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Abstract. We present a derivative pricing and estimation methodology for a class of stochastic
volatility models that exploits the observed ‘bursty’ or persistent nature of stock price volatility.
Empirical analysis of high-frequency S&P 500 index data confirms that volatility reverts slowly
to its mean in comparison to the tick-by-tick fluctuations of the index value, but it isfast mean-
reverting when looked at over the time scale of a derivative contract (many months). This motivates
an asymptotic analysis of the partial differential equation satisfied by derivative prices, utilizing the
distinction between these time scales.

The analysis yields pricing and implied volatility formulas, and the latter provides a simple
procedure to ‘fit the skew’ from European index option prices. The theory identifies the important
group parameters that are needed for the derivative pricing and hedging problem for European-style
securities, namely the average volatility and the slope and intercept of the implied volatility line,
plotted as a function of the log-moneyness-to-maturity-ratio. The results considerably simplify the
estimation procedure.

The remaining parameters, including the growth rate of the underlying, the correlation between
asset price and volatility shocks, the rate of mean-reversion of the volatility and the market price
of volatility risk are not needed for the asymptotic pricing formulas for European derivatives, and
we derive the formula for a knock-out barrier option as an example. The extension to American and
path-dependent contingent claims is the subject of future work.
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1. Introduction

This article summarizes a flexible methodology for stochastic volatility modeling
which has the following features:
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38 JEAN-PIERRE FOUQUE ET AL.

• It applies to a large class of volatility processes that are driven by an er-
godic process that is tending rapidly (in a sense to be explained below) to
its invariant measure.

• It incorporates a nonzero volatility risk premium that models the market’s
‘crash-o-phobia’, and a nonzero correlation between volatility and asset price
shocks that explains the much-observed skew or leverage effect.

• An asymptotic analysis that exploits volatility clustering yields a simple pric-
ing (and hedging) theory for European-style and some path-dependent contin-
gent claims whose implementation requires solution of a PDE problem that is
a minor extension of the corresponding classical Black-Scholes PDE problem
for that security. In particular, where the Black-Scholes theory produces an
explicit formula, so does the new theory.

• The parameters needed for the theory are easily ‘read from the skew’. That
is, calibration from near-the-money European option implied volatilities is
simple and direct. The difficult-to-estimate volatility risk premium, correla-
tion parameter, and persistence-time of the volatility are not explicitly needed.
Further, the theory does not need estimation of today’s volatility level.

• The theory can be extended to give a good approximation of the stochastic
volatility corrected law of the risk-neutral asset price process that can be used
to simulate, for example to price path-dependent and, in principle, American
securities.

We outline the main results of this approach and cite references for the mathe-
matical details and empirical motivation. We also present the pricing formula for
a knock-out barrier option that can be used directly after calibration from the ob-
served European-option skew. We conclude with a summary of ongoing and future
work.

1.1. MOTIVATION FOR STOCHASTIC VOLATILITY

Stochastic volatility models have become popular for derivative pricing and hedg-
ing in the last ten years as the existence of a nonflat implied volatility surface (or
term-structure) has been noticed and have become more pronounced, especially
since the 1987 crash. This phenomenon, which is well-documented in, for example,
[6, 9], stands in empirical contradiction to the consistent use of a classical Black-
Scholes (constant volatility) approach to pricing options and similar securities.
However, it is clearly desirable to maintain as many of the features as possible that
have contributed to this model’s popularity and longevity, and the natural extension
pursued in the literature and in practice has been to modify the specification of
volatility in the stochastic dynamics of the underlying asset price model.

Any extended model must also specify what data it is to be calibrated from.
The pure Black-Scholes procedure of estimating from historical stock dataonly
is not possible in an incomplete market if one takes the view (as we shall) that
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the market selects a unique risk neutral derivative pricing measure, from a family
of possible measures, which reflects its degree of ‘crash-o-phobia’. Thus, at least
somederivative data has to be used to price other derivatives, and much recent work
usesonly derivative data to estimate all the model parameters so that the assumed
relationship between the dynamics of derivative prices and the dynamics of the
underlying is not exploited at all.

We also refer the reader to recent surveys of the stochastic volatility literature
such as [4, 5].

1.2. MEAN-REVERTING DIFFUSION MODEL

While the general asymptotic theory [2] can be given for volatility processes driven
by any ergodic stochastic process with a unique invariant measure (e.g. Markov
chains, jump processes), it is convenient to present the analysis for a diffusion
driving process, as is done in [1, 3]. The analysis in [10] is independent of spe-
cific modeling of the volatility process, but results in bands for option prices that
describe potential volatility risk while obviating the need to estimate the risk pre-
mium. However, the market in at- and near-the-money European options is liquid
and its historical data can be used to estimate this premium. We attempt this with
a parsimonious model that is complex enough to reflect an important number of
observed volatility features:
1. volatility is positive;
2. volatility is mean-reverting, but persists;
3. volatility shocks are negatively correlated with asset price shocks. That is,

when volatility goes up, stock prices tend to go down andvice-versa. This
is often referred to as leverage, and it at least partially accounts for a skewed
distribution for the asset price that lognormal or zero-correlation stochastic
volatility models do not exhibit.

1.3. MODEL

We present the results for models in which stock prices are conditionally lognor-
mal, and the volatility process is a positive increasing function of a mean-reverting
Ornstein–Uhlenbeck (OU) process. That is,

dXt
Xt
= µdt + f (Yt)dWt, (1)

dYt = α(m− Yt)dt + βdẐt , Ẑt := ρWt +
√

1− ρ2Zt, (2)

whereW andZ are independent Brownian motions, andρ is the correlation be-
tween price and volatility shocks, with|ρ| < 1.

The solution to (2) is

Yt = m+ (Y0−m)e−αt + β
∫ t

0
e−α(t−s)dẐs, (3)
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and, givenY0, Yt is Gaussian,

Yt − Y0.e
−αt ∼ N

(
m
(
1− e−αt

)
, ν2

(
1− e−2αt

))
, (4)

where ν2 := β2/ (2α). Thus, Y has a unique invariant distribution, namely
N (m, ν2), and is a simple building-block for a large class of stochastic volatility
models described by choice off (·). We call these models mean-reverting be-
cause the volatility is a monotonic function of a processY whose drift pulls it
towards the mean valuem. The volatility is correspondingly pulled towardsf (m)
approximately.

1.4. FAST MEAN REVERSION

It is often noted in empirical studies of stock prices that volatility is persistent or
bursty – for days at a time it is high and then, for a similar length of time, it is low.
However, over the lifetime of a derivative contract (a few months), there are many
such periods, and looked at on this timescale, volatility is fluctuating fast, but not
as fast as the rapidly changing stock price.

In terms of our model, we say that the volatility process is fast mean-reverting
relative to the yearly timescale, but slow mean-reverting by the tick-tick timescale.
Since the derivative pricing and hedging problems we study are posed over the
former period, we shall say that volatility exhibits fast mean-reversion without
explicitly mentioning the longer timescale of reference.

The rate of mean-reversion is governed by the parameterα, in annualized units
of years−1. In [3], we present empirical evidence from S&P 500 data thatα is in
fact large and thatν2 is a stableO(1) constant, so that our large-α option pricing
formulas of Section 2 can be used.

As an illustration, Figure 1 shows sample stock price paths for the model (1–2)
in whichα = 1 andα = 50. Since, from (4), 1/α log 2 is the time for the expected
distance to the mean to halve,α = 1 corresponds to 0.7 of a year (roughly 8
months), andα = 50 corresponds to about half a week. Alternatively, under the
invariant distributionN (m, ν2), the covariance ofYs andYs+t is ν2e−αt andα−1 is
the correlation time of the OU process. Forα = 1 this correlation time is a year
while for α = 50 it is about a week.

1.5. DERIVATIVE PRICING

We are interested in pricing European-style derivative contracts on the underlying
stock. When volatility is supposed to be constant, the classical Black-Scholes the-
ory applies; when it is modelled as a stochastic process as here, the derivative price
C(t, x, y) is given by

C(t, x, y) = EQ(γ )t,x,y {h(XT )}, (5)
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Figure 1. The top figure shows a simulated path off (Yt ) = eYt with α = 1, and the bottom

one shows a path withα = 50. In both cases,ν2 = 0.25, (E{e2Yt }) 1
2 = 0.1. Note how

volatility ‘clusters’ in the latter case.

whereEQ(γ )t,x,y denotes the expectation given thatXt = x, Yt = y, and under an
Equivalent Martingale Measure (EMM)Q(γ ). The payoff function of the deriva-
tive is h(x). Under such an EMM the discounted stock price is a martingale. By
standard no-arbitrage pricing theory (see, for example, [7]), there is more than
one possible EMM because the market is incomplete (the volatility is not a traded
asset); the nonuniqueness is denoted by the dependence ofQ on γ , the market
price of volatility risk.

We shall assume thatγ is constant because it has to be estimated from market
data, at- and near-the-money call option prices in [3]. Most studies takeγ = 0 for
simplicity, but we take the view that the market selects a pricing measure identified
by a particularγ which will be shown to occur in a simple manner in our pricing
and implied volatility formulas, hence, considerably simplifying estimation of its
contribution to the observed skew. This can then be used to price more complicated
derivatives in a consistent manner.

In [3], we analyze the PDE corresponding to (5) in the presence of fast mean-
reversion:

Ct + 1

2
f (y)2x2Cxx + ρβxf (y)Cxy + 1

2
β2Cyy+

+ r(xCx − C)+ (α(m− y)− βλ(y)) Cy = 0, (6)
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C(T , x, y) = h(x), (7)

where

λ(y) := ρ (µ− r)
f (y)

+ γ
√

1− ρ2. (8)

There is also a (left) boundary condition

C(t, L, y) = g(t), (9)

which does not, in general, depend ony. For example, for a European call,
L = 0, g = 0. We also require that the solution not be ‘too singular’ asx → ∞;
for example, linear growth is permissible. This is sufficient to identify a unique
solution (see [11] for details). A barrier option is discussed in Section 4.

To summarize, the stochastic volatility model studied here is described by the
five parameters(m, ν, α, ρ, γ ) which are, respectively, the meanm and the stan-
dard deviationν of the invariant distribution of the driving OU process, the rate of
mean reversionα, the skewnessρ, and the market price of volatility risk1 γ . The
last parameter cannot be estimated from historical asset price data. As we shall see
in the next section, not all of these are needed for the pricing theory.

2. Main Result

1. When the rate of mean-reversionα is large (volatility persistence), the implied
volatility curve from European call options is well-approximated by a straight
line in the composite variable labelled thelog-moneyness-to-maturity-ratio
(LMMR)

LMMR :=
log

(
Strike Price
Stock Price

)
Time to Maturity

.

That is, ifCcall is the stochastic volatility call option price satisfying (6–7)
with h(x) = (x −K)+, thenI defined by

Ccall = CBS(I ),
whereCBS is the Black-Scholes formula, is given by

I = a log(K/x)

(T − t) + b +O(α−1).

The parametersa andb are easily estimated as the slope and intercept of the
linefit.
The priceCh of any other derivative satisfying a problem of type (6, 7, 9), for
example, binary options, barrier options, is given by

Ch = C0+ C1+O(α−1),
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whereC0(σ ) is the solution to the corresponding Black-Scholes problem with
constant volatilityσ , andC1(t, x) solves

LBS(σ )C1 = V x3∂
3C0

∂x3
+Wx2 ∂

2C0

∂x3
,

with

LBS(σ ) := ∂

∂t
+ 1

2
σ 2x2 ∂

2

∂x2
+ r

(
x
∂

∂x
− ·
)
, (10)

V := σ 3a, (11)

W := aσ 3− σ(b − σ), (12)

andσ is the long-run historical asset price volatility. The terminal condition is
C1(T , x) = 0 and the boundary condition is zero also:C1(t, L) = 0.

The table below then distinguishes the model parameters from the parameters that
are actually needed for the theory. The latter can be written as groupings of the
former by the formulas given in [3], but for practical purposes, there is no need to
do so. We pursue this in [3] for empirical completeness.

Model parameters Parameters that are needed

Growth rate of stockµ
Mean historical volatility of stockσ

Long-run mean volatilitym

Rate of mean-reversion of volatilityα
Slope of implied volatility linefita

Volatility of volatility β

Correlation between shocksρ
Intercept of implied volatility linefitb

Volatility risk premiumγ

The three parameters on the right-hand side of the table are easily estimated and
found to be quite stable from S&P 500 data in [3].

2.1. EMPIRICAL VALIDATION OF FAST MEAN -REVERSION

In [3] we have undertaken an extensive empirical study of high-frequency S&P
500 index data to establish that volatility reverts slowly to its mean compared to
the tick-by-tick scale fluctuations, but it reverts fast when looked at over the longer
time scale of months. The key conclusion of this study is that while the rate of
mean-reversion (in unitsyears−1) is large, it is an extremly difficult parameter to
estimate precisely, being the reciprocal of the correlation time of ahiddenMarkov
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process. However, the asymptotic derivatives theory does not need the value ofα,
only that it be large.

A brief description of our validation procedure is as follows:

• We identify and use segments where the volatility process can be considered
stationary. These turn out to be between one and a half to six months in length
for the 1994 and 1995 datasets we have looked at, and across these segments,
nonstationary effects would have to be taken into consideration. In fact studies
of daily closing data, that islow frequencyprices, often identify this timescale
as characteristic of volatility persistence. However, the intraday data highlight
a shorter timescale of local volatility fluctuations.

• We extract the rate of mean-reversion from the Lorenz part of the spectrum
of the logarithm of the squared de-meaned returns process. Such a spectral
analysis is suited to the high-frequency data that we have, and provides a
convenient graphical tool for picking off an order estimate forα. We find that
the correlation time of the process is on the order of one to two days. Thus,
mean-reversion is fast over the timescale of months.

• We validate both the OU mean-reverting model and the estimation of the
fast rate of mean-reversion by bootstrap, that is, comparison with spectra of
simulated data. The method separates the intrinsic variability over segments
of the model parameters from their statistical variability. Note that we do not
expect parameters of the volatility process to be constant across the segments
of stationarity.

3. Results of Fitting the Skew

To test the feasibility of the theory-predicted LMMR linefit for actual implied
volatility data, we estimate in [3] the slope and intercept coefficientsâ andb̂ from
fitting Black-Scholes implied volatilities from observed S&P 500 European call
option prices:

I obs(t, x;K,T ) = â
(

log(K/x)

T − t
)
+ b̂. (13)

We observe from the results that the slope coefficientsâ are small. This strongly
supports the fast mean-reverting hypothesis and validates use of the asymptotic
formula as the full skew formula in [3] shows thata is a term of order 1/

√
α. We

also find that the estimatesâ andb̂ within the segments of stationarity are relatively
stable.

The following table separates the needed parameters, whose estimates are fairly
stable, from the ones presented only for completeness, whose estimates have a high
degree of uncertainty. The figures are for 1994 S&P 500 .
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Segment σ̂ â b̂ ν̂2 µ̂ α̂ ρ̂ γ̂

(length)

1 (6 months) 0.1015 –0.1009 0.1410 0.9153 –0.1428∼155 ∼–0.11 ∼–4.97

2 (11
2 months) 0.0994 –0.1270 0.1286 0.7835 0.4170∼155 ∼–0.20 ∼2.36

4 (3 months) 0.1030 –0.0888 0.1457 1.0794 –0.0695∼155 ∼–0.065 ∼–4.07

Notice that the market price of volatility risk estmateγ̂ inherits the variability
of the growth rate estimatêµ, but that, just as the Black-Scholes theory did not
depend onµ, the fast mean-reverting stochastic volatility theory only depends upon
a stable grouping of theγ and other parameters.

4. Example: Pricing a Barrier Option

We briefly sketch, for illustrative purposes, the extension of the pricing theory
to more exotic securities by outlining the calculation for a knock-out barrier call
option which gives the holder the right to buy the underlying asset on expiration
dateT for strike priceK unless the asset price has hit the barrierH at any time
beforeT , in which case the contract expires worthless. In what follows, we shall
assumeH < K.

In the stochastic volatility environment, the priceB(t, x, y) of the barrier option
satisfies (6, 7, 9) withh(x) = (x − K)+, and boundary conditionB(t,H) = 0.
Our fast mean-reverting approximation is

B = B(0)(t, x) + B(1)(t, x) +O(α−1),

whereB(0) is the Black-Scholes barrier price with constant volatility parameterσ .
The stochastic volatility correctionB(1) satisfies the PDE problem

LBSB(1) = V x3B(0)xxx +Wx2B(0)xx , in x > H, t < T (14)

with zero terminal and boundary conditions. The operatorLBS is defined in (10),
and the coefficientsV andW are estimated from the historical volatilityσ and the
slope and intercept of the skew fit through the expressions (11) and (12).

Following the exposition in [11],B(0)(t, x) is obtained by the method of images
and given by

B(0)(t, x) = CBS(t, x) −
( x
H

)1−k
CBS(t,H 2/x),
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whereCBS(t, x) is the Black-Scholes formulafor a vanilla call option, with the
volatility parameterσ , andk := 2r/σ 2. The right-hand side of (14) is then given
by

F(t, x) := V x3CBSxxx(t, x) +Wx2CBSxx (t, x)−
( x
H

)1−k (
W
H 4

x2
CBSxx (t,H

2/x)−

−V H
6

x3
CBSxxx(t,H

2/x)+ q(t,H 2/x)

)
,

(15)

with
q(t, x) := θCBS(t, x) + κxCBSx (t, x) + χx2CBSxx (t, x),

θ := k(k − 1)(W − V (k + 1)),

κ := 2kW − 3k(k + 1)V ,

χ := −3(k + 1)V .

Motivated by the translation and reflection invariance of the spatial part of the
Black-Scholes operatorLBS in logarithmic co-ordinates moving at the drift rater,
we define the mirror operatorM by

Mg(t, x) =
( x
H

)1−k
g(t,H 2/x).

Then the method of images says that the solution toLBSB(1) = F(t, x) in x > H

is given by solving

LBSv(t, x) = F(t, x) −MF(t, x),

in x > 0 and restricting the solution tox > H .
From (15), we then only have to solve

LBSv(t, x) = 2W(x2CBSxx (t, x) −M(x2CBSxx (t, x)))+ q(t, x) −Mq(t, x),

on the full domainx > 0, t < T . Since the right-hand side is a function minus its
mirror, it can be shown that we can ignore the mirror terms, solve and then subtract
the mirror of the solution. Thus, we need to solve

LBSu(t, x) = 2Wx2CBSxx (t, x) + q(t, x),
with zero terminal and boundary conditions.

A convenient expression for the contribution to the solution from the first forc-
ing term is obtained by explicit computation from the Black-Scholes formula and
the Green’s function forLBS . This computation appears in [1] or [3] since it is part
of the solution for the regular call option. The second part of the solution can be
written in terms of derivatives of the Black-Scholes formula with respect tor and
σ , by noticing that

LBS((T − t)CBS(t, x)) = −CBS(t, x),
LBSCBSr (t, x) = CBS(t, x) − xCBSx (t, x),

LBSCBSσ (t, x) = −σx2CBSxx (t, x).
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Using these, we find

u = −2W
xe−d2

1/2

σ
√

2π

√
T − t − (θ + κ)(T − t)CBS − κCBSr −

χ

σ
CBSσ ,

whered1 is in standard Black-Scholes notation

d1 = log(x/K)+ (r + 1
2σ

2)(T − t)
σ
√
T − t .

Finally,v(t, x) = u(t, x)−Mu(t, x) andB(1)(t, x) is the restriction ofv tox > H :

B(1)(t, x) = u(t, x) −
( x
H

)1−k
u(t,H 2/x).

The separate components of the formula are easily computed in closed form
and the skew-calibrated parametersa andb inserted throughV andW . There is of
course no dependence on the unseen value of today’s volatilityf (y).

5. Future Directions

1. The estimation tools outlined here can now be used to validate a fast mean-
reverting model for other high-frequency datasets. We are presently preparing
an empirical study of S&P 500 index data from other years, as well as foreign
exchange rate data.

2. The asymptotic approximation of the derivative prices can be improved to give
a probability law that approximates the full risk-neutral pricing law. The full
theory [2] will depend on more global features of the stochastic volatility
model than just the parametersa and b, but it will be applicable to short-
maturity and far-from-the-money contracts which are outside the region of
validity of the present theory.

3. We are working on an asymptotic simplification of the American option pricing
problem under stochastic volatility, which must currently be solved numeri-
cally.

4. The problem of computing optimal hedging strategies under constraints when
volatility is random is unsolved. For example, to optimize the probability of
a successful hedge with just the underlying given an initial cash input would
require solving a degenerate Hamilton–Jacobi–Bellman equation. We are look-
ing at simplifying this problem with separation of scales asymptotics.

Note

1. A detailed study of possible ways to define this concept, along with other results, is given in [8].
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