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Abstract. Plane stress mode I near-tip fields in orthotropic materials are examined. Plastic orthotropy is described 
by Hill's quadratic yield function and the strain hardening behavior is given by an appropriate generalization of 
a uniaxial tensile power-law stress-strain relation. Pronounced changes in the pattern of the angular variations 
of crack-tip fields have been observed with the degree of plastic orthotropy and the amount of strain hardening. 
Possible shapes and sizes of plastic zones (as inferred from effective stress contours) are presented for high- and 
low-hardening materials and a wide range of plastic orthotropy. The shape of the plastic zone for a particular case 
of plastic orthotropy agreed remarkably well with the zone of intense straining induced by an appropriately 
orientated crack within a graphite/epoxy laminate. 

I. Introduction 

Anisotropic plastic behavior in polycrystals arises from preferred crystallographic orien- 
tations for slip and twinning and from the development of texture caused by large plastic 
deformation. To describe the plastic anisotropic behavior, Hill [1] proposed a phenomenol- 
ogical quadratic yield function for orthotropic materials. Bassani [2], using the Bishop-Hill 
procedure [3], constructed a family of yield functions for polycrystals with a wide range of 
transversely isotropic properties. Later, Hill [4] proposed a non-quadratic yield function to 
account for the so-called anomalous behaviour of certain materials. To gain some under- 
standing of the plastic flow near the tip of a crack in an orthotropic material, we adopted 
the simple Hill quadratic yield function and the normality flow rule to model the plastic flow 
behavior. 

The asymptotic near-tip solutions for a crack in both power-law hardening and perfectly 
plastic isotropic materials have been presented by Hutchinson [5, 6] and Rice and Rosengren 
[7]. Shih [8, 9] obtained the asymptotic near-tip solutions for both power-law hardening and 
perfectly plastic isotropic materials under combined mode I and II conditions. Hayashi [10] 
determined the asymptotic near-tip solutions for some power-law hardening materials with 
mild orthotropy. Pan and Shih [11] and Pan [12] carried out a systematic study of the 
asymptotic near-tip solutions for both power-law hardening and perfectly plastic ortho- 
tropic materials under plane-strain conditions. 

Here, we present mode I plane-stress crack-tip solutions for power-law hardening 
orthotropic materials to show the effects of strain hardening and plastic orthotropy on 
the crack-tip fields under plane-stress conditions. Furthermore, the low-hardening power- 
law crack-tip solutions are used as a guide to construct the corresponding perfectly 
plastic crack-tip solutions [18]. An excellent discussion of plastic crack-tip fields in 
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homogeneous materials and their relevance to the J-based [13] phenomenological nonlinear 
fracture mechanics can be found in the review paper by Hutchinson [14]. 

2. Orthotropic plasticity 

We adopt the small-strain deformation plasticity approach to examine the effects of  plastic 
orthotropy and plastic hardening on crack-tip fields. We consider cases where the pro- 
nounced plastic orthotropy is already firmly established and restrict the discussion to a range 
of plastic straining such that further change of  plastic orthotropy is negligible. The axes of 
a Cartesian coordinate system, x~, x 2, and x3, are chosen to coincide with the axes of the 
orthotropic symmetry of a material, X~, )(2, and X 3. We adopt the Hill quadratic yield 
condition [1] for the orthotropic material. The yield condition can be expressed in the form 

C])(0-ij ) = /7(0"22 - -  0"33) 2 + G(033  - -  0-11) 2 + H(0-11 - 0-22)2 

+ 2L~3 + 2Mail + 2N~2 = Q2, (2.1) 

where ~b(%) represents the current yield surface in the stress space, and F, G, H, L, M, and 
N are the dimensionless constants that describe the state of  plastic orthotropy. An effective 
yield strength parameter Q can be defined to represent the characteristic size of  the elastic 
domain at the current stress state. For isotropic materials, we can set F = G = H = 
L/3 = M / 3  = N/3  = 1/6 and (2.1) reduces to the familiar Von Mises yield condition. 

Let X0, Y0, and Z 0 be the initial yield stresses along the orthotropic symmetry axes and R0, 
So, and T o be the initial shear yield stresses with respect to the orthotropic symmetry axes. 
As in Pan and Shih [11], we identify Q with the shear yield stress T with respect to the Xl and 
x2 axes. With this normalization, these relations follow (Hill [1]): 

G + H = (TolXo) 2, H + F = (TolYo) F + G = (To/Zo) 2 

2L = (To/Ro) 2, 2M = (To/So) z , 2N = 1. (2.2) 

We introduce the generalized shear effective stress Ze and the generalize tensile effective 
stress 0.e by analogy with those of isotropic plasticity theories: 

~ = 0.~/3 = F(0-22 - 0.33) 2 + G(0-33 - 0.22)2 + O(0-11 - -  0 " 2 2 )  2 

+ 2L0-~3 + 2M0-], + 2N~2 = Q2. (2.3) 

The generalized deviatoric stress sij in the direction of the normal of  the yield surface is 
defined as 

sij = O~b/d0-ij = a~/O0- i j  (2 .4)  

where sis reduces to the deviatoric stress for isotropic materials. 
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We adopt a deformation plasticity power-law hardening relation between stresses and 
plastic strains as in Pan and Shih [11]: 

= (0~/2)(~e/%)'-'(S,j/Z0), (2.5) 

where n is the strain hardening exponent; r 0 is the reference shear stress, which can be 
identified as the initial shear yield stress of the shear stress-strain curve with respect to the 
x~ and x2 axes; 70 = %/G is the associated reference shear strain, with G being a represen- 
tative elastic shear modulus; and ~ is the material constant particular to the present stress- 
strain relation. Equation (2.5) reduces to the usual J2 power-law deformation plasticity 
relation for isotropic materials. 

3. Dominant singularity analysis in plane stress 

We consider a two-dimensional crack problem as depicted in Fig. 1. The Cartesian coordi- 
nates x~ and x2 are centered at the crack tip and the x3 is perpendicular to the x~-x2 plane. 
We will confine our discussion to the cases where the Cartesian coordinate axes coincide with 
the symmetry axes of plastic orthotropy. The polar coordinates r and 0 are centered at the 
crack tip as shown in Fig. 1. By invoking the plane-stress condition (0-3i = 0, i = 1, 2, 
or 3) and 2N = 1, the yield condition (2.3) becomes 

2 (3.1) F0-~: + G~, + H(0-H - 0"22) 2 + 0-~2 ---- "L'e" 

The argument leading to the HRR (Hutchinson-Rice-Rosengren) singularity field has 
been detailed by Hutchinson [5, 6, 14] and Rice and Rosengren [7]. Note that the elastic strain 
is negligible compared to the plastic strain in the immediate vicinity of the crack tip. As the 
orthotropic solid obeys the power-law deformation plasticity constitutive law of (2.5), the 
dominant asymptotic singular stresses, strains, and displacements at the crack tip can be 
expressed as 

aij = ao(J/otaoeolr)l/("+~)~ij(O; n, F, G, H; m) 

e~. = aeo(J/~0-oeolr)"/<'+°~ij(O; n, F, G, H; m) (3.2) 

U i - -  ~l  i = a~or(J/aao~olr)"/("+l)fi~(O; n, F, G, H; m). 

x2 

T 
Fig. 1. Conventions at the crack tip. 

x1 
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In (3.2), tr 0 and e0 are related to % and ~0 in (2.5) by tr 0 = x/~z0 and e 0 = 70/x/~. The 
normalized dimensionless functions 8u, Be, ~u, and ~ depend upon the angle 0, the strain 
hardening exponent n, the orthotropic material constants: F, G, and H, and the mode 
parameter m (mode I, mode II, or mixed-mode). Tlie dimensionless constant /depends upon 
the material parameters n, F, G, H, and the mode parameter m. The constant 8; allows for 
a possible rigid body motion of the crack tip itself. The angular functions are normalized by 
setting the maximum value of ~ to unity. With this normalization, the present angular 
functions for F = G = H = 1/6 are exactly the functions given by Hutchinson [5, 6] and 
Shih [8, 16]. The 0-variation of  the normalized effective stress, "~e and 8e, are defined as 

ze'2 = 8~/3 = F (~ r r  sin20 + ~00 cos20 + 8,0 sin 20) 2 

+ G(8,, cos20 + a00 sin20 - 8~0 sin 20) 5 + H[(8,r - 800)cos 20 

- 2~,0 sin 20] 2 + (1/4)[(~,, - t~00 ) sin 20 + 2~,0 cos 20] 2. (3.3) 

The normalized strain ~ij is related to the normalized deviatoric stress su as 

~ij = (3/2)~e-'gU (3.4) 

and the normalized deviatoric stress su is 

= a  l au. (3.5) 

The dimensionless constant I is defined by 

I = f"_,< {(nl(n + 1) )~  +' cos 0 - [sin 0(#,,(~o - ~;) - #.o(~, + ~b) 

+ (1/(n + 1)) cos 0 (~rr~-tr "q- ~rO~lO)]) dO, (3.6) 

where the superscript ( )" denotes the differentiation with respect to 0. 
The numerical procedure to determine the dependence of the singularity field on 0 for a 

given material is outlined here. A fourth-order ordinary differential equation in terms of a 
separable Airy stress function can be obtained from the compatibility equation and the 
constitutive equation. Then, the ordinary differential equation is integrated by the fourth- 
fifth order Runge-Kutta scheme with error and step-size control. The shooting method is 
employed to satisfy the stress-free boundary conditions at 0 = 180 ° (or - 1 8 0  °) and the 
symmetry condition at 0 = 0 ° for pure mode I crack-tip fields. 

4. Mode I crack-tip fields 

Plane-stress crack-tip fields, as expressed in (3.2), are functions of three plastic orthotropy 
constants: F, G, and H. The yield condition in plane-stress has more plastic orthotropy 
parameters than that in plane-strain. In the latter case, the angular functions of the crack-tip 
fields are members of a single family parameterized by a plastic orthotropy parameter p [ 11 ]. 
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Here, only four simple cases are examined in detail and the presentation of the results 
requires a large number of graphs. 

Since we assume that the plastic orthotropy remains unchanged under deformation, the 
crack-tip fields therefore can be expressed as functions of the relative magnitudes of the 
initial yield stresses X 0, Y0, Z0, and T O (see (2.2)). In this study we vary the relative 
magnitudes of the initial yield stresses to investigate the effects of plastic orthotropy and 
plastic hardening on the crack-tip fields. We only examine four simple cases where the initial 
yield strength in one orthotropic symmetry direction is relatively stronger or weaker than 
those of the others. Due to the symmetry of the mode I crack-tip fields, we concentrate our 
discussions to the crack-tip fields between 0 = 0 ° and 0 = 180 °. 

4.1 Case 1 

We first examine the effects of  plastic orthotropy on the crack-tip fields when the strength 
in the x 1 direction is increased while the strength in the other directions remains unchanged, 
as for isotropic materials, i.e., Xo/Y o > 1 and Y0 = Z0 = x/-3T0. Figure 2 shows the asymp- 
totic crack-tip stress and strain fields for n = 3, which represents materials with a relatively 
high hardening capacity. In Fig. 2(a), the crack-tip stress and strain fields for isotropic 
materials (X0 = Y0 = Z0 = x/~T0) are shown. These fields are the same fields presented by 
Hutchinson [6] and Shih [8, 16]. Figures 2(b) and 2(c) show the crack-tip stress and strain 
fields for Xo/Yo = 2 and 4, respectively. 

As shown in these figures, when the strength in the xl direction is increased, the angular 
variation of t~rr and ~00 peaks at 0 = 0°; a rapid change of 6r, occurs where the angle 0 
increases from 150 ° to 170 °. At this location of rapid change of the radial stress, the effective 
s t ress  (~e decreases. 

Figure 3 shows the asymptotic crack-tip stress and strain fields for n = 20, which 
represents materials with a relatively low hardening capacity. In Fig. 3(a), the crack-tip stress 
and strain fields for isotropic materials are shown. Again, these fields are the same fields 
presented in Hutchinson [6] and Shih [8, 16]. Figures 3(b) and 3(c) show the crack-tip stress 
and strain fields for Xo/Yo = 2 and 4, respectively. The trends of the crack-tip fields in Fig. 3 
are similar to those for n = 3 in Fig. 2. A comparison of Fig. 3 with Fig. 2 shows that as 
the hardening exponent n increases, the radial strain ~ approaches zero for all angles. The 
reason is that the limit of  low-hardening solutions should approach the rigid perfectly plastic 
solutions, which require err to vanish as r approaches zero due to the equilibrium and the 
normality of plastic flow that we have assumed [17, 18]. Also, in Fig. 3, an almost discon- 
tinuous change of #r~ from a positive value to a negative value is shown at the location near 
the stress-free crack face. 

The effective stress contours are plotted for n = 3 and n = 20 in Figs. 4(a) and 4(b), 
respectively, using the dimensionless similarity coordinates (O~ZoTo/SJ)x~ and (~tZoYo/SJ)x2, 
where s = (r0/ze) "+l . As can be seen in the figures, when the strength in the Xl direction is 
increased, the effective contour along the direction of 0 = 0 ° protrudes. If the singularity 
field (3.2) represents the full solution everywhere within the plastic zone, then the contours 
in Fig. 4 represent the actual shapes of the elastic-plastic boundary. Since (3.2) usually 
dominates a region well within the plastic zone, these contours only suggest possible trends 
of the shape and the size of the plastic zone as the degree of plastic orthotropy and plastic 
hardening is varied. As shown in the figures, as n increases, the plastic shearing becomes more 
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Fig. 2. Case 1: Angular distribution of the crack-tip stress and strain fields for n = 3, Y0 = Z0 = x /~T0 and 
Xo/Yo = (a) 1, (b)  2, (c) 4. 

active in front of  the crack tip. However, it is possible that the shapes and the sizes of the 
effective stress contours in Fig. 4 could be quite different from the actual elastic-plastic 
boundaries. 

4.2. Case 2 

Next, we examine the effects of  plastic orthotropy on the crack-tip fields when the strength 
in the x 2 direction is increased with respect to those of  the others, i.e., Yo/X o > 1 and 
X0 = Z0 = v/3T0 • This case is relevant to the photoelastic study of  the fields near a crack 
in a graphite/epoxy composite laminate by Yeow, Morris, and Brinson [15]. 
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Xo/Yo = (a) 1, (b) 2, (c) 4. 

Figure 5 shows the asymptotic crack-tip stress and strain fields for n = 3. Figure 5(a) 
represents the crack-tip stress and strain fields for isotropic materials. Figures 5(b) and 5(c) 
show the crack-tip stress and strain fields for Yo/Xo = 2 and 4, respectively. 

Figure 5 demonstrates that as the strength in the x2 direction is increased, the angular 
functions 5e, 5~, and e,0 peak around 0 = 90°; 500 increases substantially at 0 = 0 °. There 
is a region where a rapid change of  5 ,  occurs; at this location, the effective stress decreases. 

Figure 6 shows the crack-tip stress and strain fields for n = 20. Figure 6(a) shows the 
crack-tip stress and strain fields for isotropic materials. Figures 6(b) and 6(c) depict the 
crack-tip stress and strain fields for Yo/X o = 2 and 4, respectively. The trends of  the crack-tip 
fields are similar to those for n = 3, plotted in Fig. 5. A comparison of Fig. 6 with Fig. 5 shows 
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that as the hardening exponent n increases, the angular variation of  Orr near the stress-free 
crack face resembles a discontinuity, ~, decreases to zero for all angles, and ~0 near 0 = 90 ° 
resembles a delta function for Yo/X o = 4. The angle 0 where the apparent discontinuity of  
the radial stress occurs only increases a bit as the strength in the x2 direction is increased. 

The effective stress contours for n = 3 and n = 20 are plotted in Fig. 7(a) and 7(b), 
respectively. As these figures show, when the strength in the x2 direction is increased, the 
effective stress contour becomes elongated in the x2 direction. This is similar to the p lane-  
strain case for p < 1, where p is the plastic orthotropy parameter defined by Pan and Shih 
[11]. However, the nature of  the plane-stress crack-tip field differs from that of  the plane- 
strain crack-tip field and this is best demonstrated by the asymptotic crack-tip solutions for 
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perfectly plastic isotropic materials. According to the results of  the asymptotic analysis for 
perfectly plastic isotropic materials within the context of the small strain approach, under the 
small-scale yielding condition, the plane-stress case has a fan sector directly ahead of  a crack 
tip [6]. This fan sector may induce a large amount of  plastic deformation ahead of  the crack 
tip. On the contrary, the plane-strain case has a constant stress sector directly ahead of  a 
crack tip. This constant stress sector only induces a limited amount of plastic shearing [19-22]. 

The fracture behavior of cracked graphite/epoxy laminates has been studied by Yeow, 
Morris, and Brinson [15]. They used photoelastic coatings to reveal the intense-stress regions 
near the crack tips in several graphite/epoxy laminates. For the [0°]8~ laminate, the intense- 
stress region appears as two narrow strips below and above the crack tip. The final fracture 



180 

t/) 

¢.t) 

Jwo Pan and C. Fong Shih 
5 

4 

3 

2 

1 

0 

-1 

-2 

-3 
-180 

/" I 

-9(] 0 90 180 

E 

"~ o (a) 

-1 
-180 

~ E r r  

n-20 
, i i 

-gO 0 90 180 

t/) 
o9 

co 

4 

3 

2 

1 

0 

- t  

-Z 

.~ t i t 
-180 -90 0 g O  

,~ ~ r r  

n-20 

180 

(b) 
°~  

4.F 

co E r  r 

n=20 
i i i 

-1-180 -90 0 gO 180 

O3 

4 

2 

I 

0 

-1 

-Z 

-3 i i 
-180 -gO O 

n-20 
i 

90 180 

Angle 

(c) 
r -  

. D  

09 

-1 
-180 

e~ .... ~ 

n-20 
i i i 

-90 0 90 180 

Angle 

Fig. 6. Case 2: Angular distribution o f  the crack-tip stress and strain fields for n = 20, X o = Z o = X/'3To and 
Yo/Xo = (a) l, (b) 2, (c) 4. 

mode for the cracked laminate is axial splitting in the 90 ° and - 9 0  ° directions (the fiber 
direction). 

Suppose that the nonlinear behavior of  the composite can be qualitatively approximated 
on a macroscopic scale by the power-law stress-strain relation described here. Note that in 
this study the effective stress contours plotted as functions of  plastic orthotropy parameters 
indicate the trend of  the intense-stress region near the crack tip as the plastic orthotropy 
parameters are varied. As shown in Fig. 7 for Yo/Xo = 1, 2, and 4 with X0 = Z0 = x/3To, 
the intense deformation zone near the crack tip becomes two narrow strips below and above 
the crack tip as the strength in the x2 direction is increased. 
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The [00]8, laminate used in the experiment of  Yeow et al. [15] exhibits a relatively larger 
strength in the direction perpendicular to the crack line than those in the other directions 
due to fiber reinforcement. As noted, the intense-stress region near the crack tip observed 
in their experiment appears as two narrow strips below and above the crack tip. The 
present continuum analysis suggests trends that are qualitatively in agreement with the 
observations near a macroscopic crack tip in a composite laminate. However, it is well 
known that the microscopic fracture processes near a macroscopic crack tip in a com- 
posite material are extremely complex and we do not suggest that the competing separation/ 
failure processes can be correlated to plastic zone sizes and shapes or by the H R R  type 
fields (3.2). 
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4.3. Case 3 

N o w ,  we examine the effects of  plastic orthotropy on the crack-tip fields when the strength 
in the x3 direction is increased with respect to those of  the others, i.e., Zo/Xo > 1 and 
X0 = Y0 = ,v/3T0 • The transversely isotropic materials that we consider in this case are 
isotropic in the Xl - x: plane and have an orthotropic symmetry axis in the x3 direction. 

Figure 8 shows the asymptotic crack-tip stress and strain fields for n = 3. Figure 8(a) 
represents the crack-tip stress and strain fields for isotropic materials. Figures 8(b) and 8(c) 
give the crack-tip stress and strain fields for Zo/Xo = 2 and 4, respectively. 

As we examine the crack-tip stress and strain fields, we find that when the strength in the 
x3 direction is increased, art at 0 = 180 ° changes from a negative value to a positive value 
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and the rapid change of  #rr near the stress-free crack face disappears. As Zo/X o becomes 
large, the crack-tip field tends to assume the characteristics of  the plane-strain mode I 
crack-tip field for isotropic materials: large hydrostatic tension in front of the crack tip and 
large plastic shearing around 0 = 90 °. 

Here, we can argue that when we reinforce the strength in the x 3 direction, we suppress 
the plastic deformation in the x3 direction. Thus, a plane-strain-like condition develops in 
the x3 direction in spite of  the stress-free conditions in the x3 direction in plane-stress. 
Further, as the strength in the x3 direction is increased, ~33 approaches zero. The incom- 
pressibility requires that ~,, ~- - ~00 as ~33 approaches zero. This trend can be seen in Fig. 8(c). 

Figure 9 shows the asymptotic crack-tip stress and strain fields for n = 20. Figure 9(a) 
gives the crack-tip stress and strain fields for isotropic materials. Figures 9(b) and 9(c) show 
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Fig. 10. Case 3: Effective stress contours plotted using the similarity coordinates for Xo = Yo = v~To and
Zo/Xo = 1, 2, and 4. (a) n = 3, (b) n = 20.

the crack-tip stress and strain fields for Zo/Xo = 2 and 4, respectively. The trends of
the crack-tip fields in Fig. 9 are similar to those for n = 3, plot ted in Fig. 8. These
figures show that when the hardening exponent n and the rat io of Xo/Zo increase, both
~, and ~00 approach zero (as demonstrated in Fig. 9(c)) due to the incompressibility,
plastic orthotropy, equilibrium, and normal i ty of plastic flow, which have been discussed
earlier.

Figures 10(a) and 10(b) show the effective stress contours for n = 3 and n = 20, respect-
ively. A s s h o w n in the figures, when Zo/Xo increases, the plastic deformation directly ahead
o f the crack tip decreases and the plastic deformation shifts to the reg ion a b o v e and be low
the crack tip. In addit ion, the effective stress contour resembles t h e o n e for isotropic material
under plane-s tra in condit ions .
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4.4. Case 4 

Finally, we examine the effects of  plastic orthotropy on the crack-tip fields when the shear 
strength with respect to the x] and x2 axes is decreased (or increased) with respect to those 
of  the others, i.e., x/~To/Xo < 1 (or > 1) and X 0 = Y0 = Zo. Because the effective stress is 
defined here with respect to the in-plane shear strength, this case is equivalent to the one 
where the tensile strength in the x,, x2, x3 directions is increased (or decreased) with respect 
to the in-plane shear strength. 

We examine the case where the in-plane shear strength is decreased. Figure 11 shows 
the asymptotic crack-tip stress and strain fields for n = 3. Figure 1 l(a) gives the crack-tip 
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stress and strain fields for isotropic materials. Figures 1 l(b) and l l(c) show the crack- 
tip stress and strain fields for x/~To/Xo = 1/2 and 1/4, respectively. Note that the dimen- 
sionless quantities in the plots are defined by ~u = (x/~To/Xo)~o and ~0 = ~q/(~/3To/Xo). 
These figures demonstrate the trend that as the in-plane shear strength is decreased 
(or the tensile strength in the xl,  x2, and x3 directions is increased), the magnitude of the 
angular functions ~ , ,  ~0, and ~00 becomes large, and the angular functions ~e and ~0 peak 
around 0 = 90 °. 

Figure 12 shows the asymptotic crack-tip stress and strain fields for n = 20. Figure 12(a) 
gives the crack-tip stress and strain fields for isotropic materials. Figures 12(b) and 12(c) 
show the crack-tip stress and strain fields, ~,~ and ~0, for x/~To/Xo = 1/2 and 1/4, respectively. 
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F • 3 . 1 3 .  Case 4: Effective stress contours plotted using the similarity coordinates for X 0 = Y0 = Z0 and 
To/Xo = 1, 1/2, and 1/4. (a) n = 3, (b) n = 20. 

The trends o f  the crack-tip fields in Fig. 12 are similar to those for n = 3 in Fig. 11. Note  
that when the in-plane shear strength is decreased (or the tensile strength in the xl ,  x2, and 
% directions is increased), the angular function ~,0 at 0 = 90 ° resembles a delta function for 
both n = 3 and n = 20, as was observed for Case 2, where only the tensile strength in the 
x 2 direction is increased. 

Figures 13(a) and 13(b) show the effective stress contours  for n = 3 and n = 20, respect- 
ively. The effective stress contour  is elongated in the x 2 direction as the in-plane shear 
strength is decreased. This shape change o f  the effective stress contour  as the in-plane 
shear strength is decreased (or the tensile strength in the %, x 2, and-x3 directions is 
increased) is similar to that o f  Case 2, where only the tensile strength in the x2 direction is 
increased. 
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The case where the in-plane shear strength is increased will be discussed next. Figure 14 
shows the asymptotic crack-tip stress and strain fields for n = 3. Figure 14(a) again gives 
the crack-tip stress and strain fields for isotropic materials. Figures 14(b) and 14(c) show the 
crack-tip stress and strain fields, #q and ~v, for x/~To/Xo = 2 and 4 (with X 0 = II0 = Zo), 
respectively. Note that #v = (x/~To/Xo)Ou and ~q = ~o/(x/~To/Xo). These figures show that 
when the in-plane shear strength is increased (or the tensile strength in the xt, x2, and x3 
directions is decreased), the angular functions ~e and ~00 are intensified in front of  the crack 
tip between 0 = 45 ° and 0 = - 4 5  °. 

Figure 15 represents the asymptotic crack-tip stress and strain fields for n = 20. Figure 
15(a) shows the crack-tip stress and strain fields for isotropic materials. Figures 15(b) and 
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stress and strain fields for n = 20, X0 = Y0 = Z0 and 

15(c) give the crack-tip stress and strain fields for ,f3To/Xo = 2 and 4 (with X0 = Y0 = Z0), 
respectively. The trends of  the crack-tip fields in Fig. 15 are similar to those in Fig. 14. An 
apparent discontinuity o f  the radial stress occurs where the angle 0 decreases from 150 ° to 130 °. 

Figures 16(a) and 16(b) show the effective stress contours for n = 3 and n = 20, respect- 
ively. For both n = 3 and n = 20, the effective stress contour grows ahead of  the crack tip 
as the in-plane shear strength is increased (or the tensile strength in the xl ,  x2, and x 3 
directions is decreased). Also, we can see that as n increases, the area enclosed by the 
normalized effective stress contour increases. This characteristic is common to all four cases. 

The perfectly plastic crack-tip solutions corresponding to the four cases that we discussed 
here are detailed in Pan [18]. A comparison of  these perfectly plastic crack-tip stress solutions 



190 Jwo Pan and C. Fong Shih 

0 . 4  

0.1- (/) 

X ~ 
0 

I " ~ °  - 0 . 1  

X 'N O, 
p o 

L " ) °  -0.1 

- 0 . 2 .  

0 .~ -  

0 . 2 -  

] 

-0.2 

- 0 . 3 -  

-0 .4  

- 0 . 2  

0 . 4  

0 . 3  - 

0 . 2  

o.12 

- 0 . 3 .  

i i i i 
0 .2  0.4 

(a) 

n = 3  

i 

0 .6  

- 0 . 4 .  

- 0 . 1  0 .7  

] 
i i i 

orLo  . . . .  , 

n = 2 0  

I i i i i i 

0 .1  0 . 3  0 . 5  

O~ Xo To X J S J 

(b) 

F • 3 . 1 6 .  Case 4: Effective stress contours plotted using the similarity coordinates for X 0 = Y0 = Z0 and 
To/X o = 1, 2, and 4. (a) n = 3, (b) n = 20. 

with the low-hardening solutions o f  n = 20 in this study strongly suggests that the low- 
hardening limit of  our asymptotic crack-tip solutions is indeed given by the perfectly plastic 
solutions presented in Pan [18]. 

5. Discussions 

In this study, we only examine the two-dimensional crack-tip fields where the symmetry axes 
o f  orthotropy, X~, X2, and X 3 , coincide with the present Cartesian coordinates, x],  x2, and 
x3. If  the symmetry axes o f  orthotropy do not coincide with the present Cartesian coordi- 
nates, remote tensile or remote shear stress will generally induce near-tip fields that are 
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Table 1. The integration constant I, the normalized hoop stress, and the 
c r a c k - t i p  o p e n i n g  displacement coefficient D for Case 1 

The integration constant I 

Xo/Yo n = 3 n = 10 n = 20  

1 3 . 8 5 4 9  2 . 9 7 8 9  2 . 7 4 1 6  

2 3 .1513  2 .6041  2 . 4 4 6 0  

4 2 . 8 0 2 6  2 . 5 5 2 4  2 . 4 3 9 8  

The normalized hoop stress 

Xo/Y o n = 3 n = 10 n = 20  n = oo 

1 1.0000 1.0000 1.0000 1 .0000  

2 0 .9371  0 . 9 0 8 6  0 . 9 0 1 5  0 . 8 9 4 4  

4 0 . 9 2 3 9  0 . 8 8 6 9  0 . 8 7 9 7  0 . 8 7 2 9  

The crack-tip opening displacement coefficient D 

Xo/Yo n = 3 n = 10 n = 20  

1 4 . 5 2 8 9  3 . 3 2 9 0  2 . 8 4 6 9  

2 4 . 3 4 9 2  3 . 2 2 3 4  2 . 7 8 1 6  

4 4 . 1 1 3 8  3 .1268  2 . 7 0 0 5  

Table 2. The integration constant I, the normalized hoop stress, and the 
c r a c k - t i p  o p e n i n g  displacement coefficient D for Case 2 

The integration constant 1 

Yo/Xo n = 3 n = 10 n = 20  

1 3 . 8 5 4 9  2 . 9 7 8 9  2 . 7 4 1 6  

2 4 . 1 4 0 5  3 . 7 0 8 4  3 . 5 0 7 9  

4 3 . 8 6 0 6  3 . 6 2 3 4  3 .4983  

The normalized hoop stress 

Yo/X o n = 3 n = 10 n = 20  n = oo 

1 1.0000 1.0000 1.0000 1.0000 
2 1.5761 1 .7063 1 .7445  1 .7889  

4 2 . 6 1 3 0  3 . 1 2 7 7  3 . 2 9 3 9  3 . 4 9 1 5  

The crack-tip opening displacement coefficient D 

Yo/X o n = 3 n = 10 n = 20  

1 4 . 5 2 8 9  3 . 3 2 9 0  2 . 8 4 6 9  

2 2 . 0 1 0 8  1 .4866  1.2681 

4 0 .7451  0 . 4 6 0 9  0 . 3 7 4 2  

191 

neither symmetric nor anti-symmetric. Furthermore, six material orthotropy constants 
(F, G, H, L, M, and N)  will appear in the expressions of the near-tip HRR type fields (3.2). 

The tensile hoop stress ~r00 ahead of  the tip of  a stationary crack (at 0 = 0 °) appears to 
play an important role in fracture initiation. We consider the hoop stress at a small fixed 
distance r ahead of the crack tip within the zone dominated by the HRR field (3.2) at the 
same value of  J. The values of  the tensile hoop stress (normalized by the tensile hoop stress 
for isotropic materials) for the four cases are listed in Tables 1--4 for a given set of  ~, o" 0, and 
e 0 (see a detailed discussion in [11]). For future reference, the values of  the integration 
constant I for the four cases are also listed in the tables. 
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Table 3. The integration constant I, the normalized hoop stress, and the 
crack-tip opening displacement coefficient D for Case 3 

The integration constant 1 

Zo/X o n = 3 n = 10 n = 20 

1 3.8549 2.9789 2.7416 

2 5.6920 4.8182 4.2730 

4 5.6159 4.3662 3.9978 

The normalized hoop stress 

Zo/X o n = 3 n = 10 n = 20 n = oo 

1 1.0000 1.0000 1.0000 1.0000 

2 1.3062 1.5575 1.6414 1.7676 

4 1.4439 1.8235 1.9676 2.1871 

The crack-tipopeningdisplacement coefficient D 

Zo/Xo n = 3 n = 10 n = 20 

1 4.5289 3.3290 2.8469 

2 3.2482 1.9101 1.3718 

4 2.7941 1.5756 1.2242 

Tab& 4. The integration constant I, the normalized hoop stress, and the 
crack-tip opening displacement coefficient D for Case 4 

The integration constant I 

~/3To/Xo n = 3 n = 10 n = 20 

0.25 3.5659 3.3721 3.3161 

0.5 3.9526 3.5804 3.4593 

1 3.8549 2.9789 2.7416 

2 2.5186 1.8582 1.7032 

4 2.1187 1.6171 1.5005 

The normalized hoop stress 

x/~To/Xo n = 3 n = 10 n = 20 n = oo 

0.25 2.7980 3.4667 3.7060 4.0000 

0.5 1.6898 1.8609 1.9229 2.0000 

1 1.0000 1.0000 1.0000 1.0000 

2 0.5589 0.5231 0.5122 0.5000 

4 0.2918 0.2649 0.2577 0.2500 

The crack-tip opening displacement coefficient D 

x/'3To/Xo n = 3 n = 10 n = 20 

0.25 2.2305 1.1136 0.8519 

0.5 3.1724 2.0696 1.7139 

1 4.5289 3.3290 2.8469 

2 6.4359 4.4742 3.9771 

4 11.6546 8.6953 7.3074 

The crack-tip opening displacement also appears to be an important parameter for crack 
initiation and growth. Experimental observations and some computational works suggest 
that crack initiation and a limited amount of  stable crack growth can be characterized by 
a critical value of  the J integral, J,., and a J-resistance curve or by a critical value of  the 
crack-tip opening displacement, 6,., and a g-resistance curve (see the work of  Shih [23] for 
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more references in this area). For power-law materials, the crack-tip opening displacement 
approaches zero as r approaches zero. An effective crack-tip opening displacement was 
suggested by Rice in [21], in which the crack-tip opening displacement 6, is defined as the 
opening distance between the intercept of  two 45°-lines, drawn back from the tip, with the 
deformed crack profile. Then, based on the asymptotic crack-tip displacement solutions, ~ir 
and rio, at 0 = 180 °, the crack-tip opening displacement 6, can be written in the form such 
that 6, is proportional to the remote loading J: 

3, = d (J/ao), (5.1) 

where d is a constant for a given material and is expressed as 

d = D(oteo) t/", (5.2) 

where the coefficient D is 

D = 2(fir + fio)fio/L (5.3) 

where fir and fi0 are the crack-tip displacement solutions at 0 = 180 °. The values of the 
coefficient D for the four cases are listed in Tables 1-4. 

A general trend between the normalized hoop stress ahead of the crack tip and the 
crack-tip opening displacement coefficient D for cases 2, 3, and 4 where pronounced changes 
of crack-tip fields are observed is evident. For these cases, as the normalized hoop stress 
increases, the coefficient D decreases. Let us examine the trend case by case. 

For Case 1, the reinforcement is in the direction of the crack line. Except for the stress and 
strain along the crack line direction, the reinforcement has only a slight effect on the crack- 
tip fields. This fact is reflected in Figs. 2-4 where the crack-tip stress and strain fields as well 
as the effective stress contours are plotted. The values of the normalized hoop stress and the 
crack-tip opening displacement coefficient D in Table 1 for Case 1 are slightly affected by 
the amount of  reinforcement. Note that the values of the normalized hoop stress for n = 
presented in Tables 1-4 are based on the crack-tip solutions for the perfectly plastic materials 
presented in Pan [18]. Based on the trend of the perfectly plastic solutions, the slight decrease 
of the normalized hoop stress for power-law materials as the strength in the crack line 
direction increases can be accepted. However, the crack-tip opening displacement coefficient 
D decreases a bit as the strength in the crack line direction increases. This slight decrease of 
D merely reflects the net effect of the reinforcement on the crack-tip opening displacement 
(see (5.1), (5.2), and (5.3)). 

For Case 2, the reinforcement is in the direction perpendicular to the crack line. In this 
orientation, the reinforcement greatly influences the crack-tip stress and strain fields. This 
fact is reflected in Figs. 5-7 where the crack-tip stress and strain fields as well as the effective 
stress contours are plotted. In Table 2, as the strength in the x2 direction is increased, the 
value of the normalized hoop stress increases and the value of the crack-tip opening 
displacement coefficient D decreases. 

For Case 3, the reinforcement is in the out-of-plane direction. As discussed earlier, the 
reinforcement restrains the deformation in the out-of-plane direction and promotes the 
plane-strain-like crack-tip deformation, which is reflected in Figs. 8-10. As indicated in 
Table 3, as the plane-strain-like constraint is increased due to the increase of the strength 
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in the x 3 direction, the value of the normalized hoop stress in front of the crack tip increases 
and the value of the crack-tip opening displacement coefficient D decreases. Note that for 
both Case 2 and Case 3, as the hardening exponent n increases, the normalized hoop stress 
increases for a given ratio of Yo/X o and Zo/Xo, respectively. 

For Case 4, the in-plane shear strength with respect to the x~ and x2 axes varies. As the 
in-plane shear strength is decreased (or increased), the value of the normalized hoop stress 
increases (or decreases) and the value of the crack-tip opening displacement coefficient D 
decreases (or increases). Note that the decrease (or increase) of the in-plane shear strength 
is equivalent to the increase (or decrease) of the tensile strength in the Xl, x2, and x 3 directions 
- this follows from the definition of the effective stress adopted in this paper. 

The hardening behavior of our orthotropic materials has been idealized by the power-law 
relation and the plastic orthotropy by Hill's quadratic yield function. These are rather 
restrictive assumptions. In particular, nonlinear tensile stress-strain curves of many engineer- 
ing materials are not adequately described by a power-law relation. Our power-law con- 
stitutive relation for orthotropic materials does not accurately describe the real material 
behavior. The intent is to employ a simple constitutive model that retains certain essential 
aspects of plastic orthotropy in order to understand qualitatively the effects of plastic 
hardening and plastic orthotropy on the near-tip fields. These near-tip fields may provide the 
boundary condition for an idealized crack-tip model for some engineering materials 
including composite materials. The crack-tip model would allow the effect of detailed 
microstructure and plastic anisotropy on fracture toughness of these engineering materials 
to be investigated. 

To describe the plastic anisotropic behavior, we used Hill's phenomenological quadratic 
yield function [1], which is smooth in the stress space. However, the yield surfaces based on 
the concept of crystalline slip for plastic deformation of single crystals and polycrystals well 
within the plastic range contain fiat surfaces and vertices in the stress space. Rice [24] and 
Rice and Nikolic [25] have presented crack-tip fields for stationary cracks and growing 
cracks in single crystals under anti-plane shear conditions. Rice [26] has also studied 
crack-tip fields in single crystals under tensile loading conditions. Crack-tip stress and strain 
fields for orthotropic materials under plane-strain conditions have been presented by Pan 
and Shih [11] for power-law materials and by Pan [12] for perfectly plastic materials using 
the slip-line theory of Rice [27]. 
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R6sum6. On examine les champs de contraintes planes selon un mode I au voisinage de l'extr+mit6 d'une fissure 
dans des mat6riaux orthotropes. L'orthotrope plastique est d6crite par la fonction quadratique de plastification 
de Hill, et le comportement fi l'6crouissage est donn6 par une g6n6ralisation ad6quate d'une relation tension- 
dilatation de forme parabolique, sous traction mono-axiale. On a observ6 des modifications profondes dans 
l'aspect des variations angulaires des champs d'extr6mit6 de fissure, selon le degr6 d'orthotropie plastique et 
l'intensit6 de l'6crouissage. Pour des mat6riaux tr6s sujets ou peu sujets fi l'6crouissage, et pour une large gamme 
d'orthotropies plastiques, on pr+sente les formes et dimensions possibles des zones plastiques, telles qu'elles se 
d6duisent des contours effectifs de contraintes. La forme de la zone plastique correspondant au cas particulier 
d'une orthotropie plastique s'accorde remarquablement bien fi la zone de dilatation importante cr6~e par une 
fissure d'orientation appropri6e, dans une plaque de graphite-epoxy. 


