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Abstract. An anisotropic model of damage mechanics for ductile fracture incorporating the endochronic theory of 
plasticity is presented in order to take into account material deterioration during plastic deformation. An alternative 
form of endochronic (internal time) theory which is actually an elasto-plastic damage theory with isotropic- 
nonlinear kinematic hardening is developed for ease of numerical computation. Based on this new damage model, a 
finite element algorithm is formulated and then employed to characterize the fracture of thin aluminum plate containing 
a center crack. A new criterion termed as YR-Criterion is proposed to define both the crack initiation angle and load. 
Experiments have been conducted to verify the validity of the proposed damage model and it is found that the 
theoretical crack initiation loads correspond closely with the measured values. 

1. Introduction 

The conventional fracture mechanics approach has been successfully applied to characterize 

fracture behavior of brittle materials by means of the global parameter  K or G describing the 
threshold condition of crack initiation independent of a particular geometry and loading 

condition. For  ductile materials where plastic deformation at the crack tip can no longer be 
ignored, the fracture parameters such as C O D  and J-integral are often employed, but their 
validity as a single global parameter  to characterize the ductile fracture has been questioned, 

especially when the loading condition is complex [ i -3] .  For  the global approach of fracture, 
the concept of process zone is introduced at the region where fracture process actually takes 

place. But the real process within this zone is left unresolved. Thus the application of J in 
fracture analysis requires that a J-dominance region exists in the crack tip and its size should 

be larger that that of the process zone. However, J-integral is only proven to be path 
independent within the deformation theory of plasticity. When the plastic deformation is 

extensive at the crack tip, the deformation theory of plasticity can no longer describe the 
material responses adequately under nonproport ional  loading. Since most engineering struc- 

tures of practical importance are subjected to nonproport ional  loading conditions, the applica- 
bility of the J-integral as a single parameter  in fracture analysis becomes questionable. Another 
important  factor is the observed extensive material deterioration at the crack tip, and it is the 
material deterioration that accumulates within the process zone of the crack tip and causes the 
final macrocrack initiation and propagation that will be discussed later. 

In reality, most engineering materials contain microcracks/microvoids which initiate and 
coalesce in the immediate vicinity of a macrocrack tip due to the development of large 
plastic deformation causing material deterioration/damage. Based on the concept of damage 
mechanics, the initiation, growth and coalescence of microcracks as a local phenomenon 
of material degradation will lead to crack initiation and finally, crack propagation of a 
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macrocrack. The damage evolution is considered as a process, dependent not only on the final 
stress state, but also on its history reminiscent of plastic deformation. In the fracture analysis 
with damage consideration, the macrocrack initiation and propagation resulting from the 
development of damage are progressive processes of damage accumulation which are also 
history dependent processes. For the local approach of fracture with damage consideration, 
damage criteria are employed for predicting microcrack initiation and propagation which are 
related to the actual material failure ahead of the crack tip, so that the crack tip fields of 
stress, strain, damage etc. should be evaluated precisely. This is achieved in the local approach 
of fracture by developing a constitutive equation coupled with damage. The stiffness change 
due to the existence of microdefects and thus redistribution of stress in the crack tip can be 
manifested in the analysis. The local fields of stress, strain and damage are precisely evaluated 
with the constitutive equation coupled with damage. Therefore the local approach of fracture 
can better characterize localized material behaviors within what is commonly known as the 
'process zone' or 'characteristic length' where the precise stress and strain distributions are 
ignored or cannot be taken into account based on the conventional global approach of fracture 
mechanics. 

The damage mechanics originated by Kachanov in 1958 [4] has been extensively studied 
during the past two decades [5-11]. This has led to successful characterization of par- 
ticular problems in fatigue, creep fracture, creep-fatigue interaction and ductile fracture. As 
an example of its power in solving fracture problems, Chow et al. successfully characterized 
ductile fracture of thin aluminum plate containing a center crack [12, 13, 14] with a damage 
model incorporating classical plasticity theory. Recently, a damage model coupled with the 
endochronic plastic theory has been proposed by Chow and Chen [15]. The endochronic 
plastic theory first introduced by Valanis [16] contains an essential ingredient known as 
intrinsic time, which is dependent on the material properties and deformation history and 
is used to describe the history-dependent mechanical response. And the classical plastic theory 
can be deduced as a special case of endochronic theory. For the endochronic theory coupled 
with damage [15], the damage variable introduced is an internal state variable based on the 
irreversible thermodynamics. The equation of damage evolution derived is obtained by the 
orthogonality rule from a dissipation power where a new intrinsic time is introduced in addition 
to the conventional intrinsic time because the damage mechanism is different from the 
mechanism of plastic response. 

The distributions of stress, strain/plastic strain and damage are not in general uniform 
in practical engineering structures of arbitrary geometry with random service loading condi- 
tions. Due to the complexity of constitutive equations and boundary conditions, obtaining 
analytic solutions for these structures is often difficult if not impossible to achieve. In this 
paper, a finite element formulation for the endochronic theory coupled with damage is 
developed and then employed to analyze the stress, strain and damage distributions of a plate 
with a center macrocrack. In addition, another important object of this paper is to check the 
validity of the endochronic theory coupled with damage for a typical engineering structure 
subject to complex loading conditions other than simple tension as described in our earlier 
publication [15]. This requires the development of two fracture criteria to determine the 
angle and the threshold condition of a macrocrack initiation respectively. The predicted 
crack initiation angle and fracture loads are then compared with those determined from 
experiments. 
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1.1. The endochronic (internal time) theory coupled with damage 

For the endochronic theory coupled with damage, the intrinsic time measure and intrinsic time 
are evaluated from the effective plastic strain. Since the volume deformation is considered to be 
elastic, the effective differential strain tensor is expressed as d~ = d~f+  d~V= (d~e+ d & ) +  
I dg~. The intrinsic time measure is defined as 

d~ = (deP:d~P) 1/2 (1.1) 

and the intrinsic time is defined from the intrinsic time measure as 

d~ 
dz - f(() ,  (1.2) 

where f(~) is hardening or softening function respectively for hardening or softening material 
and its initial value is f(O) = 1. In [15], an endochronic plastic theory coupled with damage has 
been established from the irreversible thermodynamics where the damage variable is considered 
as an internal variable, 

g = 2flo p(z - z )~;z, dz, (1.3) 

where g is the deviatoric part of effective stress, & is the effective deviatoric plastic strain, which 
is equal to the effective plastic strain due to the plastic incompressibility 

= 8 - 8 " I  (1.4) 
3 ' 

where 8m = 8kk and the effective stress is 

8 = M ( D ) :  a. (1.5) 

The elastic constitutive equation is assumed to be 

6 = E:ff e, (1.6) 

which is similar in form to the conventional elastic constitutive equation, and E is the elastic 
stiffness tensor. The kernel function is chosen as p(z) = ~,~= 1at e -o'z and fll is of large enough 
order to describe the weak singularity of p(z), and an endochronic plastic theory coupled with 
damage is thus achieved, yielding satisfactory agreement between those predicted and deter- 
mined experimentally [15]. 

Watanabe et al. proposed a modified form of endochronic theory by assuming p(z)= 
po6(Z) + p~(z), where 6(z) is Dirac delta function and p~(z) is a non-singular function [17]. 
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Although the theory proposed by Watanabe et al. is accompanied with the yield surface due to 
the introduction of 6(z), yet it is not the same as classical plasticity theory, which may be 
obtained as a special case of the endochronic theory by carefully choosing P l (z) and f ( 0  [ 18]. 
The numerical implementation of the modified endochronic theory coupled with damage is 
similar to that of classical plastic theory. 

For the present investigation, the form of p(z) is retained 

p(z) = po6(Z) + pl(z), (1.7) 

where pl(z) is a non-singular function and is assumed to be of the form p~(z) = y ,  rn=l C,.e -~'rz. 
Substituting the above equation into (1.3), we have 

o d~p 
:~ = S~ dzz + r(z), (1.8) 

where 

t z d~p , r(z) = 2/~o pl(z  - z')-~z, dZ 
dO 

and 

(1.9) 

S ° = 2/~0Po. (1.10) 

The elastic and plastic regions are characterized by the following conditions: 

(i) II g - r l[ < S°f (O when the material is in the elastic region. (1.11) 
(ii) J[g - r II = S°f(O when the material is elastically unloading. 

(S - r):d~ ~< 0 (1.12) 

(iii) II ~ - r I1 = S°f(O when plastic deformation is permissible. 

(5 - r) : d~; > 0, (1.13) 

where r(z) is the 'back stress' as in classical plasticity theory, which describes the translation of 
the yield surface. The hardening function f ( 0  describes the dilatation of the yield surface. In 
endochronic theory, the evolution of r(z) is nonlinear and can be considered as a form of 
nonlinear kinematic hardening. Before the onset of damage, the material is assumed to be 
isotropic. With (1.4), (1.6) and (1.8), the incremental stress-strain relationship based on the 
endochronic plastic theory coupled with damage is obtained and is analogous in form to 



the classical plasticity theory 

d~ = 2#o(d~: -dg ;  p) + 2o(1: dg:)l 

= 2#0 d~ + 2o (I : dE)l - 

where 
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and 

2#o(g - r)((g -- r ) :d~) 
C(SO)Zf2(( ) F, (1.14) 

C = 1 + pl(0)  + ( g  - -  r):h* S ° f  ' + - -  (1.15) 
S° f 2(O 2#0 

h* f~ dPl (z - z')dd--~z, dZ' :Jo~; (1.16) 

and F = 1 when condition (iii) is satisfied, i.e. plastic loading. F - 0 when condition (i) or (ii) 
holds, i.e. elastic or elastic unloading. 

According to the definition of effective stress 

oij = Miju(D)akl 

and the symmetric properties of ~ and a infer 

Mijkl = Mjikt = Mijlk,  

where M is a fourth order tensor and represents the effect of damage on stress. The question on 
the choice of the order of the damage tensor and the relationship between M and D is assumed 
to be [-15] 

M = (I  - D )  - 1  ( 1 . 1 7 )  

and 

Dijkl = l((~ikDjl "l- (~ilDjk "l- (~jkDil -l- ~jlDik). (1.18) 

Following the conventional choice in damage mechanics, a symmetric tensor D of order two 
is employed. As for a symmetric tensor of order two, there exist three principal axes. In the 
principal coordinate system, the damage tensor D may be represented by [ 10 0j 

D =  /)2 0 . (1.19) 

1)3 
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Due to symmetry, M(D) may be written in a 6 × 6 matrix form, and its relation to D is chosen 
as the following form. In the principal coordinate system [15] 

1 - D ~  

[M(D)] = 

1 -- D2 

1 - -  D 3 

2 - (D  2 -I- D3) 

2 - (D1 + D3) 

(1.20) 

2 - (D1 + D 2 )  

For an arbitrary coordinate system, M(D) can be easily deduced through tensor transforma- 
tion. 

The ductile damage evolves only when the plastic deformation occurs. Therefore it is more 
appropriate to use the intrinsic time scale to describe damage evolution rather than the 
commonly used time scale. The intrinsic time scale introduced before is however not applicable 
to the description of damage evolution because the mechanics of damage evolution is different. 
A new intrinsic time scale is therefore introduced as 

dza =ft~(ff)d~/fd(~), (1.21) 

where subscript d represents the effects on damage evolution. The main reason that the intrinsic 
time measure ~ is adopted here is that the evolution of ductile damage is closely related to plastic 
deformation and ~ is a measure in the plastic strain space. Also the damage is dependent on the 
stress state, the effect of stress triaxiality on damage evolution is introduced by the function 
L,(6). 

Damage evolution is a dissipative process based on the irreversible thermodynamics. In what 
follows, the relationship between the damage evolution and damage dissipation is established. If 
the damage dissipation is not coupled with mechanical dissipation, the damage dissipation 
'power' to za must satisfy the following dissipation inequality 

dD 
v : : -  = . IV) >/o, (1.22) 

clzd 

where • is the dissipation 'power'. Y is the damage strain energy release rate, the conjugate force 
to damage D, which is defined as [15] 

~M(D)] s 
V = a '  ~ - I . M - I ( D ) :  _ ~ j  :a. (1.23) 
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From (1.17), we have 

0M(D) 8(1 - D)- 1 8D 
8 D  - 8 D  - M ( D ) : ~ - D "  M ( D ) .  (1.24) 

Using the relation (1.18), Y can be calculated from (1.23). As Voigt's notation for Y is employed, 
Y is represented by a vector { Y}. In the principal coordinate system of damage, the components 
of { Y} are 

1( 0"2 v0"x0"2 v~10"3 (1 + v)0"~ ( + v)a62'~ 
rx :E~V31 V21V22 V21V3~3 + V3 ~ + V32 ], (1.25) 

E (  v0.20.1 0.2 v0"20. 3 (l --[- v)0. I ( --~ v)0.2x~ 
Y2 = vZ2v,  1 + V322 V222V3 3 + V3 ~ + V3 2 j ,  (1.26) 

1 ( v0.10.3 v0"30.2 0"2 (1 + v)o "2 ( + v)0.2"~ 
V 3 = ~  V23 Vll V23V2~2-[-V3~3+ V32-~-+ V2 ̀  ], (1.27) 

1 - "]0.20.4 V V_ . .~0.10.4 "-I- g2;g23 V22V33V23/ Y,, = V11 V22 V23 Vll V33 [/23// 

1 v "~ 1 + v  1 + v  
-'}- V23V23 V22V33V23/°"304 -J- V23V220.20.4 "+ V23V330"30"4 

l + v  l + v  ] 
"~- V21Vll~ 0"50.6 + V122 V3~-~0"50"6J ' (1.28) 

Ys = V 2 ; V31 -- 0"20"5 
VllV33V31 VllV22V31 V22V33V31 

+ (V32!V31 
v '~ 1 + ~  1 + ~  

Vii V33 V31]0"3°5 + V23 V12 0.60.4 Jr- V22 V23 0.60.4 

+ v21 v3----~0"~0"3J ' (1.29) 

E( v v )  1 V -- x~ 0.1 0. 6 "t- 0"20" 6 
Y6 = ~ - V 2 1 1 V 2 2  VxlV22V12/ V2?V12 V22V~lV12 

v v 2) l + v  l + v  0"30" 6 + -  ..~ - -  + V11V33 V23 V22 V33 V 1 V23 V310.5 0.4 V21 V23 0"5 0.4 

l + v  l + v  1 
+ V22 V1----- ~ 0106 -{- V22 V23 0.106 • (1.3o) 
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From the above equations, it is easy to observe that II4, Y5, Y6 are  not equal to zero in the 
principal coordinate system of damage provided the principal coordinate systems of damage 
and stress are not coincident. 

In an arbitrary coordinate system, Y can be easily obtained from the tensor transformation 
law. Then, from the orthogonality rule for dissipative process, the damage evolution equation is 
deduced as 

dD J : Y  
dza - 2(½Y : J : y ) l /2 ,  (1.31) 

where 

= [ ½ y : j . y ] l / 2 .  (1.32) 

For the threshold condition of damage evolution z °, (1.31) may be expressed alternatively as 

dD ,~,d J : Y 
dzn - 2(½Y :J  : y)1/2 H(zd -- z°), (1.33) 

where 

H(z)= 1 f o r z > O ,  

H(z) = 0 for z ~< 0 

and 

i when • = tI)max and ~-~:dY > 0 
~d = 

when O<~max or ~ = ~ m a x  and mc~_~,~:dY~<0 
OY 

where (I)ma x is the maximum value of ~. 
According to (1.22) and (l.32), it can be shown that J must be a positive definite symmetric 

tensor 

Ji jk l  = J j ik l  = J i j lk  

and we further assume that 

Ji jk!  = Jk l i j .  
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Because of the above symmetric properties, J may assume the following form [15] 

-1 p /~ 

1 /~ 

1 

2(1 - #) 
J = A  

0 

2(1 --#) 

2(1 -/~) 
m 
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(1.34) 

2. The finite e lement formulation 

With the development of the endochronic plastic constitutive equations coupled with damage 
and the damage evolution equations, the next step is to employ this damage model to characterize 
fracture in engineering structures under service loading. Generally numerical techniques are 
required to solve engineering problems of practical interest, because it is almost impractical to 
obtain an analytical solution due to the complexities of the constitutive equations involved and 
boundary conditions imposed. Since the finite element method has been shown to be a powerful 
numerical tool in engineering analysis, the method is therefore chosen to analyze the distributions 
of stress, strain and damage, and to predict the failure behavior of the structures. 

The procedures in formulating the finite element analysis when damage is considered are 
similar in principle to the conventional FEM analysis, as the endochronic plastic constitutive 
equations are similar to the conventional plastic constitutive equations with isotropic-nonlinear 
kinematic hardening. Since the stiffness matrix [K] is expressed as a function of transformation 
[B] and the stress-strain matrix [C] 

[K] = fvEB]rEC]EB] dV, (2.1) 

where [C] is associated with the material properties while [B], with the element chosen for 
analysis, only [C] therefore needs to be modified in order to include the damage effects in the 
stiffness matrix. The effective elastic relation may be written in matrix form 

{dff} = [ce]{d~e}. (2.2) 

By incorporating the endochronic plastic constitutive equation (1.14) and the damage evolution 
equation, the above equation becomes 

{dr} = [C*]{dg}, (2.3) 

where 

[C*] = [C e] - 2#0 C(SO)2f2(0 (2.4) 
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and S denotes (S - r). Since [C] is the conventional real stress-strain matrix and [C*] in (2.3) is 
the effective stress-strain matrix, it is desirable to transform (2.3) and express it in terms of the 
conventional real stress-strain matrix for ease of implementation with the finite element analysis. 
Equation (2.3) may thus be deduced as 

{da} = [~*]{de}, (2.5) 

where 

[~*] = [M]([I] - [Q])([I] + [ c * ] [ P ] ) - i  [C*][M] T.-1, (2.6) 

2 Bo ~, ~ 9 [ M ]  1 9 0  M a 
[Q] = /a(f)LlV, l ~ 9{Y-}/[ 3{ }{ }, (2.7) 

2 Bo 9 [ M ]  T' 1 9 0  
[ P ] =  fd(O 9{D} T 8{Y} r{e}{g} (2.8) 

and 

1 
Bo = 2#o(C - 1)S°f(0" (2.9) 

The material chosen for the present investigation is 2024-T3 aluminum alloy plate. The 
geometry of the specimen is shown in Fig. 1. Because of symmetry, only one quarter of the 
specimen needs to be analyzed, for which the finite element meshes are shown in Fig. 2 and Fig. 
3. A total of 51 8-node elements resulting from 176 nodes are employed in the analysis and the 
elements are degenerated to radial elements at the crack tip in order to compute the radial and 
angular distribution of the physical quantities easily. 

The first loading step chosen in the numerical analysis is relatively large up to when the onset 
of plastic deformation at the crack tip is observed. This is followed by the imposition of smaller 
load increments for the elasto-plastic analysis. 

2.1. Experimental investigation 

The test specimens whose geometry is shown in Fig. 1 are made of 2024-T3 aluminum alloy. A 
total of twelve specimens were manufactured, six each along the rolling and transverse direction 
so that the degree of material anisotropy, if any, may be examined. 

A universal MTS testing machine was used to perform initial fatigue precracking at 10 Hz. An 
initial crack length of about 15 mm was formed at a load under which the maximum fatigue 
stress at the minimum cross section of specimens is less than half of the material yield stress of 
330 MPa. A travelling microscope of 10X magnification was positioned close to the specimen for 
monitoring crack initiation. 

The measured average load of crack initiation for all the specimens was 276.3 MPa. The 
average crack initiation load of the longitudinal specimens was slightly higher than that of the 
transverse specimens. 
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Fig. i. The geometry of the specimen. 

Fig. 3. The detailed finite element mesh near the crack tip. 

/ 

Fig. 2. The mesh for finite element analysis. 

3. Discussion of results 

In order to provide a generalized solution in an engineering structure containing an embedded 
macrocrack, two criteria, namely the criterion governing the threshold condition of crack 
initiation and another one governing the determination of crack initiation angle must be 
developed. 

The fracture criterion governing the determination of crack initiation angle has been the 
subject of intensive studies by many other investigators within the framework of fracture 
mechanics 1-19, 20]. In view of the development of a new plane known as the 'damage plane' 
hitherto not confronted in the conventional stress analysis, Wang and Chow [14] introduced a 
new fracture criterion known as the &criterion which was defined as the angle between the 
radial and principal damage planes in a material element. This is based on the physical 
consideration that the direction of crack initiation should be parallel to the plane of maximum 
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damage or the least g-value between the principal damage and radial planes in an element ahead 
of the crack tip shown in Fig. 4. 

With the determination of the angle of crack initiation using the g-criterion, another criterion 
is required to characterize the threshold condition of crack initiation. From physical consider- 
ations, the threshold condition of crack initiation may be postulated to satisfy 

fo WD = Y-dD,  (3.1) 

which attains its critical value in the crack initiation direction determined by 6-criterion. 
The predicted b-values at the material elements of various radical distributions are plotted 

against their corresponding angular positions as shown in Fig. 5. It can be readily observed from 
this figure that the predicted angle of crack initiation is zero degree, which agrees with the 
experimental observation. 

Figure 6 depicts the angular distribution of the computed Wo values at different distances r 
from the crack tip. The uniform load applied on the specimen boundary causing crack initiation 
along the direction of ~ = 0 ° when the failure criterion WD = Wc is satisfied at rc = 0.07 mm, is 
found to be 266 MPa. The measured Wc-value is 450 × 103 Pa. The predicted crack initiation 
load compares favorably with the experimentally determined average load of 276.3 MPa from 
12 test specimens. 
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Fig. 6. Wo vs. 0 in the crack tip for different r .  
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Fig. 7. The effective plastic equivalent stress #p contour 
in the specimen. 

Figure 7 depicts the computed effective plastic equivalent stress  (tip = Iq g -  r ll) contours of 
the cracked specimens and Fig. 8, the detailed tip-contours at the crack tip when the applied 
load is 266 MPa. It can be observed from the figure that the maximum plastic deformation 
occurs, as expected, at about 45 ° to the crack line. 

In addition to the Wo-fracture criterion, an alternative criterion of crack initiation based on 
the damage strain energy release rate Y shown in (1.25)-(1.30) and known as Y~ is defined as the 
tangential component of Y in a material element located at a particular radius from the crack tip 
as illustrated in Fig. 9. The threshold condition of crack initiation is postulated having been 

crack t ip  

Fig. 8. The detailed ~p contour near the crack tip. 

YR 

crack Ltp YR 

Fig. 9. The definition of YR near the crack tip. 
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Fly. 10. YR vs. 0 near the crack tip for different r. 

satisfied along the 0-direction where the maximum YR at the particular radial distance attains 
the critical value of Yc measured from a standard tensile specimen. Figure 10 illustrates the 
angular distribution of YR at the distance of 0.07 mm, 0.22 mm and 0.87 mm from the crack tip. 
It is evident from the figure that the maximum YR is located at the 0 = 0 ° which agrees with the 
direction of crack propagation in a cracked specimen shown in Fig. 1 which exhibits a typical 
mode I failure. From the finite element analysis, the applied load that causes the maximum YR 
to attain the measured Y-value of 7.76 MPa at r = 0.07 mm is found to be 284 MPa which 
compares satisfactorily with the measured value of 276.3 MPa. 

4. Conclusions 

In this paper, an anisotropic model of damage mechanics incorporating the endochronic theory 
of plasticity for ductile fracture is developed and employed to characterize the angle of crack 
initiation and the threshold condition of crack initiation in thin aluminum plates containing an 
isolated crack. This is achieved by implementing the model into a finite element programme. 

In addition to the 6-criterion for the determination of crack initiation angle and W.- 
criterion for crack initiatic~n load developed earlier by Chow and Wang [-12], an alternative 
criterion of YR is introduced for the determination of both crack initiation angle and load. The 
fracture loads predicted based on the WD-criterion and the YR-criterion were found to be 
respectively 266 MPa and 284 MPa which compared well with the measured value of 276.3 MPa. 
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