
PETER J. CAMERON 

L O C A L L Y  S Y M M E T R I C  D E S I G N S  

A design (or balanced incomplete block design) D is locally symmetric if, 
for any point p, the lines and blocks through p form a symmetric design 
D*(p). Equivalently, D is locally symmetric if the number of blocks con- 
taining three non-eollinear points and the number of points in two non- 
disjoint blocks are both nonzero constants. The main result of this paper is: 

THEOREM 1. I f  D is a locally symmetric design with parameters v, k, 2, in 
which a line has s+ 1 points and three non-collinear points are contained in t 
blocks, then exactly one o f  the following occurs: 

O) D is the design of  points and hyperplanes in a projective geometry of  
dimension at least 3 over GF(s) ; 

(ii) D is the design o f  points and hyperplanes in an affine geometry of  
dimension at least 3 over GF(s + 1), s>  1 ; 

(iii) D is a Hadamard 3-design (s= 1, v= 4( t + 1), k = 2( t + 1), 2 = 2 t +  1 ; 
(iv) v=(1 +st) (2s2+2s+l  +(3s+2)s2t+s' t2) ,  k=(1  +st) (1 +s+s2t) ,  

2= l  +(2s+l) t+s2t  2, a n d / f s > l  and t > l  then t > s + 2  and s + l  divides 
t( t--1);  

(v) t =  1, v = ( s +  1)" (s3+ 2s2+ 3s+ l), k = ( s+  my s + 1), 2 = s 3 +  
+3s2+4s+3 ;  

(vi) s = l ,  t=3,  v=496, k=40,  2=39. 
Some special cases of this result have already been proved. It is known, 

for example, when D is symmetric (Dembowski and Wagner [10]), affme 
(Dernbowski [7], [8]), an extension of a symmetric design (the case s = 1 : 
Cameron [4]), locally a projective plane (the case t = 1 : Doyen and Hubaut 
[11 ]), or locally a projective geometry of dimension at least 3 (essentially 
[11 ]; this also follows from results of Kantor [16]). Only one example of 0v) 
is known, the Steiner system S(3, 6, 22) with s = t = l  (Witt [20], [21]); no 
example of (v) or (vi) is known. Theorem 1 has some interest from the point 
of view of axiomatisations of finite projective and attine geometries (see [16]). 

Similarly, but more easily, it will be shown that a locally affine design 
(similarly defined) is an inversive plane. This is a generalisation of a result 
of Dembowski ([9] p. 76). 

1. DEFINITIONS 

A design D with parameters v, k, 2(k< v - 1 ,  2>0)  is a set of v points 
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together with a family of k-subsets of the point set called blocks, with the 
property that any two points are contained in exactly 2 blocks. If b is the 
total number of blocks, and r the number containing any point (this number 
is constant), then 

bk = vr, 
r ( k  - l )  = 2 (v  - 1).  

Fisher' s inequality states that b >. v (equivalently r >l k). D is symmetric 
if any one of the equivalent conditions holds: 

(i) v=b;  
(ii) k = r  ; 
(iii) any two blocks contain 2 common points; 
(iv) any two blocks contain equally common points. 
Thus, in a symmetric design, k ( k - 1  )=  2(v-1) .  The design of points and 

hyperplanes in a finite projective geometry is symmetric. 
A design is called affine if it satisfies the conditions: 
(i) two blocks which are disjoint from the same block are disjoint from 

one another; 
(ii) the number of points in two non-disjoint blocks is a constant g. 
The design of points and hyperplanes in a finite attine geometry is alline. 
For proofs and elaborations on these ideas, the reader is referred to 

Dembowski [9], Chapter 2. 
In a design D, the line through two points is the intersection of all blocks 

containing the two points. Two points lie on a unique line. (For if q and q' 
are points on the line pp', every block which contains p and p' contains 
q and q'; thus the set of 2 blocks containing q and q' is identical with the set 
of blocks containing p and p', and the lines pp' and qq' are identical.) An 
arbitrary intersection of blocks contains the line through any two of its 
points. 

Dembowski ([9], p. 66) calls a design smooth if any three non-collinear 
points are contained in t blocks, where t is a positive constant. In a smooth 
design, all lines contain equally many points. For if L is a line and p, p' 
are points of L, count in two ways the number of choices of a block con- 
taining p and p' and a third point in this block: 

(ILl - 2 ) 2  + (v  - ILI)t = 2 (k  - 2 ) ,  
whence 

ILl = (,~k - v t) / (2 - t ) .  

I shall let s + 1 denote the number of points on a line in a smooth design. A 
3-design is a smooth design with s =  1 (that is, a design in which any three 
points lie in t blocks). A Hadamard 3-design is a 3-design with parameters 
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v=4( t+ l ) ,  k = 2 ( t + l ) ,  = 2 t + l ,  r=4 t+3 ,  b=8t+6 .  Such a design can be 
constructed from a Hadamard matrix with a distinguished row or column 
([9] pp. 111-113), and is an atYane design with 2 = t + l .  Conversely, any 
affine 3-design is a Hadamard 3-design. The design of points and hyperplanes 
in an affine geometry over GF(2) is a Hadamard 3-design; there are many 
others. 

I fp  is a point of the smooth design D, the configuration D*(p) of lines 
and blocks throughp is a design with parameters v* = ( v -  1)/s, k* = ( k -  1)Is, 
2*=t, r*=2,  b*=r. (We identify a block through p with the set of lines 
through p it contains.) Thus a smooth design is 'locally a design'. A locally 
symmetric (or locally affine) design is a smooth design D in which D*(p) is 
symmetric (or affine) for any point p. If D is locally symmetric, then any two 
blocks of D*(p) have t common 'points' of D*(p), and so two blocks of D 
which contain p have 1 + st common points of D. Conversely, if D is smooth 
and any two blocks of D have 0 or / t  common points, then two blocks of 
D*(p) have ( # - l ) / s  common 'points', and so D*(p) is symmetric, and 
i~= 1 +st. A similar but more elaborate characterisation of locally affine 
designs could be given. The designs listed under (i)-(iii) of Theorem 1 are 
locally symmetric. 

2. L O C A L L Y  SYMMETRIC DESIGNS 

Let D be a locally symmetric design, with parameters v, k, 2, r, b, #, s, t as 
described in Section 1. In this section I show one of four cases must occur: 

(a) D is symmetric; 
(b) D is affine; 
(c) v = (I +st) (2s 2 +2s+  1 + (3s+2)s2t + s4t2), k = (I + st) (1 + s + s2t), 

2= 1 + (2s+ 1)t+s2t2; 
(d) v=(1 +s) (1 +st) (s(s+2)/t+3s3+6a2+3s+l + s 2 ( s + l )  (3s+2) t+ 

+s'(s+l) t2) ,  k = ( l + s ) ( 1  +s t )  (l+s+s2t),  2 = s + 2 + ( s + l )  ( 2 s + l ) t +  
+s2(s+ 1)t 2, and t divides s+2. 

LEMMA 1. 
(i) rv=bk; 
(ii) 1)=r(k-1); 

(iii) 2 ( 2 - 1 ) = t ( r -  1); 
(iv) v = 1 + sr ; 
(v) k = l  +s2; 

(vi) two blocks contain 0 or #= 1 + st points. 
Proof O) and (ii) are the basic equations connecting the parameters of D, 

(iii) the basic equation for D*(p), and (iv)-(vi) the equivalent conditions 
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that D*(p)  is symmetric. Note that all parameters can be expressed in terms 
of s, t and 2. 

Suppose B is any block of D. Let Do(B) denote the configuration of points 
outside B and blocks disjoint from B. Clearly Do(B) has v - k  points, with 
k points in any block and 0 or # points in any two blocks. 

L E M M A  2. Do(B) has b - l - k ( r - 1 ) / #  blocks. O f  these, r - k 2 / #  contain 
any point, and the number containing two points q, q' is 0 or ( 2 -  t )/# according 
as the line qq' meets B or not. 

Proof. r -  1 blocks different from B contain each of  the k points of  B; each 
such block meets B in # points, so there are k ( r - 1 ) / #  such blocks, and 
b - 1 - k ( r - 1 ) / #  blocks disjoint from B. Similarly, through any point q6B 
there are r - k 2 / #  blocks disjoint from B. Finally, let q and q' be two points 
outside B. If  the line qq' meets B, then so does block containing q and q'. 
Otherwise each of the k points of  B lies in t blocks containing q and q', and 
so the number of  blocks of  Do(B) containing q and q' is 

2 - kt/# = (2(1 + st)  - (1 + s2 ) t ) /=  (2 - t)#. 

A corollary of lemma 2 is that D is symmetric if and only if every line 
meets every block (since either statement is equivalent to the assertion that 
any two blocks meet). For the remainder of  this section we shall make the 
assumption that D is not symmetric, and show that one of  Co), (c) and (d) 
must occur. 

L E M M A  3. # divides 2 - t .  
Proof. There is a line L disjoint from a block B; the number of blocks 

containing L and disjoint from B is ( 2 - t ) / # .  
Putting 2 - t  = u#, we have 

v = (1 + st) (t (1 + su) 2 + u(u - 1)s)/t 
b = (t (1 + su) 2 + u(u - 1)s) (u 2 - u + 2ut + 2u2st - ust + 

+ t  2 (1 + su)2)/t 2 (1 + su) 

k = ( 1  + s t ) ( 1  + s u )  
r = (u 2 - u + 2ut + 2u2st - ust + t 2 (1 + su)2)/t 
2 = u + t + u s t  
# =  I + s t .  

The parameter sets listed as (c) and (d) are obtained when u = # = 1 + st and 
u =  1 +(1 + s ) # = 2 + s + s t + s 2 t  respectively. (In (d), the condition t I s + 2  
comes from observing that b and r are integers.) 

L E M M A  4. / f  u > # then u = 1 + (1 + s)#. 
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Proof. From the expression for b, we find that 1 +su divides (1 +s )  ( u - # ) .  
If  u > # ,  then (1 +s )  (u-/,)>~ 1 +su. If  equality holds, then u = l  +(1 +s)/,. 
Otherwise, 

( l + s ) ( u - # ) / > 2 + 2 s u ,  

( s - 1 ) u +  ( s +  1)~t + 2 ~<0, 

which is impossible. 

L E M M A  5. The number of  blocks of  Do(B) is greater than, equal to, or less 
than the number of  points according as u is greater than, equal to, or less than I~. 

Proof. By lemma 2, Do(B) is a 'tactical configuration' with v o = v - k  
points, b o = b - 1 - k ( r - 1 ) / / ~  blocks, k o = k  points in a block, and r o = r -  
- k 2 / #  blocks through a point. Since boko = Voro, b o -  Vo has the same sign 
as r o - k o = ~ ( u -  l*)/t. 

L E M M A  6. / f  u </,,  then u = 1. 
Proof. Assume u < # ;  then Do (B) has more points than blocks. Let M be 

an incidence matrix of  Do (B). (M is a matrix with rows and columns in- 
dexed by points and blocks of Do (B), in some order, with (q, C) entry 1 if 
qeC, 0 otherwise.) MM" has (q, q') entry equal to the number of  blocks 
of Do(B) containing q and q'; this number is r - k 2 / l t = u + u ( u - l ) s +  
+ u ( u -  1)/t if q = q', and is 0 or ( 2 -  t)//* = u if q = q'. So 

MM" = (u + u (u - 1 )s + u (u - 1 ) / t ) l  + uP, 

where P is a symmetric matrix with entries 0 and 1. 
M has more rows than columns, so MM" is singular. Let r~ be the eigen- 

value of P corresponding to the eigenvalue 0 of MM' .  rc is an algebraic 
integer, and 

rc = -  1 -- ( u -  1 ) s -  ( u -  1)/t 

is rational, so r~ is a rational integer; that is, t divides u -  1. Put u=  1 +xt  
for some integer x; since u</~, x<s .  

From the formula for b, t 2 (1 +SU) divides 

(t(1 + su) 2 + u(u- -  1 )s ) (u(u- -  1 ) +  2ut(1 + s u ) - u s t -  

+ t 2 (1 + su) 2) 

= t 2 ((1 + su) 2 + uxs) (ux + 2u(1 + su) - us - t (1 + su)2), 

and so 1 + su divides uxs ( u x -  us). Since 1 + us and u2s are coprime, 1 + su = 
= l + s + s x t  divides x ( s - x ) .  Since 1 +s+sx t>x(s -x )>~O,  we must have 
x(s-x)=O, x=0, u= l .  

L E M M A  7. / f  u = l, then D is affine. 
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Proof. Assume u = 1. By lemma 2, a point not incident with a block B is 
incident with a unique block disjoint from B; so two blocks disjoint from B 
are disjoint. Also, two blocks which are not disjoint have # common points. 
So D is aftine. 

3. L I N E A R  SPACES 

A linear space consists of a set of points together with a collection of subsets 
called lines, each containing at least two points, with the property that any 
two points he in a unique line. A linear subspace (or linear variety) is a 
subset of the point set which contains the line joining any two of its points. 
(If every line has just two points, then any set of points is a linear subspace.) 
A projective plane is a linear space with s +  1 points on a line (s> 1) in which 
any two lines intersect (equivalently, a linear space which is also a symmetric 
design, or a linear space with s + l  points on a line and s 2 + s + l  points 
altogether). An affine plane is a linear space which is also an atfi_ne design 
(equivalently, a linear space with s +  1 points on any line (s+ 1) 2 points 
altogether). In any linear space, a linear plane is a minimal linear subspace 
containing three non-collinear points. Any projective plane, or any atfine 
plane with more than two points on a line, is a linear plane. 

The projective geometry of dimension d over a skew field F is the collection 
of subspaces of a vector space of rank d +  1 over F. An/-dimensional sub- 
space of the geometry is a vector subspace of rank i+  1 ; points, lines, planes, 
and hyperplanes are subspaces of dimension 0, 1, 2, d -  1 respectively. The 
points and lines form a linear space, in which the linear subspaces are just the 
(geometrical) subspaces. If  F is finite and 1 ~<i ~<d-1, the points and 
/-dimensional subspaces form a design, in which the lines are precisely the 
(geometrical) lines. Veblen and Young ([18], volume 1) showed that a linear 
space is a projective geometry of dimension at least 3 if and only if it is not 
a plane but all its linear planes are projective planes. 

If  D is a linear space with s + 1 points on any line, then a linear plane of D 
has at least s 2 + s +  1 points. (For given a point p and a line L, with p¢L, 
the linear plane containing p and L contains every line joining p to a point 
of L.) If  s >  1 and every linear plane has s 2 +s  + 1 points, then every linear 
plane is a projective plane, and so D is a projective geometry (if it is not a 
plane). 

Suppose D is a smooth design with s +  1 points on each line, and p is a 
point of D. Let L* be a line of D*(p). L* is a collection of lines of D; let 
P (L*) be their union. Then [P (L*)[ = 1 +slZ*l. Furthermore, P (L*) is the 
intersection of all blocks containting three non-collinear points of D, so 
P (L*) contains a linear plane of D. Thus IP (L*)I >~s2+s+l ,  whence 
IZ*l ~>s+ 1. If  s >  1 and every line of each design D* (p) has s +  1 points, then 
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the linear space of  D is a projective geometry, and the blocks of  D are sub- 
spaces of the geometry. 

L E M M A  8. I f  ~ is a set of  subspaces of  a projective geometry forming a 
symmetric design on the point set, then ~ is the set of  all hyperplanes. 

Proof. Suppose the geometry has dimension v - 1 .  Every member of 
has the same dimension, say k -  1, and every intersection of  two members 
of & has the same dimension, say 2 - 1 .  If  the underlying field is GF (q), 
then the symmetric design has parameters V= (qV-1) / (q-1) ,  K= 
= (qk_ 1 )/(q--  1 ), A = (qX_ 1 ) / ( q -  I ). 
We have 

( V -  1 ) A = K ( K -  1), 

(qV-1 _ 1) (q~ - 1) = (qk_  1) (qk-1 _ 1), 
qV+X-X _ qV-I _ qa = q2k-~ _ qk -- qk-1. 

The highest power of q dividing the left-hand side is qX, whereas the highest 
power dividing the right-hand side is qk- 1. So 2 = k -  1, k = v -  1, and the 
blocks are hyperplanes. Since there are (q"-  l)/ (q-1)  hyperplanes, the 
result is proved. 

Remark. The concept of a design can be generalised: if F is a finite field, a 
design over F can be defined as a collection of blocks (subspaces of rank k) 
in a vector space of rank v over P, with the property that any subspace of 
rank 2 is contained in A blocks, where A > 0, k < v - 1 .  This can be further 
generalised: we could define a t-design over F by analogy with the classical 
definition [15]. Fisher's inequality and the characterisation of symmetric 
designs given in Section 1, together with recent generalisations to t-designs 
[19], [5], extend easily to this situation; so we could define a 'symmetric 
design over F '  in the obvious way. However, Lemma 8 shows that 'symmetric 
designs over finite fields' do not exist. 

L E M M A  9. Suppose D is a locally symmetric design with s+ 1 points on a 
line ( s>  1). Suppose any line of  any design D* (p) also has s+ 1 points. Then 
D is the design ofpoints and hyperplanes in a projective geometry of  dimension 
at least 3 over GF (s). 

Proof We have remarked that the linear space derived from D is a 
projective geometry (over GF (s)), and the blocks of  D are subspaces of this 
geometry. D* (p) then satisfies the hypotheses of I_emma 8, and so is the 
design of  points and hyperplanes in a projective geometry of dimension 
(say) v - 1  over GF(s); then r=(sV-1 ) / ( s -1 ) ,  2=(sV-a-1 ) / ( s -1 ) ,  
t= (sV-2-1) / (s -1) .  Then l + s t > s V - 2 = 2 - t ;  so by lemma 3, D is sym- 
metric, and itself satisfies the hypotheses of Lemma 8. 

The attine geometry of dimension d over a skew field F is obtained from 
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the projective geometry by deleting a hyperplane (the 'hyperplane at 
infinity') together with all its subspaces. Many properties of atfine geometries 
are similar to those of projective geometries, but there are significant dif- 
ferences. The points and lines of an affane geometry form a linear space; 
if IFI > 2, the linear subspaces are precisely the geometric subspaces. (This 
is false when F =  GF (2), since then any line has two points.) I f  a linear space 
which is not a plane has s + 1 points on a line (s > 1) and any four non- 
coplanar points lie in a 3-dimensional afiine space, then the linear space is 
an affane geometry; but Hall has given an example of a linear space which 
is not an atfme geometry in which any three non-eollinear points lie in an 
affine plane [12]. His example has three points on any line. On the other 
hand, Buekenhout [3] has shown that a linear space with at least four points 
on a line, in which every linear plane is an affane plane, is an affine geometry. 
Furthermore, Hall [13] showed that a Steiner triple system (a linear space 
with three points on a line) in which every linear plane is an affme plane, can 
be described by a commutative Moufang loop of exponent 3. Bruck ([2], 
p. 157) has shown that such a loop is centrally nllpotent; it follows that the 
number of points is a power of 3. 

4. C O M P L E T I O N  OF THE PROOF AND SOME REMARKS 

Suppose D is a locally symmetric design, as in Section 2. We have seen that 
one of the eases (a)--(d) of that section occurs. From [7], [8], and [10] it 
follows that, if D is symmetric, then conclusion (i) of Theorem 1 holds, and 
if D is affine then (ii) or (iii) holds. (These results can be proved using the 
machinery we have set up, the first very easily.) So we shall now assume we 
are in ease (e) or (d). 

A non-empty intersection of two blocks is a linear subspace with 1 +st 
points, and is not a line unless t =  1 ; so if t >  1 then t>>.s+ 1. Furthermore, 
if s >  1 then t ~ s +  1 by Lemma 9, and so t>>.s+2. Also, the number of lines 
in this linear space is (1 +st)st/(1 +s)s, so s +  1 divides t(1 +st), whence s +  1 
divides t ( t -  1 ). 

Suppose t = s + 2 and s > 1 in (e) or (d). The intersection of two blocks has 
(1 +s)  2 points and so is an affine plane. Since s >  1, all the linear planes are 
altine planes. If  s > 2 we have seen that the linear space is an attine geometry, 
and so it has (s+ 1) d points, for some integer d;  we have seen that the second 
conclusion also holds if s =  2. But substitution shows that, if t=s +2,  

v = (s + 1) 2 (s 6 + 4s 5 + 7s 4 + 8s 3 + 6s 2 + 2s + 1) in case (c), 

v = (s + 1) 4 (s 6 + 4s s + 7s 4 + 8s 3 + 7s 2 + 3s + 1) in case (d). 

So these cases cannot arise. We must have s =  1 or t =  1 or t > s + 2 .  
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If case (d) occurs then t divides s+2. The case t=  1 yields (v) of Theorem 1, 
s=l and t > l  yields (vi), and t > s + 2  is obviously impossible. In case (c) 
we obtain (iv), 

Remarks. (1) Let D be locally symmetric but not symmetric, B a block, 
and q a point outside B. The block B can be 'projected' into D* (q); its image 
(the set of lines joining q to points of B) is a set of points of D* (q) with the 
property that any block of D* (q) meets it in 0 or # points. (In particular, if 
t = l, then the image of B is a {# (1 + su), #}-arc in the projective plane D* (q) 
of order u/~, in the sense of Barlotti [l ]). It is worth noting also that the set 
of blocks containing q but disjoint from B becomes, in the dual of D* (q), a 
set of points which meets any block in 0 or u points. Furthermore, the projec- 
tions of all blocks not containing q form the blocks of a design D' (q) with 
parameters v'= (v-1)/s, k'=k, 2 ' = s 2 ( 2 - t ) ,  r'=s(r-2), b'=b-r, on 
the points of D* (q). 

(2) The Bruck-Ryser-Chowla theorem ([9], pp. 61, 63), applied to D* (p), 
eliminates some values of s in (v), but no possibilities in any other case. The 
only remaining case of 0v)-(vi) to be settled is (iv) with s=  t = 1, where 
Witt [20], [21] showed the existence of a unique example. Other small cases 
have received attention, usually by applying the last remark. As observed in 
[11], Cossu [6] showed that the Desarguesian plane of order 9 contains no 
{21, 3}-arc; so in (iv) with s=2,  r =  1, any D* (p) must be a non-Desarguesian 
plane of order 9. (This was also proved by Assmus (personal communica- 
tion).) A symmetric design with the appropriate parameters for D* (p) in 
(iv) with s = l ,  t=2  (namely v*=56, k * = l l ,  2*=2) is constructed in [14]; 
but, by considering sets of 12 points in this design meeting every block in 0 
or 3 points, Baumert and Hall showed it could not occur in this situation 
(Hall, personal communication). In (v) with s=  1, D*(p) is a projective 
plane of order 10, and a block not containing q projects to a {12, 2}-arc, 
or hyperoval; such sets have been important in recent investigations into 
the existence of a plane of order 10 [17]. In case (iii), however, it is conjec- 
tured that a Hadamard 3-design exists with any given value of t. Many 
examples are known. 

(3) For a given value, greater than l, of t, there are only finitely many sets 
of parameters. This generalises as strongly as possible a result of Hughes [15], 
who proved it for s = 1 without the restriction t > 1. However, there are in- 
finitely many designs which are 'locally projective planes', for example, the 
projective and affine geometries of dimension 3; so the condition t > 1 is neces- 
sary in general. 

5. L O C A L L Y  AFFINE DESIGNS 

An affme design D* has parameters v* =/zm 2, k* =/~m, 2* = (/on - 1 )/(m - 1 ), 
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r* = (/tin 2 - 1 ) / ( m -  1), b* = m (/an 2 - 1 ) / (m-  1), where m -  1 divides /~-  1 ; 
here/~ is the number of points in two non-disjoint blocks, and rn the number 
of blocks in a 'parallel class'. (See [9] p. 73.) An altine plane is an affine design 
with 2*= 1 (equivalently p =  1). An inversive plane (or MSbius plane) is an 
extension of an aiiine plane, that is, a 3-design which is loeaUy an afline plane 
([9] chapter 6). An inversive plane is a 3-design with parameters v = m 2 +  1, 
k--  m + 1, t = 1, and conversely. 

T H E O R E M  2. A locally a ~ n e  design is an inversive plane. 

Proof. Suppose D is locally affine and D* (p) has the parameters given 
above. If  D has parameters v, k, 2, r, b, any three non-collinear points lie 
in t blocks, and a line has s +  1 points, then 

t =  ( W n -  1 ) / ( m -  l)  

,~ = (/an 2 - 1)/(m - 1) 

r = m ( p m  2 - 1)/(m - l )  

v = 1 + slim 2 

k = 1 + s#m 

and any two blocks have 0, 1, or 1 + s# common points. Then 

b = vr /k  = (1 + slzm2)m(l~m 2 - 1 ) / ( m -  1)(1 + s l im);  

thus 1 + s p m  divides (1 +sl~rn2)m( lan2-1) ,  and so 1 + s # m  divides ( m - l )  
(m + s). Suppose # # 1. Since m - 1 divides # -  1,/~ >i m, and 

1 + s m  2 <<. m 2 + s m -  m -  s ,  

(s - 1) ( m  2 --  m + 1) ~< - 2, which is impossible. 

Thus/~ = 1 and D is locally an affine plane. 
By Fisher's inequality, r >~k, or m (m+ 1)I> 1 +srn, whence s<<.m. Also 

l + s m  divides m 2 + s m - m - s .  Multiplying by s and putting m s - - l ,  

1 + s m  divides - m - s +  1 - s  2. If  s 2 + s + m -  1 ~<2+2sm, then 

s ( 2 m - - s - -  1 ) < m - - 3 ,  

2 ( m - -  1 ) < ~ m - - 3 ,  

which is absurd. So 

s2  + s + m  - 1 = 1 + s m ,  

(s - -  1) ( s -  m + 2) = 0, 

s =  1 or m -  2. 
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If m = s + 2  then b= (s2+3+1) (s+2) (s+3)/(s+l), so 
Thus s = 1 in any case, and D is an inversive plane. 

s + l  
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divides 2. 
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