ 1
2

1
2

� �

:

ð5:5Þ
This can be written more tersely as

P ¼ 1

13
A11

2 þ A21
4 � A3

1

14
� A4

1

12

� 


: ð5:6Þ
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in which

A1 ¼ N1 þ
N2

1
2
; A2 ¼ N1�

1ð Þ þ N2�
2ð Þ

1
4

;

A3 ¼ N1 þ N21
4

A4 ¼ N1�
1ð Þ þ N2�

2ð Þ1
2
:

ð5:7Þ

Note that Ai > 0, i = 1, 2, 3, 4 if �(1) > 0 and �(2) > 0.

6. Neo-Hookean Networks

It is instructive to study the post-scission membrane response when both

networks are neo-Hookean. In this case, �(1) = �(2) = 0 and (5.5) reduces to

P ¼ N1

1

13
12 � 1

14

� �

þ N2

1

13

12

1
2
� 1

4

14

 !

: ð6:1Þ

When P = 0, the membrane has a permanent set at a new radius rset and a

corresponding stretch ratio lset = rset/Ro given by

1set ¼
1þ N2

N1

1
4

1þ N2

N1

1

1
2

2

6
6
4

3

7
7
5

1=6

; ð6:2Þ

from which it follows that

1set

1
¼

1

1
6
þ N2

N1

1

1
2

1þ N2

N1

1

1
2

2

6
6
4

3

7
7
5

1=6

: ð6:3Þ

Since N1 and N2 are positive quantities and 1 > 1; Equations (6.2) and (6.3)

imply

1 < 1set < 1: ð6:4Þ
The P–l relation (6.1) can be rewritten in the form

P ¼ K
1

�
� 1

�7

� �

; ð6:5Þ

where m = l/lset = r/rset is the stretch measured from permanent set and

K ¼ N1

1þ N2

N1

1

1
2

� �7=6

1þ N2

N1

1
4

� �1=6
: ð6:6Þ
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The pre-scission pressure-stretch relation can be obtained by letting N1 = 1 and

N2 = 0 in (6.1). It is given by (6.5) with K = 1 and m replaced by l, or

equivalently, lset = 1. The coefficient K acts as a scale factor that depends on the

scission kinetics, the relative stiffnesses of the networks and the stretch of the

original membrane during scission. It is straightforward to show that the pre-

scission pressure–stretch relation has a local maximum of 6
�

77=6
� �

¼ 0:6197 at a

stretch ratio of l = 71/6 corresponding to a radius of 71/6Ro, while the post-

scission pressure–stretch relation has a local maximum of

N1

1þ N2

N1

1

1
2

� �7=6

1þ N2

N1

1
4

� �1=6

6

77=6
ð6:7Þ

at a stretch ratio of m = 71/6, corresponding to a radius of 71/6rset.

Calculations show that K is less than one for many values of N1 < 1, 1 > 1;
and N2/N1. This is seen to be the case as N2/N1 increases, since K approaches

N2

�

1
3
< 1. Note also that K decreases as 1 increases for fixed values of N1 and

N2. These results imply that the pressure needed after scission to inflate the

membrane to a stretch of m = lo would be less than that needed before scission to

inflate it to a stretch of l = lo. Stated differently, consider two spherical

membranes: membrane 1 was not subjected to an inflation and scission history

and membrane 2 was. Suppose both membranes were given to someone who was

unaware of the difference between them. They would find it easier to inflate

membrane 2 to a stretch ratio of lo.

Figure 2 shows results of a simulation that illustrate the process discussed in

Sections 4 and 5. The upper curve (a) is a P–l plot for a neo-Hookean membrane

before scission. The membrane is inflated to 1 ¼ 1:2; corresponding to point A.

The pressure increases to point B as the temperature increases during t1 e t < t2
and then decreases as a result of the scission during t2 e t < t3. Point C

corresponds to the pressure given by (4.5) when the temperature has returned to

To at time t4. Suppose scission was stopped at time t3 with N1 = N2 = 0.5. The

lower curve (b) is the P–l plot for the membrane after scission. The residual

stretch ratio is lset = 1.104, and the local maximum has decreased from 0.6197

on the pre-scission P–l plot to 0.4754 on the post-scission P–l plot (open

circles). The dashed portions of the curves indicate the negative sloping portions

where the response is unstable.

The similarity of the pre- and post-scission pressure-stretch relations follows

from a remarkable result for neo-Hookean materials obtained by Berry, Scanlan

and Watson [2] and later by Zimmermann and Wineman [13]. They showed that

when a neo-Hookean material has undergone scission and a new network forms

that is also neo-Hookean, the resultant material is isotropic and responds as a

neo-Hookean material with respect to the new stress free reference configuration.
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However, as will be seen in the next section, this is not generally true for other

hyperelastic models.

7. Mooney–Rivlin Networks

Now consider the post-scission P–l relation (5.5) when both networks respond as

Mooney–Rivlin materials, that is �(1)
m 0, �(2)

m 0. A number of analytical results

can be established that correspond to those of Section 6.

Let P = 0 in (5.5). The membrane has a permanent stretch lset that satisfies the

equation obtained by setting

N1 12
set �

1

14
set

 !

1þ � 1ð Þ12
set

	 


þ N2

12
set

1
2
� 1

4

14
set

 !

1þ � 2ð Þ 1
2
set

1
2

� �

¼ 0:

ð7:1Þ
It is useful to recall that N1, N2, �(1) and �(2) are positive and 1 > 1. Thus, if lset <

1, both terms in (7.1) are negative and the equation cannot be satisfied. Likewise,

if 1set > 1; both terms are positive and the equation cannot be satisfied. Hence, a

solution lset of (7.1) must satisfy the condition 1 � 1set � 1 : The equality at the

lower end occurs if N2 = 0 and at the upper end if N1 = 0, i.e., all of the original

network has undergone scission. Equation (7.1) can be written as a quartic

equation for lset
2 . An expression for lset in terms of N1, N2, �(1), �(2) and 1;

corresponding to (6.2), could be constructed from the formulae for the roots of a

quartic. The expression is very complicated, and as it would not appear to lead to

useful insight, is not presented here.

1 2 3 4 5

1.20

0.2

0.4

0.6

0.8

λ

P

(a)

A

C

B

(b)

Figure 2. (a) Neo-Hookean pre-scission P–l relation, (b) neo-Hookean post-scission P–l
relation following scission at 1 ¼ 1:2. AB: Increase in pressure with increasing temperature

as a result of entropic stiffening, BC: Decay of pressure as a result of scission.
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Recalling that m = r/rset is the stretch measured from the permanent set, let l =

mlset be substituted into (5.5). The P–l relation in (5.5) becomes a P–m relation

analogous to that in (6.5) for neo-Hookean networks.

P ¼ 1

�313
set

fN1 �212
set �

1

�414
set

 !

1þ � 1ð Þ�212
set

	 


þN2 �2 1
2
set

1
2
� 1

�4

1
4

14
set

 !

1þ � 2ð Þ�2 1
2
set

1
2

� �g: ð7:2Þ

This is not in a form that is convenient for comparison with the pre-scission P–l
relation obtained by setting N1 = 1 and N2 = 0 in (5.5). However, as shown in the

Appendix, (7.2) can be restated as follows,

P ¼ N1 þ
N2

1
2

� �
1

1set

1

�
� 1

�7

� �

1þ �eq�
2

� �

� 1

1set

N1 þ
N2

1
2

� �

� 1

17
set

N1 þ N21
4

	 

" #

�� 1

�7

� �

; ð7:3Þ

where

�eq ¼
N1�

1ð Þ þ N2�
2ð Þ1

2

N1 þ
N2

1
2

1

14
set

: ð7:4Þ

The first term in (7.3) is analogous to (6.5), namely it is a scale factor times a

function of m that has the same form as that in the pre-scission P–l relation, but

with l and �(1) replaced by m and �eq. However, because of the presence of the

second term in (7.3), known analytical results for the pre-scission P–l relation

cannot be extended to the post-scission relation. For this reason, all further

discussion will be carried out using (5.6).

It is worth noting the reason for the presence of the second term in (7.3). As

shown by Zimmermann and Wineman [13], the post-scission material is

transversely isotropic with respect to the permanent set state, with the axis of

transverse isotropy in the radial direction. Thus, (7.3) is the pressure–stretch

relation for a membrane composed of a transversely isotropic material while the

pre-scission pressure–stretch is that for an isotropic material.

Conditions can be developed for determining when the post-scission P vs. l
curve has an up-down-up shape similar that for the pre-scission P vs. l curve.

The following analysis follows that of Adkins and Rivlin [1] for the pre-scission

response. From (5.6)

dP

d1
¼ 1

18
A21

8 � A11
6 þ 5A41

2 þ 7A3

� �

: ð7:5Þ
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dP/dl > 0 as l approaches zero or becomes large. The polynomial in square

brackets in (7.5) has two sign alternations. According to Descarte’s rule of signs

[3], there are either two or zero values of l at which dP/dl = 0. If there are no

values, then dP/dl > 0 for all l and P vs. l is monotonic. If there are two values,

say l1 and l2 > l1, then dP/dl < 0 for l1 < l < l2. By (5.7) and (7.5), the

condition that dP/dl < 0 becomes

1 <
1þ N2

N1

1

1
2

	 


16 � 7 1þ N2

N1
1

4
	 


� 1ð Þ þ N2

N1

� 2ð Þ

1
4

	 


18 þ 5 � 1ð Þ þ N2

N1
� 2ð Þ1

2
	 


12
: ð7:6Þ

Let the right hand side of (7.6) be written in the form

m xð Þ ¼ A1x3 � 7A3

A2x4 þ 5A4x
; ð7:7Þ

where Ai, i = 1, 2, 3, 4 are defined in (5.7) and x = l2. By a straightforward

analysis, it can be shown that m(x) has a local maximum at

x3 ¼ 16

¼
10A1A4þ 28A2A3ð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10A1A4þ 28A2A3ð Þ2þ 140A1A2A3A4

q

2A1A2

: ð7:8Þ

This maximum, obtained by substituting x from (7.8) into (7.7), is given by

mmax ¼
A2

1 7A2A3 þ 5A1A4 þ Dð Þ
A1A2ð Þ2=3

14A2A3 þ 5A1A4 þ Dð Þ1=3
14A2A3 þ 10A1A4 þ Dð Þ

;

ð7:9Þ
where

D ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10A1A4 þ 28A2A3ð Þ2 þ 140A1A2A3A4

q 


: ð7:10Þ

By (5.7) this maximum can be written as mmax (N2/N1, �(1), �(2), 1) Condition

(7.6) for a negative sloping part of the P vs. l curve can be restated as

1 < mmax N2=N1; �
1ð Þ; � 2ð Þ;1

	 


: ð7:11Þ

In the pre-scission case when N2 = 0, (7.11) reduces to

1 <
0:214458

� 1ð Þ : ð7:12Þ

This gives the previously established result [1] that the P–l curve has an up-

down-up shape if �(1) < 0.214458 and is monotonic if �(1) > 0.214458.

Suppose �(1) = �(2) = �. The expressions in (5.7) can be written as

A1 ¼ N1M1; A2 ¼ �N1M2; A3 ¼ N1M3; A4 ¼ �N1M4; ð7:13Þ
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where

M1 ¼ 1þ N2

N1

1

1
2
;M2 ¼ 1þ N2

N1

1

1
4
;

M3 ¼ 1þ N2

N1

1
4

M4 ¼ 1þ N2

N1

1
2
: ð7:14Þ

Equation (7.9) reduces to

mmax ¼
m
0
max

�
; ð7:15Þ

where

m
0

max ¼
M2

1 7M2M3 þ 5M1M4 þ D
0� �

M1M2ð Þ2=3
14M2M3 þ 5M1M4 þ D

0ð Þ1=3
14M2M3 þ 10M1M4 þ D

0ð Þ
ð7:16Þ

and

D
0 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10M1M4 þ 28M2M3ð Þ2 þ 140M1M2M3M4

q 


: ð7:17Þ

Equation (7.11) now has the form

1 <
m
0
max N2

�

N1;1
� �

�
: ð7:18Þ

Figure 3 shows a plot of mmax

0
vs. N2/N1 with 1 ¼ 1:2: The initial value is

m
0
max 0;1
� �

¼ 0:214458 and (7.18) reduces to (7.12) because only the original

0 5 10 15 20
0.2

0.21

0.22

N2 / N1

m 'max

Figure 3. mmax
0 versus N2/N1 at 1 ¼ 1:2.
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network exists. m
0

max N2=N1; 1
� �

decreases slightly as N2/N1 increases, has a

minimum of 0.20314 at N2/N1 = 1.16 and approaches 0.214458 as N2/N1

becomes large, when only the new network exists. (7.18) again reduces to (7.12).

Since mmax

0
only changes by about 5% over its entire range of N2/N1, scission has

only a slight influence on the monotonicity of the pressure–stretch relation when

�(1) = �(2).

8. Numerical Examples

The analytical results in Section 7 provide insight into the influence of N1, N2,

�(1), �(2) and 1 on the post-scission pressure–stretch relation. This section con-

tains numerical results to investigate the trends of these parameters.

Figures 4 and 5 show plots of P vs. l as N1 decreases and N2 increases for two

values of �(1) = �(2), respectively. Figure 4 shows four cases for 1 ¼ 1:2 and �(1)

= �(2) = 0.15. As shown in Section 7, when �(1) = �(2) = 0.15, the plots have the

up-down-up character for all choices of N1, N2. The dashed portions of the curves

indicate the negatively sloping portions where the response is unstable. As N1

decreases and N2 increases, the response softens, i.e., the pressure required to

achieve a given stretch decreases. In addition, the permanent stretch increases,

the local maximum decreases and occurs at a larger stretch. Figure 5 shows three

cases for 1 ¼ 1:2 and �(1) = �(2) = 0.3. The P vs. l plots are now monotonic, as

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

λ

P

(a)

(b)

(c)

(d)

Figure 4. Influence of N1 and N2 on the P–l relation for Mooney–Rivlin materials with

�(1) = �(2) = 0.15 and 1 ¼ 1:2. (a) Pre-scission P–l relation, N1 = 1, N2 = 0, (b) post-scission

P–l relation, N1 = 0.75, N2 = 0.25, (c) post-scission P–l relation, N1 = 0.5, N2 = 0.5, (d)

post-scission P–l relation, N1 = 0.25, N2 = 0.75.
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expected from the results in Section 7. The response is again seen to soften as N1

decreases and N2 increases.

Figure 6 shows plots of P vs. l for 1 ¼ 1:2 and 1 ¼ 1:4: Results are presented

for N1 = 0.75, N2 = 0.25 and �(1) = �(2) = 0.15. Once again, the response softens as

1 increases, the permanent stretch increases and the local maximum decreases and

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

λ

P
(a)

(b)

(c)

Figure 6. Influence of 1, on the P–l relation for Mooney–Rivlin materials with �(1) = �(2)

= 0.15. (a) Pre-scission P–l relation, (b) post-scission P–l relation, 1 ¼ 1:2, N1 = 0.75, N2 =

0.25, (c) post-scission P–l relation, 1 ¼ 1:4, N1 = 0.75 , N2 = 0.25.
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Figure 5. Influence of N1 and N2 on the P–l relation for Mooney–Rivlin materials with

�(1) = �(2) = 0.3 and 1 ¼ 1:2 (a) Pre-scission P–l relation, N1 = 1, N2 = 0, (b) post-scission

P–l relation, N1 = 0.75, N2 = 0.25, (c) post-scission P–l relation, N1 = 0.25, N2 = 0.75.
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occurs at a larger stretch. Although not shown, similar results are obtained when

�(1) = �(2) = 0.3, when the plots of P vs. l are monotonic.

Figure 7 shows plots of P vs. l for decreasing N1 and increasing N2 when

�(1) = 0.15, �(2) = 0.3 and 1 ¼ 1:2: In addition to the softening of response, the

size of the negatively sloping portion decreases and eventually vanishes. That is,

there is a transition from an up-down-up shape to a monotonic one. Although not

shown, results for �(1) = 0.3 and �(2) = 0.15 show softening and a transition from

a monotonic shape to an up-down-up one. Interestingly, depending on the

Mooney–Rivlin parameters of the new network, scission and crosslinking can

apparently stabilize or destabilize the post-scission membrane response com-

pared to the pre-scission one.

9. Concluding Comments

This work is concerned with the thermo-mechanical response of elastomers over

a range of temperatures from below a chemorheological temperature, Tcr, when

no microstructural changes occur, to above Tcr when microstructural changes

occur due to scission and crosslinking. A constitutive model is used to explore

the effects of these microstructural changes on the response of a spherical

elastomeric membrane that has first been inflated to a fixed state. It is then

subjected to a temperature history that is increased from below Tcr to above Tcr

and then returned to its initial value. The pre-scission pressure–radius relation is
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Figure 7. Influence of N1 and N2 on the P–l relation for Mooney-Rivlin materials with

�(1) = 0.15, �(2) = 0.3 and 1 ¼ 1:2. (a) Pre-scission P–l relation, N1 = 1, N2 = 0, (b) post-

scission P–l relation, N1 = 0.75, N2 = 0.25, (c) post-scission P–l relation, N1 = 0.5, N2 =

0.5, (d) post-scission P–l relation, N1 = 0.25, N2 = 0.75.
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compared to the post-scission one for a variety of conditions and material

properties. It is shown that there is permanent set when the inflating pressure is

removed and softening of the subsequent response. The permanent set and

softening of response are shown to increase with both the amount of scission and

the prescribed radius during scission.

In addition, it is shown that the shape of the pressure–radius relation evolves

due to scission. It may have an up-down-up shape whose local maximum and

minimum decrease with both the amount of scission and the prescribed radius

during scission. Depending on the relative properties of the networks, an up-

down-up shape may become monotonic or a monotonic shape may develop into

an up-down-up shape. The local maxima and minima are limit load instabilities.

Although not studied here, bifurcation points may also exist that lead to non-

spherical deformations. Thus, a spherical membrane that is initially stable in its

virgin state may become unstable after scission and crosslinking. This interesting

question of how scission affects the stability of a spherical membrane is left to

future work. In summary, a membrane that meets a set of operating criteria under

pre-scission conditions may, as a result of microstructural changes, fail to meet

those criteria under post-scission conditions.

Appendix

Consider the expression for stress in (2.3) for times t > t4 with W(1) (I1, I2, T) =

TW(1) (I1, I2), W(2) ( Î1, Î2 , T) = TW(2) (Î1, Î2 ). The deformation is assumed to be

unchanged for times t � t̂t � t4, i.e., x t̂tð Þ ¼ x tð Þ; and is arbitrary for times t >

t4, i.e., x = x(t) is unspecified. The temperature history is assumed to be that

described in Section 4. Then, ĜG ¼ @x tð Þ=@x t̂tð Þ ¼ @x tð Þ=@x tð Þ; i.e., the defor-

mation gradient of configurations for t > t4 with respect to configurations for

t < t̂t < t4 is independent of t̂t:
For notational convenience, let x tð Þ ¼ x and x t̂tð Þ ¼ x̂x. Then, ĜG ¼ @x=@x̂x is

now denoted by G ¼ @x=@x: The tensor B̂B in the integrand of (2.3), now denoted

by B; is given by B ¼ GG
T
; and is independent of t̂t, t: < t̂t < t4 On using the

assumption that both networks are Mooney–Rivlin materials, along with (5.3)

and (5.4), the expression for stress in (2.3) becomes

A

Co

¼ � p

Co

Iþ N1 B� � 1ð ÞB�1
	 


þ N2 B� � 2ð ÞB
�1

	 


: ðA:1Þ

The stress can now be related to deformation from the permanent set state. Let

F = GsetFset, where Fset = @xset/@X is the deformation gradient of the permanent

set configuration with respect to the reference configuration and Gset = @x/@xset is

the deformation gradient of a configuration at time t > t4 with respect to the

permanent set configuration. Then

B ¼ GsetFsetF
T
setG

T
set: ðA:2Þ
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Next, let F ¼ @x=@X be the deformation gradient of the configuration held fixed

during t e t̂t e t4 with respect to the reference configuration. Then G ¼ @x=@x

can be expressed as G ¼ GsetFsetF
�1

and

B ¼ GsetFsetF
�1

F
�T

F T
set G T

set : ðA:3Þ
For the inflated spherical membrane, the deformation at each material element is

an equal biaxial stretch. Thus,

Fset ¼
1

l2
set

0 0

0 lset 0

0 0 lset

2

4

3

5; F ¼
1

l
2 0 0

0 l 0

0 0 l

2

6
4

3

7
5: ðA:4Þ

Then

FsetF
T
set ¼ 12

setIþ
1

1 4
set

� 12
set

 !

I 1ð Þ ðA:5Þ

and

FsetF
�1

F
�T

F T
set ¼

12
set

1
2

Iþ 1
4

1 4
set

� 12
set

1
2

 !

I 1ð Þ; ðA:6Þ

where

I 1ð Þ ¼
1 0 0

0 0 0

0 0 0

2

4

3

5: ðA:7Þ

By (A.2) and (A.5),

B ¼ 12
setGsetG

T
set þ

1

14
set

� 12
set

 !

GsetI
1ð ÞG T

set : ðA:8Þ

By (A.3) and (A.6),

B ¼ 12
set

1
2

GsetG
T

set þ
1

4

14
set

� 12
set

1
2

 !

GsetI
1ð ÞG T

set : ðA:9Þ

In a similar manner, it can be shown that

B�1 ¼ 1

12
set

G�T
set G�1

set þ 14
set �

1

12
set

 !

G�T
set I 1ð ÞG�1

set ðA:10Þ

and
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Substitution of (A.8) – (A.11) into (A.1) gives
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set :

ðA:12Þ
This gives the stress in terms of the deformation gradient Gset from the

permanent set configuration. It has the form of a constitutive equation for a

material that is transversely isotropic about the radial direction.

When the membrane is inflated from its permanent set configuration and

remains spherical,

Gset ¼
1
�2 0 0

0 � 0

0 0 �

2

4

3

5; ðA:13Þ

where m = l/lset. From (A.12)

s33 � s11
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Since s11 is considered negligible compared to s33 in membrane theory, the

membrane stress is given by s33 � s11ð Þ=Co � �33=Co ¼ s=Co.

When m = 1, the membrane is in the permanent set state with s = 0. (A.14)

reduces to
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¼ 0;

ðA:15Þ
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which is a restatement of (7.1). (A.14) then simplifies to

s ¼ �2
j
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Finally, substituting (A.16) and l = mlset into (3.8) gives (7.3) and (7.4).
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