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Dedicated to Jacques Tits for his sixtieth birthday 

ABSTRACT. Let ~ be an algebraically closed field and let G be a finite-dimensional algebraic 
group over N which is nearly simple, i.e. the connected component  of the identity G O is perfect, 
C6(G °) = Z(G °) and G°/Z(G °) is simple. We classify maximal  elementary abelian p-subgroups of 
G which consist of semisimple elements, i.e. for all primes p ~ char K. 

Call a group quasisimple if it is perfect and is simple modulo the center. Call a subset of an 
algebraic group total if it is in a toms;  otherwise nontoral. For several quasisimple algebraic 
groups and p = 2, we define complexity, and give local criteria for whether an elementary abelian 
2-subgroup of G is total. 

For all primes, we analyze the nontoral  examples, include a classification of all the maximal 
elementary abelian p-groups, many  of the nonmaximal  ones, discuss their normalizers and fusion 
(i.e. how conjugacy classes of the ambient algebraic group meet the subgroup). For some cases, 
we give a very detailed discussion, e.g. p = 3 and G of type E6, E 7 and E 8. We explain how the 
presence of spin up and spin down elements influences the structure of projectively elementary 
abelian 2-groups in Spin(2n, C). Examples of an elementary abelian group which is nontoral  in 
one algebraic group but  toral in a larger one are noted. 

Two subsets of a maximal  torus are conjugate in G iff they are conjugate in the normalizer of 
the torus; this observation, with our discussion of the nontoral  cases, gives a detailed guide to the 
possibilities for the embedding of an elementary abelian p-group in G. To give an application of 
our methods,  we study extraspecial p-groups in E8(~). 

1. I N T R O D U C T I O N ,  N O T A T I O N  A N D  S T A T E M E N T  OF R E S U L T S  

In this article, ~ denotes an algebraically closed field and p is a rational prime 
unequal to char(X). The symbol i denotes a square root of - 1  when 
char(K) ~ 2. By our conventions, an element of order p in an algebraic group 
over ~ is semisimple. 

We study elementary abelian p-subgroups of all nearly simple finite- 
dimensional algebraic groups, classify the maximal nontoral ones and discuss 
aspects of their embeddings and fusion. Since our methods come from both 
Lie theory and finite group theory, we prefer to give a lot of detail. 

It would be hard to give a historical report of interest in elementary abelian 
subgroups of algebraic groups. Recent references would include the 1961 
paper [Bo]; many questions related to these elementary abelian subgroups 
for finite groups and algebraic groups in positive characteristic came up 
during the intense study of finite simple groups, starting in the late 1950s; see 
[GoLy], which lists extensive properties of finite nearly simple groups; the 

Geometriae Dedicata 39: 253-305, 1991. 
© 1991 Kluwer Academic Publishers. Printed in the Netherlands. 



254 ROBERT L. GRIESS, JR 

1986 preprint lAd] suggested several ideas, one of which led this author to 
the complexity concept (see (1.2)), which seems to be new. The classifications 
of finite subgroups of algebraic groups (e.g. [CoWa] and [CoGr])  raised 
further questions along this line. The 1974 paper [Alek] should be mentioned 
since it seems not to be well known; indeed the groups in the main theorem of 
[Alek] were discovered independently by several mathematicians (including 
this author). 

The main results are summarized in Tables I, II and III in (1.8). The 
possibilities for a maximal projectively elementary abelian group follow from 
those tables. Throughout  this article, however, are details and comments 
about embeddings of finite groups in algebraic groups. 

We explain a bit more how to get the possibilities for a maximal nontoral 
elementary abelian p-group from Tables I and tI. Let G be a nearly simple 
algebraic group, Z <~ Z(G) and let E be a p-subgroup of G such that EZ/Z is 
elementary abelian and maximal such. If E ~< G °, this is straightforward, 
though in the case G O < G, to settle maximality of E, one must determine 
whether an outer automorphism of G O of order p centralizes E. Now, assume 
E is not in G °. Let F := E n G O and let e generate a complement to F in E. 
Then, e induces an outer automorphism on G O and one may get the 
possibilities for its fixed point subgroup H from Table III. One then gets F by 
consulting Table I or II for H and considering the possibility that F is toral. 
This is straightforward, except possibly for type D, with p = 2 since H 
involves two semisimple or toral components. For  types A, and D, there are 
many possibilities, so we do not list them in these tables. In the case of type 

A,, the fixed point subgroup ofe  has type D m or Cm, and we consult (2.19). In 
the case of type D, and p = 2, we just observe that F has elementary abelian 
image in SO(2n, ~) since it commutes with the determinant - 1 action of e; 
thus, depending on Z, F corresponds to a frame group or to a weakly self- 
orthogonal binary code in the dimension 2n diagonal frame group whose 
annihilator contains an odd diagonal transformation corresponding to the 
element e; see (2.2), (2.7) and (2.8). One does not expect to enumerate such 
codes explicitly. In case G is disconnected of type E6, there are two conjugacy 
classes of maximal nontorals not contained in G O since the rank 5 nontoral of 
a natural F 4 subgroup remains nontoral in G O and is conjugate to one of the 
two nontorals of a natural C4 subgroup; the other nontoral becomes toral in 
G and so is conjugate to the natural rank 7 nontoral q]-(2)(t), where t inverts 
the ambient torus T. Finally, in the case of type/ )4  and p = 3, we need the 
result that the toral rank 2 groups in the fixed point subgroups PSL(3,~) and 
G2(~) are conjugate in GO; see (2.25). 

It may happen that if we take an element deE\F such that ( d )  ~ (e ) ,  ( d )  
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and ( e )  are not conjugate in G. Thus, the same group E will come up in two 

different ways in the use of (2.18). This happens, for example, with maximal 

elementary abelian groups for type D. and E 6. 

(1.1) NOTATION.  When G is a finite-dimensional algebraic group, T refers 
to a maximal torus of G and Tk refers to a k-dimensional torus in G; ~- is 
unique up to conjugacy, though T k is not if 0 < k < rk(G). For an integer n, 
we let q]-(.) denote {t e T i t "  = 1} - Z,~ k(~), and similarly define "~k(n)" 

(1.2) NOTATION.  'tp' refers to a tensor product situation, which includes (i) 

a decomposition of a vector space V= V1 ® V2 with a bilinear form f 
(possibly 0) for which each V~ has a bilinear formf~ (alternating or symmetric) 

such that f = f l  ®f2; and (ii) some corresponding central product decom- 
position of groups A = A 1 o A2 ' where Ai ~< Aut(f~) and A ~< Aut(f)  ~< 
GL(V). 

For  the next definition, recall that any scalar-valued function on a finite 
vector space must be polynomial (as a function of the coordinates). Such a 
function determines a coset of the ideal of polynomial functions vanishing on 
the vector space; the degree is defined as the least degree of a polynomial in 
that coset ( -  oo is the degree of the 0-function). 

(1.3) NOTATION.  Let G be a group and let S be a subset of G. For  an 
elementary abelian subgroup E of G, the complexity cx(E) (based on S) is the 
degree in the above sense of the characteristic function of S n E in E. In this 
article, complexity is defined in a few specific situations; see Sections 6, 7, 8, 9 
and 13. 

(1.4) DEFINITION.  Let A, B, . . .  be a (finite or infinite) sequence of 
conjugacy classes in the group G and let S be a subset of G. The distribution or 
class distribution of S (with respect to the understood sequence) is the sequence 
of symbols AaB b . . . .  where a = [Ac~S[, b = [ B n S I , . . . .  Often, S is a 

subgroup and we restrict the sequence of classes to those which meet S\{I}. 
In the case where S\{1} consists of elements from the conjugacy class A, we 
say that S is A-pure. When S is a group of exponent p and the classes of order 
p are designated pA, pB, . . ,  we write A"Bb.,. for the distribution pAapB b . . . .  

(1.5) REMARK. Orthogonality relations for finite groups are used several 
times; in all cases, the finite group is a p-group; its eigenvalues may be lifted to 
characteristic 0, by the usual Brauer theory. In characteristic 0, we compute 
the dimension of its fixed point subspace by summing traces. Actually, such a 
finite group may even be lifted to a subgroup of the corresponding type 
algebraic group in characteristic 0 (see Appendix 2). 
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(1.6) DEFINITION.  Assume char N ¢ 2. By pin(m, ~), we mean a double 
cover of O(m, ~) which restricts to the double cover Spin(m, ~) of SO(m, ~); 
the isomorphism type depends on whether a reflection lifts to an involution 
or an element of order 4. Let G = Spin(m, ~). The spin module is irreducible 
of dimension 2 ("- 1)/2 if m is odd. When m is even, it decomposes into two 

irreducible and inequivalent modules, called half-spin modules; each has 
dimension 2 "/z-1. These modules are interchanged under the action of 
elements from pin(m, N)\Spin(m, ~). If M is one of these, the kernel of the 
action of G on M is Z, a subgroup of order 2 if m = 0 (mod 4) and order 1 if 

m -= 2 (mod 4). The group G/Z is called the half-spin 9roup. When char ~ = 2, 
pin(n, f14) -~ O(n, ~). 

(1.7) NOTATIONS.  Notation for finite groups and for algebraic concepts in 
Lie theory are standard. The style of usage is consistent with that of [CoGr]  
(the relevant notations and results extend appropriately to algebraic groups) 
and we call attention to the following group extension notations. Let A and B 

be groups. We write A. B for a group with normal subgroup isomorphic to A 
and quotient B. In the case where the extension is split, we write A : B, and if 
nonsplit, we write A.B. We write n for a cyclic group, p" for an elementary 
abelian p-group, pa.b for an elementary abelian group which is regarded as the 
tensor product of elementary abelian groups pa and pb (useful when the latter 
are a pair of modules for a pair of commuting groups), pa+b+.., for an 
extension of (going upward) p~ by pb by . . . .  For  a finite group G, exp(G) 

denotes the exponent, i.e. the least positive integer n such that x" = 1, for all 
x E G. A p-group P is extraspecial if P' = Z(P) has order p; there are two 
isomorphism types for P of a given order, which is an integer of the form 
pl + zr; we write pl  + 2r for an extraspecial group of order pl + 2r, p~ + 2r for such 

a group of type e = __+(when p = 2, this refers to the Witt index of the 

quadratic form obtained from the squaring map; when p is odd, e = + iff the 
exponent is p). For  a subset S o f a  group, let S # denote S\{1}. See also IGor],  

[Hup]. 
We let G be a finite-dimensional algebraic group. If X ~ {A, B, C, D, E, F, 

G}, m and n are integers such that X,  is a type of simple algebraic group, mX, 
denotes a perfect group whose center has order m and whose central quotient 
is the simple algebraic group of type X,,  when such a group exists. If X, Y,... 
are such symbols, manb... Xk Y~... denotes a perfect central extension of the 
semisimple group XkYt... by a finite abelian group of type manb... (i.e. 
Z~, × Z~ × ."). When p = char(~i) divides such m, it is understood that m is 

replaced by its p' part, e.g. Z(3E6(K)) = 1 when p = 3. 
We write J "  + J ,  + -.. for the Jordan canonical form which is the sum of 

indecomposable blocks of dimensions m, n . . . .  with diagonal entries 1. We 
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introduce the following departures from usual practice: Dih2,, denotes the 
dihedral group of order 2m; Quatz,, denotes the quaternion group of order 

2m. 

(1.8) THE TABLES. The notational conventions are these: G is a simply 
connected nearly simple algebraic group such that G o is simple modulo Z(G °) 
and Z is a subgroup of Z(G°). We study elementary abelian p-subgroups of 
G/Z by considering groups E which are p-subgroups of G such that EZ/Z is 
elementary abelian. We discuss all maximal nontoral E and a few others. We 
use 'wr' to indicate wreath product and AGL(n, F) for the affine general linear 
group of degree n over the field F, i.e. the split extension of GL(n. F) by the 
group of translations. For the definition of complexity, see (1.3) and the 
appropriate section (6, 7, 8 or 9). We abbreviate complexity with 'cx.' 

T A B L E I  
M a x i m a l n o n t o r a l s ~ r t h e c o n n e c t e d c a s e ,  p = 2  

Type Z Remarks 

A, IZ] odd 
[Z I even 

n n [ZI = 1 

IzI = 2 

C, IZl = 1 
IZl = 2 

D~ IZl = 1 

I Z I = 2  
(several 
cases) 

IZl = 4 

G2 IZl = 1 

None 
E in 2, x + 2~ o 7/zo x 22-1, 2rs = n + 1, r > 0, c >~ 1; tp 

E corresponds to a nearly self-orthogonal even code in a 
diagonal frame group (see (2.7)) 
E/Z is a frame group (see (2.7)) 

None  
E has shape 2~+2'o4~ x 2 b, 2's = 2n, r > 0, a~{0,  1}; for e = - ,  
(a, b) = (0, s) or (1, s/2-1); for e = + ,  a + b = s/2; tp; not  all of 
these are maximal; see (2.19.ii) 

E corresponds to a nearly self-orthogonal code in a diagonal 
frame group 
Z is the kernel of the natural 2n-dimensional representation: E/Z 
is a frame group for G/Z 

Z the kernel of a half-spin representation (here, n is even) 

E is in one of the two natural  [T1SL(n, K)] .2-subgroups 
stabilizing a complementary pair of maximal  isotropic subspaces 
in the natural module; the image in SO(2n, ~;) of E lies in one of 
the subgroups Quat  s o Sp(n, ~)  or Dih s o O(n, N;), and has  the 
form X o Y, where X lies in the finite central factor and where Y 
has shape 2, a ÷ 2~ x 2s; tp; see (2.19). 

E is the preimage in G of a subgroup of SO(2n, H) of the form 
2~+2"o4a x 2 b, 2rs=2n,  r > 0 and a~{0,  1}; b=s if a = 0 ;  
b = s/2 - 1 if a = 1; the commuta tor  subgroup E' may  be any 
subgroup of Z; see (2.19) and (2.22). 

For each integer k e {0, 1, 2, 3}, one conjugacy class of 
elementary abelian subgroups of order 2k; toral iff k ~< 2 iff 
cx ~< 2; if E is maximal such, N(E) ~ 23. GL(3, 2). 
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T A B L E  I (Cont.) 
Maximal nontorals for the connected case, p = 2 

Type Z Remarks 

F4 [Z[ = 1 

E6 IZI = 1 or 3 

E 7 [Z] = 1 

IZl = 2 

E 8 Z =  1 

One conjugacy class of maximal  elementary abelian groups, 
represented, say, by E of rank 5; a subgroup is toral iff the 
complexity is at most  2 iff it does not  contain a 2A-pure eights 
group; N(E) ~ 25.223.[GL(3,2)× GL(2,2)]. 

One  maximal  nontoral  (rank 5, from a natural  F4(~)-subgroup); 
toral iff cx ~< 2. 

One maximal  nontoral, rk 6, C(E) = 2 a × SL(2, ~)a, 
N(E)/C(E) = 223[E3 × GL(3, 2)]. 

Two maximal nontoral  (type 1 and type 2), both lie in a 4A 7 - 2 
subgroup and in a [-T 1 o 3E6(~)]. 2 subgroup; such E/Z have 
ranks 8 and 7 and both satisfy E' = Z and are self-centralizing; 
we have N(E)/E ~ 27 ; Sp(6, 2), 2221 + 1.2.3 . [-~'3 × ]~a × GL(3, 2)], 

respectively (in the former case, 27 indicates a uniserial module 
for Sp(6, 2) with ascending L6wey factors of dimensions 6 and 1). 

Two maximal elementary abelian, both nontoral,  ranks 9 (type 1) 
and 8 (type 2); an elementary abelian group is toral iff it has 
complexity at most  2 or is not  of rank 5 and 2B-pure; both self- 
centralizing and N(E)/E ~- 28 : O +(8, 2) if E has type 1 and 
N(E)/E ~- 26.2 : [-(GL(3, 2) wr 2) x E3] if E has type 2. 

T A B L E  II  
Maximal nontorals for the connected case, p odd 

Type Z Remarks 

A, [Zl ~ 0 (mod p) 
IzI --- 0 (mod p) 

B n 
C. 
Dn 
G2 
F, 
E6 Z = 1 and p = 3 

IZl = 3 

None 
E ~ pt + 2r o 7~p2 X p~, where prs = n + 1 
None 
None 
None 
None 
3a; normalizer 33: SL(3, 3) 
Two nontoral,  one maximal; normalizers 3 × 3a: SL(3, 3), 
31 +3+3: SL(3, 3); see (11.13) 

Two classes (type BC and type ABCD), each of shape 
31+ +2 × 32, C(E) ~ 3 a and 3 x ~-2 and 
N(E)/EC(E) = [-32 × 32]: [3 x GL(2, 3)1 Dih12 x 32 : SL(2, 3), 
respectively; see (11.14). 
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T A B L E  II (Cont .)  
Maximal nontorals for the connected case, p odd 

2 5 9  

Type Z Remarks 

E7 IZl = 1 or 2; p = 3 

E s p =  3 

p = 5  

Two classes of nontoral E, one contained in the other: 
rk E = 3 or 4 with the same centralizer 33 x ~-1 
N(E) = E33: SL(3, 3)x T1]: 2 if rk E = 3 (this maps onto 
33: GL(3, 3) and 0(2, ~)) 
N(E) = [31+3+3: SL(3, 3) oT1]:2 if rkE = 4 
Two maximal nontoral, both of rank 5; 
type 1: centralizer 31+3+3 ° ~2; 

normalizer [31+ 3 ÷ 3: SL(3, 3) ° T2: 3]: 2 
(amalgamations over Z3; N(E) has AGL(3, 3) and E3 as 
quotients) 
type 2: C(E) = E, N(E)/E = 3~: [Sp(4, 3)" 2] (has WE, as 
quotient) 
One nontoral, order 53; C(E) = E and N(E) = 5s: SL(3, 5) 

T A B L E  I I I  

Maximal nontorals for ihe disconnected case 

(G almost simple, E projectively elementary abelian, F = E • G °, E = F x (e) ,  ]e[ = p; we use 
(2.18) to give fixed points of e on G °, then for the possibilities for nontoral F, refer to (2.19) for 
type A, (5.4.ii) for type D and Section 8 and (2.19) for type E6, (2.25) for p = 3 and D4) 

Type Remarks 

A n p = 2; many E 

D~ p = 2; many E 

p = 3 ,  n = 4  

E 6 p = 2 

For IZl odd, fixed points Sp(n + 1, ~) (n odd) or SO(n + 1, ~); for 
IZ[ even, (n+ 1)/IZl odd, fixed points PSp(n+ 1, ~) or 
PO(n+  1, C4); for IZl even, (n+ 1)/LZI even, fixed points 
PSp(n + 1, K) x 2 or PSO(n + 1, ~) x 2. 

for Z = 1, fixed points 
[Spin(k, ~) o Spin(2n - k, ~)] for an odd integer k, k <~ n/2; for 
IZl = 2, f ixed points 
2 × SO(k, ~) x SO(2n - k, ~) for an odd integer k, k <<. n/2; for 
IZl = 4, fixed points 
SO(k, K) x SO(2n - k, ~4) for an odd integer k, k <<. n/2. 
(two classes of groups E) 
Two classes of outer elements of order 3, with fixed points G2(~) 
(one such F) and PSL(3, ~) (two such F). 
(two classes of such E; ranks 6 and 7) 
Two classes of outer involutions, with fixed points F4(K) (one 
such maximal F, nontoral in G °) and PSp(8, ~) (two such 
maximal F, both nontoral in PSp(8, ~); one becomes ~-~2) in G °, 
the other lies in an F4(~) fixed point subgroup) 
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TABLE IV 
Maximal extraspecial subgroups of Es(K) 

Prime Group p~ + za Remarks 

p~>ll 
p = 7  
p = 5  
p = 3  
p = 2  

None (see Section 12) 
d = 1, e = _+ Several 
d = l , e = _ +  andd=2, e=+ Several 
d = 1 or 2, e = + Several 

Two maximal with center of type 2B: (d,e) = (3, +) 
and (7, +) 
several with center of type 2A: d ~< 2 

(1.9) N O T A T I O N  AND T E R M I N O L O G Y  FOR T H E  R E M A I N D E R  OF 
T H E  PAPER 

We let G be a nearly simple finite-dimensional algebraic group over the 

algebraically closed field b~ such that G O is simply connected; G refers to the 

main group under consideration in each section of this article. The prime p is 
always different from char(K). 

H usually means an algebraic group containing G. 

Z is a subgroup of Z(G°). 
E is a projectively elementary abelian p-subgroup of G, i.e. a p-group whose 

image in G/Z is elementary abelian. 

For a subset S of G <~ H, C(S) and N(S) refer to centralizer and normalizer 
in G; otherwise, we use subscripts: Cu(S), etc. 

A fundamental SL(2, ~) means a conjugate in G of an SL(2, ~) which is 
generated by a pair of root groups. 

(1.10) A C K N O W L E D G E M E N T S .  It is a pleasure to thank Arjeh Cohen for 

many interesting and informative conversations during our collaboration on 
finite subgroups of Lie groups; Gary  Seitz for the preprint of [-CoLiSaSe]; 

Ferdinand Veldkamp, Tonny Springer and the referee for helpful suggestions; 

participants in my seminars at Ann Arbor and other places; the University of 
Michigan and the National Science Foundat ion for financial support; the 

Centre Nationale du Recherche Scientifique of France for support  during my 
visit at the l~cole Normale  Sup6rieure, 1986-87, when this work was initiated. 

2. PRELIMINARY RESULTS 

(2.1) D E F I N I T I O N S .  For basic definitions from coding theory, see [MacW- 
S1]. We mention the standard term doubly even code for a binary code (i.e. 
over 0:2) whose every element has weight divisible by 4; such codes are not 
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classified explicitly in general, even the self-orthogonal  ones. We also use the 

te rm nearly self-orthooonal for a code C such that  dim(C±/C) ~< 1. 

For  later calculations, we need to classify (up to equivalence) certain small- 
dimensional  b inary codes and get their groups.  We leave as an exercise the 

claim that  the list of  codes below has the stated propert ies  and exhaust  all 

nearly self-orthogonal  codes of the given lengths. 

(2.2) T A B L E  

TABLE V 
Small-dimensional nearly self-orthogonal binary codes 

Length Dimension Basis Group 

2 1 12 E z 
3 1 12 E z 
4 2 12, 34 2 wr 2 
5 2 12, 34 2 wr 2 
6 3 12, 34, 56 2 wr E 3 
7 3 12, 34, 56 2 wr E 3 

3 1234, 1256, 1357 GL(3, 2) 
8 4 12, 34, 56, 78 2 wr ~4 

4 1234, 1256, 1357, 12345678 AGL(3, 2) _-_. 23: GL(3, 2) 
9 4 12, 34, 56, 78 2 wr E 4 

4 1234, 1256, 1357, 89 GL(3, 2) x ~2 
4 1234, 1256, 1357, 12345678 AGL(3, 2) 

10(=X) 5 12, 34, 56, 78, 9X 2 wr E 5 
5 1234, 5678, 1357, 12345678, 9X AGL(3, 2) x 2 

(2.3) D E F I N I T I O N S .  (Famous  codes.) The Hammin 9 code (with parameters 
I-7, 3, 4]) is the unique self-orthogonal  binary code with parameters  [-7, 3, 4]. 

I ts  g roup  is GL(3, 2) and the code m a y  be thought  of as the set of  
complements  to linear subspaces of codimension 1 in ~3, together  with the 

empty  set, with Boolean sum as the addition. The extended Hammin9 code is 
the unique self-orthogonal  [-8, 4, 4J-binary code; it is spanned by a copy 

of the H a m m i n g  code suppor ted  on seven of the a lphabet  letters and 
(1, 1, 1, 1, 1, 1, 1, 1). Its group is AGL(3,  2) ~ 2 3 : GL(3, 2). 

The  tetracode is the unique self-orthogonal  length 4 ternary code; equiva- 

lently, it is the unique [-4, 2, 3] te rnary  code. Any nonzero  vector  has weight 3 

and the s tandard  version of this code is spanned by (s, a, a + s, a + 2s), for a, 
s E D: 3. Its g roup  is GL(2, 3), 

(2.4) L E M M A .  (i) Let T be a finite p-oroup whose Frattini subgroup is cyclic 
and central. Then T' has order 1 or p and there are subgroups X,  Y such that 



262 ROBERT L. GRIESS, JR 

T = X o Y, where X is extraspecial, Y has an abelian maximal subgroup and 
~I(Y)  is elementary abelian. 

(ii) I f  TIT' is elementary abelian, Y is of the form pr or Zp2 x p r. 

Proof (i) Not ice  that  T '  has order  1 or  p. The abelian case is trivial, so we 
assume that  T '  has order  p. Let  U >~ T '  satisfy U/T' = f~I(T/T'). Let E be an 

extraspecial  subgroup  of U such that  U = Z(U)E. Then, [E, T]  = T '  = Z(E) 

implies that  T = C(E)E. Since T/U is cyclic and T '  has order  p, we see that  
[C(E):C(E) c~ C(Z(U))[ = 1 or p. Since ~ (T)  is cyclic, the same is true for 

subgroups  and quotients,  whence C(E) n C(Z(U)) is central-by-cyclic,  hence 
abelian. Take  X = E and Y =  C(E). 

(ii) follows easily since Y = Z(U) if TIT' is e lementary  abelian. [ ]  

(2.5) D E F I N I T I O N .  Let G = G 1 . . . . .  G, be a central  p roduc t  and define 

G i := (Gj IJ ~ i), Z i := Gi c~ G i and Z := ( Z i l i  = 1 . . . . .  n> <~ Z(G). There  is 

a na tura l  m a p  G ---, HGi/Zi, defined by (gi) ~ (Zigi) (easily, one sees this is well 
defined) with kernel Z. Let  S be a subgroup  of G. The  quasiprojections of S are 

the groups Si ~< G, i =  1 . . . . .  n, which satisfy: Z i <~ Si and Si/Zi is the 
project ion of S Z / Z  into the i th factor with respect to the decomposi t ion  

IIGi/Z i . 

(2.6) L E M M A .  Let F~ be an m-set and let PF~, PEt)  be the vector space of 

subsets, even subsets, respectively, with addition the Boolean sum and with the 

natural bilinear form (A, B)~-* IA ~ BI (mod 2) on Pt) and quadratic form on 
PEt)  (A ~ 1/21AI (mod 2)). 

(i) I f  m is odd, the bilinear form on PEt)  is nonsingular and the quadratic 
form has maximal Witt index (plus type)/ff  m - _+ 1 (rood 8). 

(ii) I f  m is even, there is a well-defined quadratic form induced on PE~)/(t)> 

/ff m - 0 (rood 4); it has maximal Witt index iff m - 0 (mod 8). 

Proof This is well known.  See [Gr2] ,  for instance. [ ]  

(2.7) D E F I N I T I O N .  Let  char(K) ¢ 2 and let V be an m-dimensional  vector  

space with nondegenera te  bilinear form f and o r thonorma l  basis 

= {ei }i ~ f~}, where t) = {1 , . . . ,  m}. We call ~ a frame. A signed frame is a 

set of the form + ~ .  The associated frame group is the subgroup  of Au t ( f )  
stabilizing _+ ~ ;  it is i somorphic  to 2 wr Z, .  The  frame group  is a monomia l  
g roup  which is a semidirect p roduc t  of the diagonal frame group (diagonal as 
matr ices  with respect to ~ )  and the natural  g roup  of pe rmuta t ion  matrices. 
(See (5.1).) The elements ~i of  D which satisfy eiej = ei or - e i  as j ~ i, j = i, 
form a basis for D and give D the structure of ~:~; a subgroup  of D is natural ly  
identified with a code, so the code-theoret ic  not ions of weight, etc., apply  

to D. 
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(2.8) REMARK. The preimage in pin(m, ~) of D from (2.7) is, roughly 

speaking, extraspecial and may be analyzed by these principles: (a) if r and s 
are lifts of distinct commuting reflections, It, s] generates the kernel of the 
action on the natural module; (b) if u is the lift of an involution in SO(m, ~) 

with multiplicity k for the eigenvalue - 1, then lul = 2 or 4 as k = 0 or 2 
(mod4). For  background, see [Schl,2,3], [Chev], [St]; also see [Wood]; 
[GarGag]  studies the interesting question of getting a nonsplit double cover 
of a finite group by taking its orthogonal representations. 

(2.9) LEMMA. Let char ~ ~ 2 and let G be Spin(m, ~), n = rank G and let V 
be the natural m-dimensional module. Suppose f 6 G and f 2 is - 1  on V. Then 
m = 2n is even. I f  C:=  C~(fZ(G)/Z(G)), C ~ q]-i SL(n, ~() for n odd and 
C-~ T1SL(n, ~):2 for n even. Also, [C, f ]  is a subgroup of Z(G); [C, f ]  is 
trivial if n is odd and when n is even, [ C , f ]  = ( f 2 )  is cyclic of order 2 and is 
the kernel of a half-spin representation. There are two conjugacy classes of such 
f and they are interchanged by outer automorphisms. 

Proof On V, f has eigenvalues i and - i  only. Since an eigenspace is 
nonsingularly paired with its dual, m must be even. Let Z be the kernel of the 
action of G on V; IZl = 2. 

Let D := CG(f); D is connected by (2.13.v). It is normal in C, has index at 
most 2 (since the image of f in SO(2n, ~) has centralizer isomorphic to 
GL(n, ~()) and C/D is identified with a subgroup of H o m ( ( f ) / ( f 2 ) ,  Z). 

I fn  is odd, ( f 2 )  = Z(G) ~ Z 4 and f e Z ( D )  _~ -~1. Suppose 9~CXD. Thus, 
fo =fk ,  for an integer k ~ 1 (mod If[); since 9 2 ~D, k 2 = 1 (mod ]f]). We may 
choose 0 to satisfy 02E( f4 ) .  Since 9 acts on Z(D)== ~-1, k = +1 and so 
k = -  1. Since g2 E Z, g induces an involution on V of determinant 
( -  1)" = - 1, a contradiction. 

Suppose n is even. Then D _-__ ~-1 x SL(n, ~), Z(D) ~ -IF 1 × n and ]f[ = 4; also 
we may assume that f ~Z(D) °, whence ]C/DI ~< 2. There is an element 9 ~ G 
such that ( o , f ) Z / Z  ~ Dihs. Therefore, ]C/DI = 2 and so [C, f ]  has order 2, 
as claimed. To prove that [C, f ]  is the kernel of a half-spin representation, we 
observe that it has order 2 and maps to ( - l v )  in the natural representation, 
hence is not the kernel of the action on the natural module. The last statement 
follows from the well-known fact that the orbit of O(2n, E) on maximal 
isotropic subspaces splits into two orbits for SO(2n, ~). [] 

(2.10) DEFINITION.  Let char ~ ~ 2. We call an element 9 e G = Spin(m, ~) 
imaginary if 92 acts as - 1  on the natural m-dimensional module. Such 
elements exist if m = 2n is even and they have orders 8 or 4 as n is odd, even, 
respectively. Let n be even. We say two imaginary elements f and 9 have the 
same spin i f f  2 = 92; otherwise, opposite spins. We call the two different spins 
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up and down, terms suggested by the upper and lower branch at the forked 
end of the D, Dynkin diagram. Having the same spin is the same as being 
conjugate; see (2.9). 

(2.11) LEMMA. (Quotients of Bilinear Forms.) Let G = H o K be a central 

product of groups with finite dimensional ~G-module V. Assume that every 

finite-dimensional module for H or K is completely reducible. Suppose that VIn 
is a direct sum of modules, each isomorphic to the module M such that 

dim HomH(M ® M, ~) = 1. Let h be a nonzero H-invariant bilinear form on M 

and assume that V has a G-invariant bilinear form g. Then, there is a module N 
for K with an invariant bilinear form k such that V ~- M ® N and g = h ® k. 

Proof There is a module N for K such that V - M ® N, with the natural 
action of the central product (decompose V into a direct sum of H- 
homogeneous components to see this). Since dim Homn(M @ M, E) = 1 and 
the fixed point subspace for G on V® V is naturally isomorphic to 
(M ® M) n ® (N ® N) K, the result follows. [] 

(2.12) LEMMA. Notation as in (2.9) with m = 2n =- 0 (mod 4). Let f and g ~ C 

be imaginary. I f  g ~ D, f and g have the same spin. I f  g ~ D, fg -1  acts on the 
natural module Vas an involution, say, with eigenvalues ( -  1 za, 12n-2a); then, f 

and g have the same spin iff a is even. 

Proof Suppose g 6 D. Then ( f  g) ~ Quat s and C ( ( f  g)) ~- Sp(n, ~(). We 
may decompose V as 1"71 ® V2 where the factors are modules for C ( ( f  g)) and 
C(C( ( f  g)) ~ Sp(2, ~) ___- SL(2, E), respectively. In the latter group, the nor- 
realizer of ( f ,  g)  is isomorphic to SL(2, 3), whence f and g are conjugate. 

Now assume tha t f and  g commute. For  symbols j, k = __+, let Fjk denote the 
subspace of V where f acts as i ;1 and g acts as i kl. There is x ~ pin(m, E) such 

t h a t f  x = g. We may assume that x is trivial on V+ + since the stabilizer in G of 
an eigenspace W of f o r  g acts as GL(W) there; also, x acts trivially on V_ _ 
since 1I__ is in perfect duality with V++. Then, x stabilizes 

V~++ = V++ • V+_ G V_+ and sends the second factor to the third 
factor. If d im(V++)>0,  induction applies to the proper subspace 
V+ _ • V_ +. Assume that dim(V+ +) = 0. Then, f g -  1 acts as - 1 on V and 

a = n. By decomposing V as a direct sum of ( f ,  g)-invariant hyperbolic 
planes, we see that xr centralizes f, where r is a product of n reflections 
interchanging eigenspaces f o r f o n  those n planes. The result follows since the 
stabilizer of an isotropic subspace in GO(2n, ~) lies in SO(2n, ~), due to the 
fact that the graph automorphism interchanges the two conjugacy classes of 
parabolics which stabilize maximal isotropic subspaces. []  

Now we recall some basic results from the theory of Lie groups and algebraic 
groups. 
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(2.13) PROPOSITION.  Let G be a finite-dimensional algebraic group and let 
H be a fnite-dimensional connected algebraic group. 

(i) Let G be reductive. I f  A is an abelian subgroup and x is a semisimple 
element of A, A is toral in G iff A is total in C(x). I f  A is total, 
N(A)/C(A) is embedded in N(T)/C(T), for a torus T of C(A). 

(ii) Let H be reductive. Every semisimple element lies in a torus. 
(iii) I f  S is a finite supersolvable group of semisimple elements act!ng on G, S 

normalizes a maximal torus. (Recall that finite nilpotent groups are 
supersolvable.) 

(iv) Suppose that H is a simply connected semisimple algebraic group with 
root lattice L and that K is a semisimple subgroup generated by root 
groups, with root lattice M <<. L . I f  M is a direct summand of L as 
abelian groups, K is simply connected. 

(v) I f  H is simply connected and reductive and x is a semisimple element, 
C(x) is connected (but not necessarily simply connected). I f  Ixl is finite of 
order relatively prime to the order of the finite group Z(H'), then 
Cn/z(xZ ) is connected, for any closed Z <~ Z(H). 

(vi) I f  H is semisimple and A is a finite abelian subgroup of semisimple 
elements with at most two generators, A is toral. 

Proof These are mostly well-known facts or trivial consequences of them. 
For historical reasons, we mention justifications for Lie groups: (i) follows 
from (ii) (see [Gant]) and conjugacy of maximal tori (see [Hum]). For (iii), see 
[BoSe] (also, see [BoMo]). For (vi), see [deSieb]. We may deduce (v) from the 
facts that Z(/~), where /£  is the simply connected cover of K, is naturally 
isomorphic to Hom(M*/M, ~ ×) and that the inclusion M ~ L gives a natural 
epimorphism Hom(L, Z) ~ Horn(M, Z). Finally, (vii) follows from (ii) and (vi). 
For the more general case of algebraic groups, use [SS, p. 186] for (ii); 
[BoLAG] for (i); [SS, pp. 210-211] for (iii); same as above for (v); [St2, 
2.16(c)] or [SS, p. 204] for (vi); [SS, p. 204] for (vii). [] 

We use the system in [CoGr] and ECoWa] for conjugacy classes in 3E6(~(), 
2E7(~ ) and Es(~) (the setup works in this more general situation of algebraic 
groups) but our own for F4(~); of course, we ignore those elements listed 
which have orders divisible by char ~. The system is given in part in the next 
result and may be based on [MoPa] .  In [CoGr, Table 6], the 3A centralizer 
should have type A6T 1 and 3E centralizer should have type D 5 T 2. Through- 
out this article, pX[G] shall refer to the class in G labeled pX; if confusion is 
unlikely, we write pX only and a statement pX[G] = pX'[H] c~ G makes sense 
if some containment of G in H is understood. 

(2.14) SEMISIMPLE ELEMENTS OF SMALL ORDER IN CERTAIN 
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GROUPS OF LIE TYPE A N D  ACTION ON CERTAIN MODULES.  
(Eigenvalues are lifted to complex roots of unity; priming indicates distinct 
classes which are congruent modulo Z(G)). Class in brackets is the class of 
squares. 

T A B L E  VI 

Eigenvalue multiplicity 
Class on adjoint module 

Group nX (mult(e2~k/n), k = 0 . . . . .  n - 1) Centralizer type 

E8(~ ) 2A 136, 112 EvA 1 
2B 120, 128 D 8 
3A 80, 84, 84 A 8 
3B 86, 81, 81 E6A 2 

3C 92, 78, 78 D7T 1 
3D 134, 57, 57 ETT 1 

2E7(~ ) 2A 133, 0 E 7 
2B 69, 64 AiD 6 
2C = 2B' 69, 64 AiD 6 
3A 49, 42, 42 A6T 1 
3B 79, 27, 27 E6T 1 
3C 43, 40, 40 AsA 2 

3D 49, 42, 42 AaDsT1 
3E 47, 43, 43 DsT 2 

4A[A] 63, 70, 0, 0 A 7 
4B[B] 39, 30, 32, 32 AsA1T 1 
4C[C] 37, 32, 32, 32 AsT2 
4D[C] 33, 32, 36, 32 A3AaA 1 
4E[C] 49, 32, 20, 32 A1DsT 1 

4F[B] 35, 32, 34, 32 A1A1D4T 1 
4G[B] 67, 32, 2, 32 D6T 1 

4H[A] 79, 0, 54, 0 E6T 1 
4I[B] 39, 32, 0, 32 A s A I T  ~ 
4J[C]  49, 32, 20, 32 AaDsT ~ 

4K[B] 67, 32, 2, 32 D6T 1 

3E6(~ ) 2A 38, 40 AsA 1 
2B 46, 32 DsT 1 

3A 78, 0, 0 E 6 
3A-1 78, 0, 0 E 6 
3B 36, 21, 21 A s T  1 
3B' 36, 21, 21 A s T  1 
3B" = 3B ' - I  36, 21, 21 AsT1 
3C 24, 27, 27 A2A2A 2 
3D 30, 24, 24 D4T 2 

[The following 12 classes represent all elements of order 9 whose cube is 

central in 3E6(~)] 

3E 28, 25, 25 A4AiTi 
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Group 

Eigenvalue multiplicity 
Class on adjoint module 
nX (mult(e2~k/"), k = 0 .. . . .  n - 1) Centralizer type 

F4(K) 

3E' 28, 25, 25 A4A1T 1 
3E" 28, 25, 25 A4A1T1 
(3E) -1 28, 25, 25 A4A1T1 
(3E')- i 28, 25, 25 A4Aa Ti 
(3E") -1 28, 25, 25 A4A1T1 
3F 46, 16, 16 DsT 1 
3F' 46, 16, 16 DsT 1 
3F" 46, 16, 16 DsT 1 
(3F) -1 46, 16, 16 DsT 1 
(3F') -1 46, 16, 16 DsT 1 
(3F") -I  46, 16, 16 DsT 1 

2A 24, 28 A1C 3 
2B 36, 16 B 4 
3A 22, 15, 15 C3Tj 
3B 22, 15, 15 B3T 1 
3C 16, 18, 18 AzA 2 

(2.15) D E F I N I T I O N .  (Generalities about  quadrat ic  forms on T(,).) First, we 

deal with the simply laced case. Assuming G is simply connected, we identify 

g with t)/L as usual by the epimorphism exp: b ~ T (if N = C, this is 

ordinary exponentiat ion on a suitable module,  V), where b is a Car tan  

subalgebra in g, the Lie algebra of G, L is the root  lattices (it is dual to the 

lattice of weights for V); L is integral. Let W be the Weyl group and suppose n 

is not  divisible by char(N). Due to this integrality, we define a W-invariant 

form on T~,) as follows: let t, u E I~ such that  nt and nu~ L and set (exp(t), 

exp(u)) = n2 t .u  + n Z ~ 7 / / n Z  (where the dot  indicates the natural  bilinear 

form on N ® L). We call this form the natural bil inearform on T(,). When  n is 

a prime, we use the usual language of bilinear forms on finite-dimensional 

vector spaces to talk about  structures on T(,), the or thogonal  action of  the 

Weyl group N ( T ) / T  on T~,), etc. 

Fo r  the nonsimply laced case, we take a realization of  our  simply 

connected g roup  as the fixed points of a graph au tomorphism of H, a group 

with a simply laced root  system, then restrict the above bilinear form on a 

torus of H to a torus of  G. 

(2.16) L E M M A .  (Quadrat ic  structure of certain T(,); see (2.14) for notation.) 

(i) Let  G = F4(~  ). Then F :=  T(2) has the following structure: a 2-dimensional 

2B-pure subspace, Vo with all other elements in V o f  type 2A. As modules for  the 
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Weyl group, Vo and V/V o are not isomorphic but each get the natural action 
of GL(2,2). The Weyl group is transitive on V \ V  o. We have 2A[F4] = 
2A[3E6] n Fg([K ) 'and 2B[F4] = 2B[3E6] n F 4 ( ~  ). 

(ii) Let G be the group Es(~(). The natural form on T~2 ) carries a nonsingular 
W-invariant quadratic form of dimension 8 and maximal Witt index. Class 2A, 
2B corresponds to anisotropic, isotropie vectors, respectively. 

(iii) Let G be the group 3E6(~ ). The natural form on -~2) carries a W- 
invariant quadratic form of dimension 6 and nonmaximal Witt index. Class 2A, 
2B corresponds to anisotropic, isotropie vectors, respectively (given an embedd- 
ing of 3E(~) in E8(~(), we get 2AlEs] n 3E6(~( ) = 2A[3E6] and similarly for 
2B). Since the center of 3E6(E) has order prime to 2, T(2) maps isomorphieally 
to its image modulo the center and we may label the two classes of involutions in 
E6([}( ) with 2A and 2B). 

(iv) Let G be the group 2E7(~). The natural form on Tt2) carries a W- 
invariant quadratic form of dimension 7. The radical of the quadratic form is 
trivial and the radical of the corresponding bilinear form is Z(G) ~- Z 2. The 
center is generated by an involution from the class 2A in 2E7([K ) (given any 
embedding of 2Ev(~ ) in Es(K ), this involution will be in the Es(~)-elass 2A). 
Class 2B, 2C corresponds to anisotropic, isotropic vectors, respectively (they lie 
in respective Es(~)-classes 2A and 2B). 

Proof In the E s case, the quadratic form on T~2 ) is nonsingular and has 
maximal Witt index since the Es-lattice contains the A24-1attice with odd 
index. The rest follows from use of (2.14) and elementary properties of 
quadratic forms. Notice that an A2-1attice modulo 2 gives a quadratic form of 
nonmaximal Witt index. Since an AzE6-1attice has odd index in an Es-lattice, 
an E6-1attice modulo 2 has a quadratic form of nonmaximal Witt index. [] 

(2.17) THEOREM. Up to conjugacy, G = Es(IK) has two maximal elementary 
abelian subgroups, represented by E and F. They have the following properties: 

TYPE 1. E = El(O ), where E 1 = ]-~2) and 0 is a Chevalley involution (2.23) 
inverting that torus. We have N(E)/E ~ WE8 and every element of E \E  1 is in 2B. 

TYPE 2. F = F 1 × F 2 and F i <~ H i ,  where H 1 × H 2 <~ G, H i has type G2, F 4 
for i =  1, 2, respectively, and Fi is (the unique, up to conjugacy) nontoral 
elementary abelian group in Hi. We have rk F1 = 3 and rk Fz = 5. The set 
{1} u (2B c~ F2) is a subgroup of order 4, called rad(F) or soc(F), the radical or 
socle of F. The groups F 2 and F 1 rad(F) (each of order 32) are the 2A- 
components of F and they have the property that 2A n F is the disjoint union of 
X\rad(F), where X ranges over the two components. We have C(F) = F and 
N(F)/F ~- 2 2.3 + 2-3. [(GL(3, 2) wr 2) x E3]. 

Proof [Ad]; we give another proof in Appendix 1. [] 
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(2.18) PROPOSITION.  (Conjugacy classes of outer automorphisms of order 
p and fixed point subgroups on G/Z, G simply connected almost simple; here 
p = 2 with an exception of p = 3 for D4 and in all cases, p ~ char ~.) 

(A,) 

(D,) 

(04 ,  p = 3) 
(e6) 

n odd: two classes; 

if [ZI odd, f ixed points SO(n + 1, ~) or Sp(n + 1, ~); 
if IZ] even, f ixed points PO(n + 1, ~) or 2 x PSO(n, ~), as 
(n + 1)/[Z[ is odd or even; or PSp(n + 1, ~)  x m, where m = 1 or 

2 as (n + 1)/]Z[ is odd or even. 
n even; one class; 
then ]ZI is odd, f ixed points SO(n + 1, ~); 
1 + [ ( n -  1)/2] classes, represented on the standard 2n- 
dimensional module by diag( -1  k, 12"-k) for an odd integer 

ke  {1, 3 , . . . ,  1 + 2[(n - 1)/2]};fixed points on Spin(2n, ~) are 
[Spin(k, ~) o Spin(2n - k, ~)]; f ixed points on SO(2n, ~) are 

SO(k, ~) x SO(2n - k, ~) × 2; f ixed points on PSO(2n, ~) are 

SO(k, ~) x SO(2n - k, ~). 
two classes; f ixed points G2(~) and PSL(3, ~). 
two classes, f ixed points F 4 and PSp(8, ~) (type C4). 

Proof  Well known (at least the components, if not the precise situation for 
the centers); for a 'new' proof in characteristic 0, use Theorem 8.6 of I-Kac] 
and some easy matrix calculations. In arbitrary characteristic, matrix 
calculations work, except for the case of p = 3 for D 4 and p = 2 for E6,  for 
which see [CoLiSaSe] and [GoLy, §9]. [] 

(2.19) PROPOSITION.  (Projectively elementary abelian groups and tensor 
product decomposition for forms.) Suppose that char(K) ~ 2 and that V, 1/1 
and V2 are vector spaces having nondegenerate bilinear forms f ]'1, fz  with 

parities e, el, e2 (+ for symmetric, - f o r  ahernating). Suppose furthermore that 

V .~- V1 @ V 2 , f = f l  @f2, Ei ~ Aut(fi) and that E = E 1 oE 2, where the E i are 
,~1 + 2r is identified with their images in G:= Aut(f). Suppose that Et  ~-_~, 

extraspecial with Z(E1) acting as {_+ l} on V1, dim 1/1 = 2 r, that E 2 is a 
maximal abelian subgroup of  Aut(f2) such that E/Z(G) is elementary abelian. 

Set 2n = dim V= 2rs and suppose that E2 ~- 4 a x 2 b, a t  {0, 1}. 
(i) Given r, s, r >~ 1, (a, b) must be one of  the following: 
if (ex, e2, e) = (+  + +):(a, b) = (0, s) or, only if s is even, (1, s/2 - 1); 

( -  - + ) :  (a, b) = (1, s / 2  - 1); 
(+  - - ) :  (a, b) = (1, s / 2  - 1); 
( -  + - ) :  (a, b) = (0, s) or, only if s is even, (1, s/2 - 1). 
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Note  that g 2 is toral in Aut(f2)/f  a = 1. In particular, the rank of  E/E'  is 

2r + s if  (a, b) = (0, s) and is 2r + s/2 otherwise. 

(ii) For a value o f  (a, b) as above, the group E/E'  is maximal elementary 

abelian in Aut(f)/{ _+ 1}/ff E2 is not o f  the form 22 and e = + or 4 × 2 with e 

arbitrary, in which case E is contained in a subgroup of  Aut(f)  with data 

( r +  1 + a ,  1,0, 1). 

REMARK. Given a group E = E 1 o E2 ~< Aut(f)  with E 1 extraspecial, E 2 
abelian, ~(E) ~< { __+ 1}, then there is a decomposition V= 1/1 ® 1/2 as in the 
proposition; see (2.11). 

Proof  O) follows from (4.1), (5.4) and, in case e z = + and E 2 is elementary 
abelian, the decomposition of V2 into eigenspaces for E2. 

(ii) We shall see that E is nonmaximal iff rk(E2) ~< 2 and IE21 > 2. Consider 
the possibility that E is contained in a larger such group E*; then 
E 1 < E * ~ < A u t ( f )  such that E~' is extraspecial; we may assume 
E* =~ 21+2(r+1). We have E* = E I E  2 .  * for some subgroup E* of E 2. Then, 

every element of Z(E*) has eigenvalues with multiplicity 2 r+l and every 

element of E2\Z(E*)  has trace 0 on I/2. Thus, if rk(E2)1> 3, we get a 
contradiction since E 2 contains elements which act on 112 like 
d iag ( -  1, 1, 1, 1, 1, . . .  ) or d i ag ( -  12, 1 k) for even k >i 4 (in the case e2 = - ) .  

So, E nonmaximal implies that rk(E2) ~< 2. 
If rk(E2)= 1, E 2 is scalar (whence s = 1 and so E = E1 is maximal 

projectively elementary abelian) or a generator has eigenvalueS i and - i  of 
equal multiplicity, whence E2 is nonmaximal, contradiction. If rk(E2)= 2, 
there are two cases. If E2 is elementary, e 2 = + and E2 is embeddable in 
Dih8 ~< Aut(f2). If E2 has exponent 4, we may choose generators x and y for 
E 2 such that liE is a multiple of the following representation for E2: 

x ~ diag(i, i, - i, - i), y ~ diag(1, - 1, 1, - 1). 

Here, 52 = +.  Thus, E2 is contained in a group P~ +4 in Aut(f2) and so E is 
not maximal projectively elementary abelian. [] 

(2.20) COROLLARY. Notation as in (2.19) with 2n = 8. Let  Z <<. E <<. F, 
where, given r and s, E is maximal and where F / Z  is a maximal elementary 

abelian 2-group. Then E = F except in the following cases: 

(r, s, a, b; IF:El): 

(+  + +): 2202; 2 2210; 2 1411; 4 
( -  - +): 2210; 2 1411; 4 
(+  - - ) :  2210; 2 1411; 4 
( -  + - ) :  2202; 2 2210; 2 1411; 4 
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In all cases, F ="~--e71+6 iS uniquely determined up to conjugacy by C(E) and 

corresponds to a case with (r, s) --- (3, 1). 

(2.21) C O R O L L A R Y .  Notation as in (2.19) and (2.20). Let dim V =  8 and let f 

be alternating or symmetric. Then Aut(f) /{ _+ 1} has two conjugacy classes o/ 
maximal nontorals and their ranks are 5 and 6; they correspond to cases 

(r, s,a,b) = (1,4,0,4)  and (3, 1,0, 1). 

The following result seems to be new. It says, roughly, that  if a projectively 
elementary abelian group in an or thogonal  group has imaginary elements of 
bo th  spins (2.10), it is either abelian or just barely nonabelian. 

(2.22) P R O P O S I T I O N .  Let G = Spin(2n, ~)  with n = 28 even and let E/Z(G) 

be elementary abelian. Let Z o be the kernel of the natural map G ~ SO(2n, ~). 
Assume that the image of E in SO(2n, ~)  is not elementary abelian. Let E +, E -  
denote the set of spin up, spin down imaginary elements (see (2.10)) in E and let 
Eim:= E + w E - .  Then Eim ~ ~ ,  [ E + , E  - ]  = 4) or 1 and: 

(i) rk(O(E)) is the number of {E +, E - }  which are nonempty; also, O(E) is 
generated by the squares of elements in Elm; 

(ii) both E + and E -  are nonempty and E is embedded in one of the following: 
(ii.a) a natural Quat  8 x Quats  x 2 s- i (corresponding to a decomposition 

of the standard module as V =  V l ®  V2® V3, where 
dim V1 = dim V 2 = 2 and dim V a = n/2 with the bilinear 

form factorized f = f l  ® f2 ® fa with f l  andrE alternating, f3 
symmetric); or 

(ii.b) a natural Dih8 x 2 s (corresponding to V= V 1 ® V 2 ® V 3 as above 

except with each f. symmetric) and there is a central element of E 
acting as diag(-1Ea,  12n-2a) with a odd; 

(iii) assume E -  = ~2~; then E = (E+)  x Z  o or there is X ~ E, 
E+_c  X ~ Dih s and an elementary abeIian group Y such that  
E = X x Y; every element of Y acts on V as an involution of the form 
diag( -12" ,  12n-Ea) with a even. 

Proof Recall from (2.9) the structure of Co(e ) for e imaginary and recall 
(2.18). By (2.12), [ E + , E  - ]  = ~ or 1. 

(i) Since n is even, (2.9) tells us that  the kernels Z~ of the two half-spin 
representations are generated by (f2) for f e e t  Since E is a 2-group, 
O(E) = ( x  21 x e E ). If both  E ~ are nonempty,  (i) holds. Suppose only E + is 
nonempty.  Since exp(E/Zo) = 4, rk(@(E)) >~ 1, so we suppose it is 2 and seek a 
contradiction.  Then, as q)(E)= (X2IXEE), there is x ~ E  with xZCZ+, 
whence E -  = ~ implies that  ( x  2) = Z o. If [ x , f ]  = 1, (xf) 2 = x2f 2 is a 
generator  for Z_ ,  whence x f  e E - ,  a contradiction.  So, [x, f ]  # 1, whence x 
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interchanges the two eigenspaces for f in the natural representation; since 
x 2 ~Z  o, x acts as an involution with eigenvalue - 1  having multiplicity n. 
Since n is even, x is an involution, a contradiction. So, (i) holds. 

(ii) Suppose both U are nonempty. We use [E +, E - ]  = 1 and quote (2.9). 
From (i), we get (E  ira) = (E  +) o ( E )  and 

• (E) = ~(E ira) = q)((E- )) x (I)((E + )) ~_ 2 x 2. If E • (Elm), every element of 
Ek(E  ~ )  is an involution and so (E  ira) is of index 2 and abelian of exponent 
4. Let p ~ Eim and let t ~ E be an involution inverting p. By (2.9), E decomposes 
as (p, t ) x  L, where the factors come from a 0(2, K)x  O(n, K) subgroup 
associated to a decomposition V =  U I ® U 2 .  Since (E  ~m) = CE(p), 

E = (p,  L).  Since t inverts and centralizes L, L is elementary abelian. Now 
(2.12) implies that (ii.b) holds. 

If E = (Eim) and some factor, say (E  + ), contains a noncentral involution, 
x, then every element of x ( E - )  is an involution and so ( E - )  is abelian. On 

the other hand, if u e E - ,  x f  has order 4, a contraction. So, no such x exist. We 
conclude that each (E  ~) is isomorphic to Quat8 x 2' or 7/4 x 2', for some r. By 
(2.18), any such (E  ira) lies in a subgroup of G associated to a decomposition 
V 1 @ V 2 ® V 3 as in (ii.a). 

For  (iii), consider whether (E  + ) equals E and use (2.12). []  

(2.23) DEFINITION.  A Chevalley involution of a finite-dimensional semi- 
simple Lie algebra g with respect to the Cartan subalgebra I) is an 

automorphism of order 2 which is - 1 on [?. This element is in the connected 
component of the identity in the relevant adjoint algebraic group iff - 1 is in 
the Weyl group. When this occurs, the element may be represented by an 
involution in the corresponding simply connected group but may not be. If it 

does, we say that the connected algebraic group has a Chevalley involution. If 
- 1 is in the Weyl group and, in addition, the simply connected group G has 
trivial center, G does have a Chevalley involution. By applying this remark to 
E 8 and considering the subgroup 2AlE 7 of Es, we see that 2Ev does not have 
a Chevalley involution since 2A 1 ~ SL(2, 0¢) does not. 

(2.24) LEMMA. 3C[-F4] __ 3C[-3E6] ~ 3B[Es]. 
Proof Use (2.14). All three classes consist of elements whose centralizer has 

finite center. This condition forces the first containment and allows two 
possibilities Es-classes which might contain 3C]-3E6]. The second contain- 
ment is obvious since there is no embedding of a group of type A~ in one of 
type A 8. []  

(2.25) LEMMA. Let G ~- Spin(8, ~), char(K) # 3, and let ~ and fl be outer 

automorphisms of order 3 with fixed points of type G2(N) and PSL(3, ~), 
respectively; see (2.18). For ~ = ~, fl, let T~ be a maximal torus of C~(7) and let 
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As := (7, T~(3)) ~< G: (7),  a group of order 27. Then T= and Ta are G-conjugate 
and A~ and Aa are G-conjugate. 

Proof. For each 7, T~ = C(Er)°~ Co(7), for Er :=  T7(3), so it suffices to 
prove the last statement since Ee = G c~ A s. Let A := As, E := Er and let A 
contain m conjugates of e and n conjugates of ft. Then dim Co(A) = 2 implies 
(*) Zx~a tr(x) = 2.27 = 54, where 'tr' denotes trace on the Lie algebra of G, of 

type D 4. On the Lie algebra of Ca(T~)°/T~, 7 operates fixed point freely (since 
T~ is its connected centralizer in Co(7)), and so Co(Tr)°/Tr is nilpotent. Since 
CG(T~) is reductive, it is a torus. Therefore, (**)Ex~E tr(x) = 4" 9 = 36. Since 
tr(c 0 = 7 and tr(fl) = - 2 ,  (*) and (**) imply that 54 = 36 + 7m - 2n. Since 
m + n = 18, we conclude that m=  6 and n = 12. Therefore, G-conjugates of E~ 
and Ea lie in both CG(7). This implies that they are conjugate in CG(~), since 
the nontoral nines group E in Co(fl) is self-centralizing, whence 
Zx~(e,=> tr(x) = 0 # 36. []  

(2.26) LEMMA. Let G ~- 2E7(~), H -~ Es(~), K a 4AT-subgroup of G and 
~o: SL(8, 0~) --+ K an epimorphism. Suppose that V is a four group in K such that 
Vqg- 1 _~ Quats. Then V ~_ 2BIG] ~ 2A[H]. 

Proof. Since NK(10 induces Z3 on V,, V is pure with respect to the class 
2BIG] or 2C[G]. We embed V in a group U~<K, U ~ 2 7  (so 
U~p- ~ = 4 o 21 +6). Orthogonality relations (1.5) tell us that dim Co(U) = 7. If 
Co(U) ° is not a torus, it is reductive of type T~A~ or T~A~ and the perfect 
group Nx(U) ~- 4 o 2 6. Sp(6, 2) acts on it, forcing Nx(U) to contain an A1- 
component, a contradiction. Therefore, CG(U) ° is a torus, in C(O2(NG(K))). 
Since there is x ~ N r ( U )  such that Ixl = 3 and [(CG(U)O)(2),X] = V~ V # 
consists of nonsingular vectors in the sense of (2.16.iv) and so V is 2BIG]- 
pure, as required. [] 

3. TYPE A 

(3.1) THEOREM.  Let p be a prime, G = SL(n + 1, ~), Z <% Z(G), E a p- 
subgroup of GL(n + 1, ~) such that EZ/Z  is elementary abelian. I f  [ZI ~ 0 
(mod p), E is toral. I f  IZl ---- 0 (mod p), nontoral groups exist and maximal ones 
are the images mod Z of a group of the form A oB, where A ~- p~++2r, for some 
r >~ 1 and where B is an abelian (and toral) subgroup of the commuting algebra 
of A, n + 1 = prs. Given A, if B is as large as possible, rk(B)= s and 
B ~- ZpC+l × p=- l, where pC=[Zip. We have AB c~ G = AB1, where 
f~(B)O(B) <<, B 1 <% B and B 1 = B / f f f f + l  I(n+ 1 ). 

Proof. We may assume that E is nonabelian, which implies that IZI = 0 
(modp). Thus, IE'I = p and (2.4) applies to give E = A o B as above; the 
representation theory of extraspecial groups does the rest; see [Go],  [Hup].  

[]  
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4. TYPE C 

Let V be a 2n-dimensional vector space over ~ and f an alternating bilinear 
form. Let G = Aut(f)  = Sp(2n, ~), let p be a prime and let E be a p-subgroup 
of G which is elementary abelian modulo Z(G) = { + 1}. 

(4.1) PROPOSITION.  Let p = 2. I f  E is abelian, E is toral. I f  E' = {_+1}, 
then E is associated to a tensor decomposition and has isomorphism type as in 

(2.4.ii). I f  E is maximal with respect to stabilizing that tensor product 

decomposition, the rank of  E/E' is a number of  the form 2r + s -  1 or 

2r + s/2 - i, where 2rs = 2n, according to whether exp(Z(E)) = 2 or 4. 

Proof Suppose that E is elementary abelian. If 2 is a character of E and Vx 
the corresponding eigenspace, fx := f[  V~ is nonsingular and so C(E) is the 
direct product of the Aut(f~). We finish by observing that a torus of this group 
has dimension n hence is a maximal torus of Aut(f). 

Now, suppose that exp E = 4. The structure of E is given by (2.4.ii). If E is 
abelian, let f be an element of order 4. Then, E is contained in a natural 
GL(n, ~)-subgroup centralizing f and so E is total. For the general case, we 
quote (2.11) and (2.19). []  

(4.2) PROPOSITION.  Let p be odd. Every abelian p-subgroup of  Sp(2n, ~) is 

toral. 

Proof Since (p, [Z(G)I)= 1, we may assume E is an elementary abelian 
subgroup of G. We decompose V by characters of E. Since p is odd, the 
eigenspaces V~ are totally singular for 2 # 1 but V~-~ is paired with V~ 
nonsingularly. Let U be an E-invariant maximal isotropic subspace and W an 
E-invariant maximal isotropic complementing U. Then, E lies in the natural 
GL(n, ~)-subgroup of G stabilizing the decomposition V = U @ W, and we 

get E toral by quoting (3.1). []  

5. TYPES BD 

Here, G is the group Spin(m, ~). The center is 7/2, Z2 x Z2, Z4 as m is odd, 
- 0 ( m o d 4 ) ,  2(rood4), respectively. Let n be the rank, so that m = 2n or 
2n + 1. The difficulty here is sorting out when we get abelian images of a 
projectively abelian group E modulo various subgroups of Z(G). 

(5.1) NOTATION.  We begin by studying the case p = 2 # char~ .  We 
assume that the image of E in SO(m, ~) is elementary abelian, whence E 
leaves invariant the signed frame for an orthonormal basis e I . . . . .  e m on V, the 
standard module. We use terminology from (2.7). Let ~ol be the character on E 
afforded by ~ei and for a sequence of indices i , j , . . . ,  let ~Pij... be ¢PicPj . . . .  Let ei 
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be the reflection at e i, D the diagonal frame group of order 2" generated by 
these el and D o : = { d ~ D l d e t ( d ) =  1}. We let Q, Qo be the respective 
preimages of D, D O in pin(m, ~), Spin(m, ~); see (2.8). 

(5.2) LEMMA. Assume (5.1). Equivalent are: (i) With the exception of at most 

one i, each q9 i occurs with even multiplicity; (ii) E stabilizes a maximal totally 
isotropic subspace; (iii) E is in a torus. 

Proof We prove cyclic implications. Assume (i). If er and e~ afford the same 
q9l, e r +__ ie~ (i 2 = - 1) are isotropic; (ii) follows by induction. If E stabilizes a 
maximal totally isotropic subspace, I, it stabilizes a maximal totally isotropic 
subspace J such that I ~ J = 0. Therefore, dim V/I + J ~< 1 and E lies in the 
natural GL(n, K)-subgroup stabilizing both I and J, whence (iii). Finally, if E 
is toral, it stabilizes maximal isotropic subspaces I and J with I n J = 0. Since 
I and J are dual E-modules, they are isomorphic and so (i) follows. [] 

(5.3) EXAMPLE. An abelian E may have small rank relative to the Lie rank 
of G, yet be nontoral. Suppose m = 2 k, k >/2. Then, identifying the index set f~ 
with Dz~, we get the rank k group E consisting of the identity and all those 
elements of D (see (5.1)) which negate at an index set corresponding to the 
complement of a codimension 1 linear subspace; thus, E may be naturally 
identified with Hom(0Z~, ~2). Given two distinct points of D:~, there is a 
hyperplane which separates them. Using (5.2), we conclude that E is not toral; 
in fact, the centralizer of the image of E in the orthogonal group is the 
diagonal frame group. Every maximal subgroup of E is total; for, if F is such, 
F is the annihilator in Hom(D:~, nz2) of a nonzero vector v s f~, and we use (5.2) 
with the observation that e and e + v afford the same characters of F, for 
e e f~. There are examples of nonabelian E of order 8 whose image in the 
orthogonal group is a fours-group, e.g. a quaternion subgroup of a natural 
SO(4, ~) - SL(2, ~) x SL(2, N). 

(5.4) LEMMA. Assume E is abelian. (i) I f  E has an imaginary element (see 
(2.10)) then, E is toral. (ii) I f  E is maximal elementary abelian, the image of E in 
SO(m, ~) stabilizes a frame and corresponds to a weakly self-orthogonal code in 
the frame 9roup. 

Remark. The codes in (ii) are not explicitly known, except for small ranks; 
see (2.2) and (2.3) for ranks up to 10. 

Proof (i) The image of E is embedded in the natural GL(n, N)-subgroup 
which stabilizes both eigenspaces for f on V, where f e E  is imaginary. 
Therefore, the image of E is toral and so is E itself. 

(ii) Here, (5.1) applies. Since E is elementary abelian, E corresponds to a 
doubly even code (2.1) in the frame group. [] 
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(5.5) LEMMA. Assume E is nonabelian. Then, E is in the preimage of a frame 

9roup and we are in a tensor product situation in the sense of(1.2) and (2.19). 
Proof Let Z o be the kernel of the action of G on the natural module. If 

E/Zo is elementary abelian, it is in a frame group. Suppose E/Zo is 
nonabelian. Then (2.4) applies to show that we are in a tp-situation. []  

The preceding results cover all possibilities for Z and show that on the 
natural module E stabilizes a frame, a maximal isotropic subspace or is a tp- 
group in the sense of (1.2). To analyze the possibilities for O(E) and E', see 
(2.22). 

(5.6) EXAMPLES. (i) We remark on the situation with SO(4, ~), whose 
simply connected covering is Spin(4, N) ~ SL(2, K) x SL(2, ~), with the fac- 
tors corresponding to a tensor decomposition of V. If we let Qi be a 

quaternion group of order 8 in the ith factor, i = 1, 2, and set Q := Q1 x Q2. 
The image of Q in SO(4, F() is 21+4 and the image in a half-spin represen- 

tation is quaternion of order 8. If n ~> 3, the kernel of the action of Spin(4, ~) 
on one of the half-spin modules for Spin(2n, E) is just the group of order 2 in 
the center of one of the factors of Spin(4, ~). 

(ii) We look at SO(8, ~). The group 0(8, N) contains WE8 ~> WD7 ~ 27 : Z8 
and the intersection of the latter group with SO(8, F() is L = 27 . Alt8. The 
preimage of L in Spin(8, ~) is M ~ [21+ +6 × 2] -Alt 8 and the image of M in 
either one of the half-spin groups is of the form 21+ +6 .Alt 8 (the two images are 
isomorphic, via conjugation in pin(~() by preimages of determinant - 1  
elements of 2 7 : ]~8)" 

(5.7) REMARK. The case of odd primes is handled as in (4.2). 

6. TYPE G2 

(6.1) THEOREM.  There is a unique conjugacy class of  elementary abelian 2- 

groups of order 2",for n = 1, 2, 3. In particular, such a subgroup is toral iff its 

rank is at most 2. For odd p, every abelian p-subgroup is toral. 

Proof. An easy analysis, using (2.13.vi). Note that a four-group must be 
toral with centralizer T2:2 and that, for odd p, a group of type p x p must be 
toral with centralizer ~-2" [] 

7. TYPE F 4 

We first deal with the prime 2. We recall some information from (2.14). There 
are two classes of involutions, denoted 2A and 2B, with centralizers of 
respective shapes CaAx and B4; in both cases, the center has order 2 and in 
the first case, each factor has center of order 2. 
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(7.1) NOTATION.  We define complexity (abbreviated cx; see (1.3)) with 

respect to the class 2A. 

(7.2) NOTATION.  We use the orthogonal frame notation of (2.7) for  a 
Spin(9, ~)-subgroup of F4(~) and write x e D  as a vector with entries + 1, 
indexed by {1, . . . ,  9}, with _+ 1 at i iffe~x = +el,  where the ei are the vectors 
of a frame. 

(7.3) THEOREM.  Let p = 2 and G = F 4 ( ~  ). Then: 

(i) The elementary abelian subgroup E is toral iff cx(E) <~ 2. In any case, 
cx(E) ~< 3. In particular, E is nontoral iff E contains a 2A-pure eights 
group. 

(ii) There is, up to conjugacy, a unique maximal elementary abelian 2- 
group in G, represented, say, by M := qI-(z)(0), where 0 is an involution 
in N(T)  inducin9 - 1  on T; see (2.23). Then, M has rank 5 and there 
is a subgroup N of order 4 (written N = rad(M)= soc(M)) such that 
M \ N  = M n 2 A  and M n 2 B  = N #. Also, M = C(M) and N(M)/M ~- 
22"3: (GL(3, 2) x 23). 

Proof O) The only-if part follows from (2.16.i). Now let E have complexity 

at least 3 and normalize T(2). Then E centralizes z e T(2 ) n 2B and so lies in 
C(z) _~ Spin(9, G). By (2.8), we may assume that the image of E in SO(9, ~) is a 
subgroup of D o consisting of elements of types (-- 18, 11), (-- 14, 15) and (19) 

only. By (2.2), there is a unique maximal such subgroup under the natural 
action of ~'~9 o n  the nine el's; a representative is F, which is, in the notation of 
(7.2), generated by x o := (=  1, - 1, - 1, - 1, - 1, - 1, - 1, - 1; 1), xl  := ( -  1, 
- 1 ,  - 1 ,  - 1 ,  1, 1, 1, 1; 1), x2:= ( - 1 ,  - 1 ,  1, 1, - 1 ,  - 1 ,  1, 1; 1), x3:= ( - 1 ,  1, 
-1 ,  1, - 1 ,  1, - 1 ,  1; 1). In fact, this space may be viewed as the famous 
extended Hamming code, (2.3), with an extra trivial coordinate; its group is 
the affine group AGL(3, 2) ~ 23: GL(3, 2). Let y ~ C(z) map to Xo. We have 
C(y, z) ~ Spin(8, ~() and so y E 2B. If u is a lift of one of the other xi, u ¢ 2B, or 
else E is a rank 5 2B-pure subgroup of G; we get a contradiction because, on 
one hand, the orthogonality relations (1.5) imply that dim CH(E ) = 0 (where 
G ~< H - Es(~)) while on the other hand, G x L is embedded in H, where 
L ~ G2(~ ). It is now clear that an element o f F  lifts to an element of2B iffit is 
in the span of x o and that a subspace of F lifts to a subgroup of G of 
complexity at most 2 iff its image in F/(xo)  has dimension at most 2. 

The statement about the normalizer and centralizer may be deduced from 
the structure of Spin(9, ~) and the embedding of M in C(x), for any element 
x ~ 2 B n M .  

(ii) follows from the analysis in (i), together with the fact that the 'Chevalley 
involution' (2.23) is available in G. [] 
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(7.4) THEOREM. Let p be an odd prime and G = F4(~). Every elementary 
abelian p-subgroup of G is toral, except for a sin#le class of groups of order 27. 
A representative E of this class satisfies: C(E)= E and N(E) ~- 33: SL(3, 3). 

Proof A p-group in G is total ifp ~> 5 since the Weyl group has order 2732. 
We take p = 3 and consult (2.14). There are three classes of elements of order 
3, with respective centralizers 3AzA2, T1B a and ~-1C3; the first is a nontrivial 
central product over Z 3. On the 52-dimensional adjoint module, the traces 
are - 2 ,  7 and 7, respectively. 

Now, take a nontoral E (if it exists) to normalize ~-, hence also ql-t3 ). By 
using (2.14), we get that the above classes meet ~-t3) in sets of 32, 24, 24 
elements, respectively. It follows that E centralizes some z from the first class, 
and so E is in a copy of X : =  X1X2, where X1 ~ X2 ~ SL(3, ff() and 
X1 ~ X 2 = Z := Z(Xi), i = 1, 2. Let Qi be the quasiprojections (see (2.5)) of E 
to Xi, i = 1,2, and set Q:= Q~Q2. Thus, Qi is abelian or extraspecial. IfQi is 
abelian, for some i, it is abelian for both i, whence E is toral, by (3.1). So, we 
may assume that each Q~, hence also Q, is extraspecial. In particular, 
E nQ~= Z, for i =  1,2. Note that exp(Q)= 3; for otherwise, some 
exp(Q/)=9, whereas 31_ +2 does not embed 
Nx(Q) -~ 31 +2SL(2, 3) o 31 +28L(2, 3) and there is 
abelian subgroups which meet Xi trivially, i = 1 
subgroup. Then C(E)= E and Nx(E) induces on 

in SL(3,~). We have 
one orbit on maximal 
and 2. Let E be such a 
E the group 32 : SL(2, 3), 

stabilizing a 1-space. Since C(E) is 0-dimensional, the sum of traces (in the 
sense of (1.5)) is 0, whence every element of E # has trace - 2 ,  and so all 
elements of E # are conjugate. By embedding E in C(x), for all x ~ E #, we get 
that C(E) = E and N(E)/E ~= SL(3, 3). The extension splits since Nx(E) splits 
over E and its index in N(E) is prime to 3; alternatively, one may quote the 
result that H2(SL(3, 3), 3 3) = 0 ([Sah], [Grl]). [] 

(7.5) REMARK. Another proof of splitting uses the lifting criterion (see 
Appendix 2) and the fact that the graph automorphism of F4(2 r) may be 
chosen to normalize an analogue of E and induce - 1 on it, hence centralize 
an SL(3, 3) subgroup in the normalizer. The graph automorphism is available 
only in characteristic 2, hence the possible need to shift characteristic. This 
observation gives a proof that SL(3, 3) is in 2F4(2)' , an embedding proved by 
K.C. Young by computer [Yo]. 

8. T Y P E  E 6 ,  p = 2 

Recall from (2.14) that there are two classes of involutions, called 2A and 2B, 
with respective centralizers of shapes 2AsA1 and ~-1D5; each simple factor is 
simply connected and the center of the 2A-centralizer is cyclic of order 6 (see 
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(2.13.iv)), while the center of the 2B-centralizer is V1 (otherwise, the center 
contains a four-group and we contradict (2.14) and (1.5)). 

(8.1) NOTATION. We use the notion of complexity based on class 2A. 
Let G = 3 E 6 ( ~  ) be embedded in E8(~). We have 2A[3E6(~)]= 

2A[E8(~)] c~ 3E6(~ ). 

(8.2) THEOREM. E is total iff its complexity is at most 2; in any case, the 

complexity is at most 3 and complexity 3 occurs. There is a unique maximal 

nontoral group, and it has rank 5. It  lies in a natural F4(~)-subgroup. 

Proof We take E to normalize q]-, thus centralizing some z e T n 2B. Thus, 
E <~ C(z) of type Dsq]-l. 

The classification of maximal elementary abelian subgroups of this group 
follows from (2.2) and (2.8), using the fact that the quasiprojections are 
abelian (though not elementary abelian) and the facts that the nontoral group 
is self-centralizing in the Ds-factor and that the total group has centralizer 
q]- 5. We conclude that, in G, there are two and that they have ranks 5 and 6; 
from (5.2) and (2.16.iii), we get that one is toral (rank 6) and the other (rank 5) 
is not. The nontoral one is conjugate to a nontoral rank 5 group in a natural 
F4(~)-subgroup; use (2.16.i) and (7.3) and notice the class distribution. 

The complexity assertion follows from the corresponding one for Es(~ ), 
which will be proved in (9.4). Here is the argument. Let E be a nontoral 
elementary abelian 2-group in G. Then, E is nontoral in K, a natural F4(~ )- 
subgroup. Since, by (7.3.i) applied to K, E contains a 2A-pure eights-group, 
the Es(~)-complexity is 3, so the G-complexity is 3. [] 

(8.3) REMARK. The group E from the last paragraph lies in a natural 
(G2 x F4)-subgroup of Es. So, we take an appropriate A2 in the F4-factor and 
look at its centralizer. It is G2 x A 2 (look at a Sylow 3-normalizer in WE4 t o  see 
this). Thus, our group E is of the form E 1 × E2, where E1 lies in the G2-factor 
and E2 lies in the 3A2-factor and is a four-group in a natural SO(3, ~)- 
subgroup. 

(8.4) REMARK. An elementary abelian 2-group E ~< 3E6(K) is toral in 
3E6([~ ) iffit is toral in E8(~); this is due to the compatibility of the complexity 
criteria; see (8.2) and (9.2). 

9. TYPES E 8 AND E7,  p = 2 

It seems easier to treat E 7 after Es, for which the result (2.17) of J. F. Adams 
may be quoted; recall the terms type 1 and type 2 for the two (up to 
conjugacy) maximal elementary abelian subgroups in G = Es(~). 
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Recall from (2.14) that in G, there are two classes of involutions, 2A and 2B, 
with respective centralizers 2AlE 7 and H Spin(16, ~); in the first centralizer, 
both factors are simply connected. We use the notion of complexity (1.3) 
based on the class 2A. 

(9.1) LEMMA. (i) I f  E = E  1 x E2, where the El are four-groups and 
E n 2A = E~ u E~2, then E is total, unique up to conjugacy and has centralizer 

C(E) = l-T 4 x SL(3, ~() x SL(3, ~)].22 (with one outer involution switching the 

factors and another inducing the graph automorphism on both and inverting the 
torus). 

(ii) I f  for i = 1, 2, 3, Ei is a four-group, E = E 1 x E z × E 3 and if, for any pair 
i C j, (E i X Ei) n 2A = E f  u E~, we have C(E) = ET6 x SL(3, ~()]:2, where an 

involution outside C(E) ° inverts the torus factor and induces the graph 
automorphism on the SL(3, ~)-factor. 

Proof (i) This is proved by an easy extension of the arguments in (3.7) of 

ECoGr]. It helps to notice that the global stabilizer of E in the Weyl group is 

of the form ( -  1) x (Z 3 wr 2) × (•3 w r  2). We remark that the Chevalley 
involution (2.23) is in G. The proof  of (ii) is similar in spirit. []  

(9.2) THEOREM .  E has complexity at most 3 and, unless E is eccentric, i.e. a 
2B-pure subgroup of rank 5 (which is nontoral), the following holds: 

E is toral iff the complexity of E is at most 2. 

Furthermore, both type 1 and type 2 have complexity 3. 
Proof We first prove that E has complexity at most 3. Suppose that E has 

type 1. Without loss, E contains ~-t2) with index 2. Let x be the characteristic 
function of2A n E and let ~0 be the linear functional on E with kernel ~-t2). Let 

q be the natural quadratic function on T~2), extended to any quadratic 

function, r, on E. Then x = (1 + ~0)r, whence ~: has degree at most  3. It is 
obviously not quadratic, so its degree as a polynomial function is exactly 3. 
Thus, complexity 3 occurs in G, as claimed. 

Next, suppose that E has type 2. Then, taking E = F 1 × F 2 as in (2.16), we 
refer to (2.16) and (7.3) to get a rank 2 subgroup F 3 o f f  z which is 2B-pure, i.e. 

the radical of E. We have F 2 t~ 2B = F3 ~ and F1F 3 n 2B = F3 ~ and 

E c~ 2A _ F1F3 u F2. Thus, x is the lift to E of a function on F1 x F2/F3, 
which is clearly the sum of two functions f l  and f2, with respective 0-sets F1 
and F2/F3; such functions are cubic and fa + f 2  is cubic since 
deg(f~ + f3) ~< deg(f~) = 3, i = 1, 2, and its restriction to F 1 is f2, which is 
cubic. 

We now determine the relation between complexity and torality. If E is 
toral, cx(E) ~< 2 since ~c is just the restriction of q, given an embedding of E 
into T~2~; see (2.16). 
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Suppose cx(E) ~< 2. By (2.13.vii), we may assume E has rank at least 3. We 
consider two cases. We use the notation ore(E):= Y~a~e K(a). 

CASE 1. E is in a maximal elementary abelian group M of type 1. Replace 

M by a conjugate to assume that T(2 ) is in M. If E is not in T~2), F := q/-~2) ~ E 
has codimension 1 in E, hence dimension at least 2. Since K is 1 on M\-~(2), 
ox(E) = ax(F). 

If F contains a nonsingular 2-dimensional subspace, U, then ax(U) 4 0 

since [Un2A[  = 1 or 3. Taking W : =  ( U , e ) ,  for some e~Ek-Ft2), we get 
ox(W) = ox(U) ~ O, in contradiction to cx(E) ~< 2. Therefore, F has no such 
subspaee. 

If F is 2B-pure, then so is E and we quote [(3.8), CoGr] .  

Finally, we may assume that F has a codimension 1 subspace U which is 

2B-pure such that F \ U  ~_ 2A; then rk(F)~< 4. Properties of the quadratic 

form on ~-~2) allow us to enlarge E if necessary to make dim U = 3; we retain 
cx(E) ~< 2. Then C(U) has shape 24Al(N)8.23 and C(F) has shape 24At(N;) s. It 

follows that E lies in a torus of C(F) since ElF is cyclic. So, E is toral in G. 

CASE 2. E is in a maximal elementary abelian group M of type 2. Using 

above notation, F 3 = rad(M), where M = FaF 2 and F4 = F1F3, i.e. F z and F 4 
are the two 2A-components; see (2.17). Recall that tc is constant on cosets of 

F3; so, without loss, E >~ F 3. Then, cx(E) ~< 2 implies that E k := E n F k has 

rank rk at most 4, k = 2, 4. It follows that rk E ~< 7. If E is 2B-pure, we quote 

[(3.8), CoGr] .  We may therefore assume E is not 2B-pure. Let Pi be the 
projection of M onto M/Fj, for {i,j} = {2,4} and let di:= dim p~(E) ~> r i - 2 .  

I f E  c~ 2B ~ F3, there i s j e  {2, 4} such that E __ Fj and we are done because 
Fj lies in a natural Fg(~)-subgroup, for which the complexity criterion is 

compatible with overgroups 3E6(~ ) and Es(~); see also (2.13.i). We conclude 

that E contains 'diagonal elements' e = e'e" with e' e F2kF 3 and e"e  F#\F 3. 
We have that d i >~ 1 for i = 1, 2 (see the previous paragraph). 

Subcase 2.1. Suppose that E contains a four-group U of diagonal elements 
(i.e. U # _ 2B and U n F 3 = 1). Then, d~ ~> 2, i = 1, 2. 

We claim that for j = 2 and 4, p~(U)>1 Ej/F3. If false, then for some 

j~{2,4},  p~(U) and Ej/F 3 generate F J F  3. Let v ~ 2 A n E j  satisfy 
vF3/F 3 Cpj(U). Then, (U,  v) ~ E has exactly one element of 2A, hence has 
complexity 3, contradiction. 

Define Uj ~< Fj by Uj/F 3 = pj(U) for j = 2,4; ]Uj[ = 16. We claim that 

E ~ UzU 4. If not, there is a diagonal element e '=e2e4~EkU2U 4 with 
ej ~ F~\ Uj for j = 2, 4 (note that if ej e F j \  U i and ek~ Uk, then, letting u e U 
satisfy uek~F3, we have ue'sEjkUj,  contrary to the previous paragraph). 
Then V:=  (U,  e ' )  is a 2B-pure eights-group and Pilv is a monomorphism. 
The previous claim, applied to any four-group U o in V, implies that 
E j F  3 <~ pj(Uo) whence Ej = F3, for j = 2, 4 and so E is 2B-pure. We then 
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finish as in Case 1 by quot ing [(3.8), CoGr ] .  So, the claim holds and we m a y  
assume that  E = UzU 4, rank  6. The  claim also implies that  there is a 2A-pure 

four -group W complement ing  F 3 in U 4 and a subgroup  ( h )  ~ 7/3 in N(M)  

such that  W = CM(h) and U 2 = [M,  h]. Thus,  U2 lies in L, the 3E6(~ )- 

c o m p o n e n t  of C(W) ~- T2E6(~):2.  We now quote  the complexi ty  result (8.2) 

to get U2 toral  in L, which implies that  E = W U  2 is toral  in G. 
Subcase 2.2. Subcase 1 does not  hold. Then, at least one dj equals 1. Since 

diagonal  elements exist in E, dj ~> 1 for bo th  j. So, {d2, d4} ={1,  1}, {1,2} or 

{1, 3}. In the first two cases, E m a y  be expanded to a group  U2U 4 as in the 
last paragraph ,  and  we finish as above.  In  case {d2,d4} = {1,3}, we m a y  

assume that  d2 = 1 and let U be a 2A-pure fours-group in E 4 (it exists in 

ker P2 since d 4 - 3). Since cx(E) ~< 2, r 4 ~< 4 and so r 4 = 4. Also, r 2 ~< 3 implies 

that  r2 = 3 and there is e ~ E such that  (e, E4)  has rank  5 and contains three 

elements of 2A (since d4 = 3 and r 4 = 4, take e such that  p4(e) ¢ E4/F3 and 
p2(e) ~ 1), a contradict ion to cx(E) <~ 2. [ ]  

(9.3) N O T A T I O N .  We let G := 2E7(~ ), embedded  in H := E8(~  ) as a central 

factor of  the centralizer of t ~ 2A. Let  Z := ( t ) .  

(9.4) R E M A R K .  For  every involut ion x ~ G \ ( t ) ,  {x, xt}  contains one ele- 

ment  each of 2B[2ET] and 2C[2E73; on the adjoint  module  for G, x has trace 
5; their G-centralizers have shape 22D6A1. There  are two classes of  elements 

of order  4 which square to t, 4A and 4H;  their traces on the adjoint  module  

for G are - 7  and 25; see (2.14). 

(9.5) P R O P O S I T I O N .  (Classification of subgroups  of order  8.) We consider 

groups E <<. G o f  order 8 with O(E) <. ( t )  <~ E. 

(i) Suppose E ~ 2~ +2. The class distribution for  elements o f  order 4 is o f  the 

form 4Am4H ", for even integers m, n; r e + n = 2  or 6 as e= + or - .  Up to 

conjugacy, the possibilities are: 

e Distribution 
+ 
_ 4A64H o 

4A44H 2 
4A24H 4 
4AO4H 6 

Centralizer Dimension Normalizer 

None occur. 
2 x PSO(8, ~); 28 [-SL(2, 3) × PSO(8, ~)]. 2 
2 × PSp(8, 04); 36 [Quat s x PSp(8, ~)] .2 
Does not occur; 
F4(H ) 52 SL(2, 3). 2 × F4(~ ). 

(ii) Suppose that E ~-4 × 2. The distribution is 2A12B12C:4Am4H ", m, n 

even and m + n - -4 .  Up to conjugacy, the possibilities are: 

Distribution Centralizer Dimension Normalizer 

2A12B12C14A44H° 4AaA3 ° ~-i 31 4AaA s o T 1.2 
2A12B12C14A24H 2 6AsA: o T 1 39 6AsA 1 o ::  .2 
2Ai2B12C14A°4H 4 Does not occur (49) 
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(iii) Suppose that E is elementary abelian. Up to conjugacy, there are two 

cases and their distributions are 2A12B32C 3. Under the natural bilinear form 

(2.16), their radicals have ranks 3 and 1 and the respective centralizers are: 

(a) (radical of rank 3) C(E) ~- SL(2, ~)3 o Spin(8, ~) (amalgamation over a 

2B-pure 22), N(E) = C(E)S, where S ~- Z 3 permutes the three SL(2, E)- 
factors and acts as graph automorphisms on the Spin(8, ~)-factor. 

(b) (radical of rank 1) C(E) ~- IT 2 o 6A5A1(~)]. 2 (amalgamation over Z3; / f  
x6C(E)\C(E) °, x 2 =  t, x inverts the qFz-factor and effects a graph 

automorphism on an As-factor), N(E) ~- [T2:Z3 o 6AsA~]:2. 

Proof Use (2.14), (2.18) and orthogonality relations (1.5); see also (9.4); for 
(ii), note that the nonconjugate involutions of E are ratios of elements of order 
4. The last distribution listed in (ii) implies centralizer dimension 49 from the 
orthogonality relations, though the case does not actually occur. To prove 
(iii), the rank 1 case, consider the 2Ev-subgrou p of H defined as the centralizer 
of an A~-factor in [T2 o 6AsA~(~)] : 2 ~< 3A2E6([K ) ~< H. For the rank 3 case, 
consider 22AI4D4(~) ~< 22D2(~): 2 ~< H. []  

(9.6) COROLLARY. I f ( t )  = Z <~ E <. G and E /Z  is an elementary abelian 2- 
group, it centralizes y (mod Z), for some element y e 4H. 

Proof Without loss, E/Z  is maximal elementary abelian in G. We assume 
that (9.6) is false and seek a contradiction. We assume that E normalizes T(2), 
by (2.13.iii), hence E normalizes a subgroup of T(/) whose centralizer has 
shape 2ZD6A1; see (9.4). 

Suppose that E is elementary abelian. If E lies in some T~2), and the result is 
clear since E is a subspace of T~2 ) and G c~ T is a maximal torus of G. Suppose 
E is nontoral in E. Embed E in M, a maximal elementary abelian group in 

H ~ E8(~). If M has type 1, the above argument, applied to E c~ T~2), tells us 
E c~ T~2 ) is toral in G; since G has no Chevalley involution (2.23), E = E c~ T(2 ) 
and E is toral, contradiction. So, assume M has type 2. We claim that there is 
a 2A-pure fours-group, U <~ M, such that U c~ E = ( t ) .  Then, E does not 
contain both 2A-components. By (9.4), if X is the 2A-component containing t, 
X n E  ~< rad(M)(t) .  We take such a U in X. The claim tells us that 
E <~ Cn(U)~-[]]-2°3E6(~)]:2, whose intersection with G has the form 
[ T  1 o 3E6(1~)].2, which is No((y ) )  for some y~4H.  

We may assume that exp(E) = 4. Since (9.6) is false, every element of order 
4 in E is in 4A. Let u be such an element and set F := Cl~(U), of index 1 or 2 in 
E. 

Suppose E = F is abelian. Then, E corresponds to an abelian group in 
SL(8, ~)/{ __+ 1} _--- C(u), and so is described by (3.1). In particular, maximality 
implies that rk(E)~> 6. Let R be a rank 6 subgroup of E such that 
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R c~ (u )  = ( t )  and exp(R) = 2. We have that every element of order 4 in 
(R, u) is in Ru. Then, computing fixed points (1.5) of (R, u) on the adjoint 
module, we get [133 + 31.5 + 32(-7)] /64 = 1. In the notation of (3.1) (applied 
to (R, u)), this means that the commuting algebra of the group 'A' has 
dimension at most 1; thus, r = 3 and so rk(E)= 7. Now, we contradict 
maximality of E by noticing that there is an outer automorphism of C(u) 
which centralizes E modulo ( t ) .  

We have [E:F[ = 2. Let v~G satisfy v 2 = t  and u t = u  -1. Then, the 

possibilities for Q := (u, v) -~  Quat8 are discussed in (9.5). Since we ate 
forbidding 4H, we get that C(Q)~-2 x PSO(8, ~); by (2.21), the maximal 
elementary abelian groups here have rank 6 or 7. Also, E <~ C(Q), so there is a 
rank 5 elementary abelian subgroup R of E such that E contains Q x R; R is 
elementary abelian of rank 5. The sum of the traces (1.5) is 
1 3 3 + 3 1 " 5 + 3 " 3 2 ( - 7 )  -- -384 ,  but it should be nonnegative, a 

contradiction. [] 

(9.7) COROLLARY. Let Z <<. E ~ G. I f  E is maximal elementary abelian in G, 
it is toral or is nontoral of rank 6, unique up to conjugacy. I f  E/Z  is a maximal 
elementary abelian 2-group in G/Z, i t is nontoral and is conjugate to one of two 
groups, one of rank 8 and one of rank 7. 

Proof Without loss, E <~ C(y mod Z), which has shape Y1 ° 3E6(N). 2 and 
we also assume that E/Z is maximal in G/Z; so, y e E. Suppose E ~< C(y); then, 
E is abelian. We quote (8.2) and use (2.18) to get that each maximal 
elementary abelian 2-group of 3E6(~ ) (ranks 5 and 6, the latter being toral) is 
centralized by an outer automorphism (one must observe that the nontoral 26 
in a PSp(8, ~) subgroup of 3E6(~ ) is toral in the group 3E6(IN)). So, E is not 

maximal, a contradiction. 
Suppose E is not in C(y). There exists Q, nonabelian of order 8, such that 

yeQ<<.E. Then, by (2.18), C(Q)~-F4(~) or PSp(8, K). Any such Q is 

quaternion; see (9.5). 
From (2.21) and (7.3), we have, up to conjugacy, at most three candidates 

for E; they have the form E = Q x R; the ranks of such R are 5, 5 and 6. We 
shall be done if we show that the two maximal rank 5 groups lead to E which 
are conjugate in C(y). Let vl be elements of C(ymod ( t ) )  which induce 
nonconjugate outer automorphisms of order 2 on C(y). Set Q / =  (y ,  vi), 
i =  1,2 and suppoe C(QI)~  F4(~) and C(Qz) ~- PSp(8, ~). Let Ri be a 
maximal nontoral elementary abelian 2-group of rank 5 in C(Qi), i =  1, 2. 
Summing traces over QIRt we get a contraction in case every element of 
order 4 in it is in 41-I: [133 + 31 "5 + 3.32.25]/128 --- 21, whereas R1 is self- 
centralizing in F4(~). We conclude that there is an element in Q1R~ c~ 4A, 
which we may as well take to be v2. Thus, R1 ~< C(Q2) and it is self- 
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centralizing also in C(Q2) ~ PSp(8, ~), whence RI and R 2 are conjugate in 

C(Q2). [ ]  

(9.8) THEOREM.  (i) G = 2E7(~ ) has two classes of maximal elementary 
abelian 2-groups, a toral one of rank 7 and a nontoral one of rank 6. I f  E is the 
nontoral 9roup of rank 6, Co(E ) ~- 23 × SL(2, ~)3, N~(E)/Co(E) ~ 22"3" 
[Z a ×GL(3,2)],  Cn(E)---_23 ×23A1(~) 4 and NH(E)/Cn(E)-  21"2+2"3" 

[Z 3 x GL(3, 2)]. The distribution is A32B 3a. 

(ii) Let Z = Z(G). Then, G/Z = ET(~) has two classes of maximal elemen- 
tary abelian 9roups, E/Z, of ranks 8 and 7; representative 9roups E have shapes 
Quats × 2k, for k = 6, 5, and so both are nontoral. Say these groups have type 1 
and type 2. Each satisfies C(E) = Z(E). 

I f  E has type 1, No(E)/Co(E)~-[Dih 8 x26]:Sp(6,2), and No(E)/E _~ 
27: Sp(6, 2) (the elementary abelian 27 is an indecomposable module for Sp(6, 2), 
with ascendin 9 factors of dimensions 6 and 1). 

I f  E has type 2, No(E)/E ~ 22. 2.1 + 1-2.3: [E 3 × E3 × GL(3, 2)]. 

Proof Use (9.5), (9.6) and (9.7) for everything except the statements about 
the centralizers and normalizers. 

(i) Let our nontoral maximal be E = F × D, where F is an eights-group 
whose involutions are in the H-class 2A and rk(D) = 3; we embed E in a type 
2 maximal of H and take D as a subgroup of the 2A-component which does 
not contain F. Then, D <~ Cn(F) ° ~ F,(~). The class distribution A4B 3 of 
D <~ Cn(F) ° implies that D is toral (see(7.3)) and Cn(F) ° ~ C(D) ~- 23Aa(~) *. 
Recall that relations among the involutions generating the centers of the 
SL(2, ~) are given by words in the extended Hamming code; see (2.3) and 
[CoGr, (3.8)]. The statements about the normalizers and the distribution are 
easy to deduce from the above and (7.3). 

(ii) This is more subtle, due to the quaternion subgroups of the two groups 
E, described in (9.7). 

Suppose E has type 1. We take E ~< N((y)) ,  as in (9.6). Let E = Q × F, 
where Q - Quat s and F has rank 6 and lies in C(Q)' ~- PSp(8, ~). Then, by 
(8.2), F is toral in C ( y ) ~  3E6(~ ) and so E r : = ( y ) × F  is toral in G. Its 
centralizer Cr is a torus in G and we get N(Ey)/Cr ~- WE~ _~ Sp(6, 2) × 2. The 
image of Q in this is the direct factor of order 2 since Q centralizes N(Cy)' but 
not Cy. 

We claim that Er is the unique abelian maximal subgroup of E which 
centralizes a maximal torus. Since E = Q × F, where F is elementary abelian, 
any abelian maximal subgroup of E has the form (u )  x F, where u ~ Q has 
order 4. Since C(Z(E)) -~ T 7 . 2 (torus extended by - 1 from the Weyl group), 
we observe that F × ( y )  is the only possibility, proving the claim. 

It follows that N(E) <~ N(Er) and the structure of Ey given above (with the 
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observation that Ey/]]-(2 ) is a fixed point for the action of 1~7 ) leads to 
C(E) = Z(E), N(E)/E ~ 2v: Sp(6, 2) (socle of dimension 6), N(E)/C(E) 
[Dih8 × 26]: WE 6 × Dihs, as in the statement of the theorem. The indecom- 
posability statement is due to [ ( y ) ,  N(Ey)'] = f21(Ey), which follows from the 

irreducibility of N(Ey)' on f~x(Er)/(z) and the structure of T as a WEB-module. 
We mention that since dim(C~(Q)) = 36, orthogonality relations (1.5) show 

that Q has distribution 2AI4A44H2; see (9.5). 

Suppose E has type 2. We have rk(Z(E))= 6 and Z(E) contains an 
elementary abelian 2-group, F, which is maximal in C(Q)'~-F4(~(); so 

E = Q × F. Since Cn(F) ° ~ -  2204(~() and since a maximal 2-group in H which 
contains Z(E)= FZ(Q) must be of type 2 (see (2.17)) with F as a 2A- 

component, we see that ( z )  = Z(Q) must be in the other 2A-component and 
then that the distributions (A28B 3 for F and A31B 32 for FZ(Q)) with (2.13.v) 

give C~(Z(E)) ~ 23A1(~) 4 × 23. Let Si, i = 1, 2, 3,4, be the factors of 

Cn(Z(E)) °, where $1 satisfies CR(S1) = G. 
Let U be the fours-group in C(Z(E)) ° which is 2B-pure in H. Then 

Cn(U ) ~- 22D4(~) z:2 and Nn(U) ~- 22D4(~)2:[Z3 x 2]; see [CoGr, (3.8)]. 
Thus, if we consider Q x Nc(Q),(F) ~- Quat8 x 2 ~ . 22'3. [GL(3, 2) × Z3], we see 
that Q is in the subgroup of C(Z(E)) which is the fixed point group of some 
S ~ •3, which induces a standard group of graph automorphisms on both 
factors of Cn(U) ~- 22D4(~)2 (S is a subgroup of Nc(o),(F)c~ C(Q) centralizing 
23. GL(3, 2)). In fact, Q <~ C(Z(E)) ° since the actions on F of Q and Nc(o.),(F) 
(acting as GL(3,2)) commute. Thus, Q lies in a SL(2, ~)-subgroup, 

K = Cs~s~s~(S), which is diagonally embedded in S x x S2 × $3. We have 
NK(Q) ~-SL(2,3).2. Consequently, we see that N(E)c~N(Q) maps onto 

E 3 x E  3xGL(3,2) .  We have Q<~C(Z(E)) ° c ~ E = Q U = Q x U ,  whence 
]N(E):N(E)c~N(Q)] divides IUIZ= 16. We get equality as follows. The 

quasiprojections Qi of Q satisfy Q1Q2Q3 = Q1 x Q2 x Q3 and Come,on(Q) 
= QZ(Q~Q2Q3) and [QxQ2Q3, Q] = Z(Q~Q2Q3) = u × Z(Q). It follows that 
IN(E):N(E) n N(Q)I = 16 and that the image of Q1Q2Q3 in N(E)/EC(E) is a 
subgroup of order 16 commuting with Nc(e).(E ). [] 

(9.9) REMARK. Here is another description of the two maximal groups for 

G: = 2ET(IK ). 
Let f be an element of order 4 in G with Z = Z ( G ) = ( f 2 )  and 

C(f) ~- 4A7; then CG(fZ) = {x~Gl[f,x] ~Z} = c ( f ) ( y ) ,  where y2 = f z  
and y induces a graph automorphism on C(f). 

Let re: SL(8, ~) ~ C(f) /Z be an epimorphism. 
Then, for suitable choices ofy '  ~ C(f)y, our subgroups are (y,  F~), where F 

is a group of shape 21 ÷ 2, o 8 × 2 s- 1, for (r, s) = (1, 4) and (3, 1); the ranks are 
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2r + s + 1 = 7 and 8 and the fixed points of y' in the respective cases are 
2 × PSO(8, ~)  and 2 x PSp(8, ~). 

10. TYPES E6,  E 7 AND E8, p ~> 5 

(10.1) N O T A T I O N .  Let G have type E6, E 7 or E 8. Since p >~ 5, we take 
Z = 1 without loss of generality. 

(10.2) LEMMA. In E6(~(), ET(~), and E8(~), every elementary abeIian p-group 
is total for p >~ 7. 

Proof We need consider only prime divisors of the order of the Weyl 

group. So, p ~< 7. 

If p = 7, G = E8(E ). Take a maximal elementary abelian p-group 
E ~< N(-~(7)). Then, E centralizes an element x of order 7 such that satisfies: 

C(x) has factors A6AlTl (reason: the stabilizer in the Weyl group has index 
prime to 7 and there is only one such class of cyclic subgroups of order 7 with 

such factors in the centralizer; see [Table 6, CoGr]). It follows that E lies in a 

subgroup of the form SL(7, ~)-~-2, whence E is toral. []  

(10.3) LEMMA. Let p = 5. Then E is toral with the unique (up to conjugacy) 
exception of G = Es(~ 0 and rk E = 3, E # _~ 5C. For such E, C(E) = E and 
N(E)/E ~- SL(3, 5). Furthermore, N(E) splits over E. 

Proof Let G = E8(~ ). The Sylow 5-group P of W has type 5 x 5 and we 

may see one in a natural (WA4 X WA,)-subgroup. Its action on ~-(s) has fixed 

points a 1-dimensional space ( z )  and C(z)= XIX2, a nontrivial central 
product with X i ~- SL(5, ~)  for i = 1, 2 and X 1 ~ X 2 = (z) .  Then, i fE ~< C(z) 
is nontoral in G, rk E / > 3  and so by (3.1) zeE,  rk E = 3  and each 
quasiprojection Qi is nonabelian, whence Qi ~- 51+2; since Qi <<-xi ~- 
SL(5, ~), e = + .  Since Nx,(Qi) = 51 +2 : SL(2, 5), there is only one possibility 
for E, up to conjugacy. We have Nc(z)(E) = 53 : [52 : SL(2, 5)]; in particular, all 

elements of E \ ( z )  are in the same conjugacy class. Clearly, E = C(E) and 

dim C(E) = 0, so, using (1.5), 0 = Ex~e tr(x) and tr(x) = - 4  for x e ( z )  # imply 
tr(x) < 0 for all x ~ E #, whence by [Table 6, CoGr] ,  E # consists of conjugates 
of z. We may now consider the embedding of E in C(x), for all xEE # to 

conclude that N(E)/E ~- SL(3, 5). One can see that this extension is split by 
using Gaschiitz's theorem [Hup, 
that C(z)n N(E) splits over E. 

Incidentally, H2(SL(3, 5), D z3) 

1.17.4], since the above discussion implies 

0 [McL],  and a nonsplit extension does 
exist as a maximal 5-local in the Lyons sporadic simple grou [Ly]. 

Now, let G = 3E6(~ ). We prove that any E is total. So, we suppose that E is 
nontoral and we seek a contradiction. 



288 R O B E R T  L.  G R I E S S ,  J R  

We may assume E normalizes 7]-(5 ). Thus, IE:E c~ T(s)l =5 and rk E t> 3. 

Since WE6 contains Wo, ~- 24:25, an element x EE\~-(s) has Jordan canonical 
form J5 + J1. Therefore, rk(E ~ T(5)) = 2. Since the root system E 6 contains 
the root system AsA ~, Sylow's theorem for the Weyl group implies that E is 
contained in a subgroup of the form X~X2, where X~ ~ SL(6,~), 
X2 = SL(2, N) and IX 1 c~ X21 = 2. Any abelian 5-group in X1X2 is total by 
(3.1), so no such E exists. 

Finally, we take G = 2E7(~). Table 6 in [CoGr]  shows one rational class of 
elements of order 5 (class 5J), having centralizer with factors A1D4T 2. We get 
E toral by quoting results for type D and observing that each quasisimple 

factor here has center of order prime to 5. [] 

11. E 6 ,  E7 AND Es,  p = 3 

(11.1) NOTATION.  Until the end of this section, p = 3 ~ char(N), co is a 
primitive cube root of unity in ~; and E is an elementary abelian 3-group. 
Until further notice, G = E8(~; ). Elements of order 3 in G are discussed in 
(2.14). There is one W-orbit on ~-~) of length prime to 3 consisting of elements 

with trace 5 and with centralizers of shape 3A2E 6. By using this observation 
for E8(N) and a similar one for E 6 ( ~  ) (see (2.14)), we get that E normalizes 
U ~ 32 with C(U) ~- 32A~; U is 3B-pure. Let Xi, i = 1, . . . ,  4, be the four 

central factors of C(U), (zi> = Z(X~). Also, the structure of WE8 implies that 
N(U)/C(U) ~- GL(2, 3), which acts faithfully on U and induces Z4 on the set of 
four factors (in fact, GL(2, 3) is the group of a tetracode (see (2.3)), via its 
monomial action based on {z~li = 1 . . . . .  4}. Thus, the relations satisfied by 
{z~li = 1 . . . . .  4} correspond to tetracode words. This is so because the 

minimum length of a relation is 3 and rk(Z(C(U))) = 2; see (2.3). 

(11.2) HYPOTHESIS.  Until further notice, we assume that E <<. C(U). Let 
Qi >>- ( z i )  be the quasiprojections (see (2.6)) of E with respect to the Xi. Thus, 

E <~ Q:=Q1Q2QaQ4. 

(11.3) LEMMA. Suppose (U, e) ~- 33for some e ~ Q of the form el "" e,, where 
ei ~ Qi\ U. The class distribution (see (1.3)) of ( U, e) is as follows: 

r = 1 A12BSC°D 6 centralizer: Y2A~ d i m 2 6  

r = 2  A°BSC18D ° T4o(3A2) 2 d i m 2 0  

r = 3 A°B26C°D ° ~-6:3°3A 2 d im 14 

r = 4 A18BSC°D ° T8:32 d im 8. 
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(For r = 1, 2, 3, the respective amalgamations for the central products are over 
3 2 , 3 2 , 3.) 

Proof For all r, the structure of C((U, e)) is easy to get. Here are some 
hints. If ek is nontrivial, Cxk(ek)= V 2 and Cxk(ekmod U ) =  Vz:3. Also, 
C:= C((U, e)) is connected unless r ~> 3, the minimum weight of the tetra- 
code. Without loss, we may change notation to make ek nontrivial for 
k = 1, 2, 3 (possibly e4 is also nontrivial). For any 3-set in {1, 2, 3, 4}, there is a 
unique 1-space in the tetracode supported by that 3-set. 

As we show below, the distribution follows easily from orthogonality 
relations (1.5) on (U, e)  and the observations that if r = 1, Ix ctU) c~ Uxl = 6 
for all x~ (U, e ) \ U  and if r/> 2, xC~V)c~ Ux = (U, e ) \U  (which has cardin- 
ality 18) for all x~ (U, e)\U. Details follow. 

Let r -- 1. Then x -- e is an element of some Xi and so is in a fundamental 
SL(2, ~), whence it is in 3D and t r (x)=  77. If y~ (U, e ) \ ( ( Z x ,  X)k)U), we 
may write y=z ' x ' ,  where z ' ~ U \ ( z l )  and x ' ~ ( x )  #. The action of 
N(U)c~N((x, z l )  ) is transitive on the set of 12 such y. It follows 
that 26 = 27-1{248 + 8" 5 + 6" 77 + 12 tr(y)} = 27-1 {750 + 12 tr(y)}, whence 
tr(y) = - 4 ,  i.e. y~3A. 

Now, let r~> 2. Then N ( U ) ~ N ( ( U , e ) ) i s  transitive on (U ,e ) \U .  Let 
y ~ ( U , e ) \ U  and set q: = 2 4 8 + 8 . 5 + 1 8 t r ( y ) =  288+ 18 tr(y). For r = 2,3 
and 4, q = 20.27 = 540, 14"27 = 378 and 8"27 = 216, which lead to 
tr(y) = 14, 5 and - 4 ,  respectively, i.e. to respective classes 3C, 3B and 3A. 

[] 

(11.4) DEFINITION.  Let E be an elementary abelian group of order 9 in 

G = E8(~) which is 3B-pure. We say E is of c-type A'~, c-type T4D4 
respectively, iff C(E) has factors of these forms. Up to conjugacy, these are the 
only two possibilities; a 3B-centralizer has.form 3A2E 6 and so orthogonality 
relations (1.5) and knowledge of A 2 and E 6 (2.14) give two possibilities for 
C(E), namely C(E) ~ 74D 4 : 3 and 32A24 (for c-type T4D4, an element of order 
3 outside C(E) ° acts with eigenvalues (co 2, ~o 2) on the Lie algebra of the torus 

and has Jordan canonical form J2 + J2 on q]-4t3) ~ 34; it effects an outer 
automorphism on the D4-factor; this follows from (11.3.r = 3)) and the 
embedding of 22D4(~): Y~3 in F4(~(). 

(11.5) LEMMA. Assume the notation of(ll .3).  Let E be a maximal nontoral 
elementary abelian 3-group such that C(E)r~3A ~ ~ (we do not make an 
assumption about an embedding of E in N(U)). Then rk E = 5 and there are two 
G-conjugacy classes of such groups, described here as subgroups of 
C(x) ~ SL(9, ~)/QoI) (see (3.1)), for x E 3A: 

T¥I,E 1: the image modulo (~oI) of a 3 1 + 2 o g x 3 x 3  subgroup; 
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C(E) ~- 3 a × ]~2 and N(E)/C(E) ~ 33 : SL(3, 3) x Ea; there is a subgroup E o oj 
index 3 such that E' o = (E c~ 3B) w {1}; the orbits of S(E) on E\E o have lengths 
6 (class 3D) and 156 (class 3A); also, there is a subgroup Eoo of order 3 in Eo 
which is normal in N(E), namely Eoo = Eo n Y2. The class distribution for E is 
3A156BS°D6 and a rank 2 subgroup of E o has c-type A~ iff it contains Eoo 
(otherwise c-type T4D4); see (11.4); the 9roup E o is nontoral. 

TYPE 2: the image modulo (coI) of a 31+4o9-subgroup; C(E)= E. Also, 
N(E) ~ 35: 34: [Sp(4, 3) o 4] and E o := (E c~ 3B) u { 1} is a toral subgroup of 
index 3, set-theoretically complemented by Ec~3A; we have C(Eo) ~- 7I-:3 and 
N(Eo) = ~-. [Sp(4, 3) × 3).2]. The class distribution is 3A162Bs°. Every rank 2 
subgroup of E o has c-type T4D 4. 

(11.6) NOTATION.  In each case above, the group E o is called the 3B- 
radical of E and for type 1, Eoo is called the 3B-socle of E. We write 

E o = tad(E) and Eoo = soc(E). In case E has type 2, we call E o by both of the 
names rad(E) and soc(E). 

Proof of (11.5). Since C(x) ~- SL(9, ~)/(coI), we consult (3.1) to see that a 
nontoral elementary abelian 3-subgroup of C(x) is conjugate to an image 

modulo (o91) of a nonabelian subgroup of SL(9, D~). The statement about the 
normalizer for type 2 is easily deduced from the structures of C(x) and Y. We=. 
For type 1, we requre a somewhat detailed discussion and we refer ahead to 
the result (11.13) on 3E6(~), which is independent of (11.5). The connection is 
as follows. Let x ~ 3B; then C(x) ~- 3E6A2(~ ) and the 3E6-factor X 1 contains 
a nontoral group E 1 of rank 4 such that Nx,(E1) ~ 31+3+3: SL(3, 3) and the 

3A2-factor X2 contains a group E 2 ~ 3 x 3. Thus, E I E  2 has rank 5 and 
(11.3. r = I) implies that it contains an element of 3A, so is conjugate to the 
type 1 group mentioned above. Since SL(3, 3) is not involved in We=, E1E2 is 
nontoral. Since C(E) ° = CXE(E2) ~ T 2 and C(C(E)°) ' = X1, we conclude that 
N(E) <. N((x) )  and the rest is easy. [] 

(I 1.7) LEMMA. Assume (11.2). Then E centralizes an element of 3A. 

Proof. If E ~< U, this is obvious from (11.3). So, assume E contains some 
(U,  e) as in (11.3). Suppose that such an e has r ~< 2. We are done i f r  = 1, so 
we assume r = 2. Then the shape of C((U, e)) (given in (11.3. r = 2)) shows 
that E is toral since all the quasiprojections are abelian (see (3.1)), whence the 
result. Thus, we may assume that all such e have r ~> 3. It follows that the 
projection of E/U to QIQ2/U is a monomorphism. Let (abcd) denote the 
coordinates modulo U of an element of Q with respect to the decomposition 
of Q/U into the product of Qi U/U. We use additive notation for Q/U. By 
(11.3), we may assume that E contains no element with r = 4. It follows that 
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every element of E \ U  has r = 3. We may assume that E is nontoral ,  whence 

rk E t> 4. Thus, E contains two such elements, say x and y, with r = 3 which 

are independent  modulo  U. 
CASE 1. There are x and y with the zero for x at index 1 and the zero for y 

at index 2 (we reindex, if necessary). Let  x and y be any such elements. Then, 
I-x, y] = 1 requires x = (Oabc) and y = (dOef) where each of {b, e} and {c, f }  
are dependent  mod  U. Since neither xy nor  x y -  1 has r = 2, we conclude that 
for all w ~ (x ,  y )  #, {v ~ (x ,  y )  [ v and w have 0-coordinate at the same index} 
is just  {w-+l}. Even though C((U,  x ) )  is disconnected, C((U,  x, y) )  - ]]-8 is 

the unique torus containing it, whence E is toral, a contradiction.  

CASE 2. There are no such pairs. Then, reindexing if necessary, we may 
assume that every element of E has trivial coordinate  at index 1. Then  E 
centralizes every element with coordinates (a000)(mod U) hence some ele- 

ment  of 3A; see ( l l .3 .r  = 1). [ ]  

(11.8) H Y P O T H E S I S .  We drop (11.2) and assume that E is not in C(U). I f  
e ~ E \ U ,  (U,e> ~ 3i+ +2. 

(1 1.9) L E M M A .  Assume (1 1.8). Let e e E \  C(U). Suppose that e permutes the X i 

as the 3-cycle (123)(4); see (11.1). Then C( (U,e>)~  PSL(3, ~ ) x  SL(3, ~)  or 
PSL(3, ~) x qF2, according to whether e is trivial or nontrivial on X 4. Thus, E is 

contained in A x B x (e>, where A <<. X 1 X 2 X  3, A _~ 3 2 (there are two classes of 
such A in PSL(3, ~); one toral, one not) and B ~- 3 2 is toral in X4. In particular, 

C(E) ~ 3A # ~ .  
Proof The first s tatement is clear from the structure of N(U) sketched in 

(11.1). The second statement is straightforward and the last follows from 
(1 1.3), the case r = 1, since e centralizes an element of order  3 in X4\(z4>. 

[ ]  

(1 1.10) C O R O L L A R Y .  Es(~  ) has two conjugacy classes of maximal nontoral 
elementary abelian 3-subgroups, as in Table II, Section 1 and in (1 1.5). 

Proof (1 1.1) through (1 1.9). Note  that  types 1 and 2 are not  conjugate since 

the class distributions differ. [ ]  

(1 1.1 1) L E M M A .  Let e ~ N(U) be an element of order 3 which acts nontrivially 

on U and centralizes one of the Xi. 

(i) The class distribution of P:= (U,e> is A°BZ°C6D °. Also, 

c(e) ~ PSL(3, ~) × SL(3, ~). 
(ii) A 3B-pure subgroup of order 9 in P is of c-type A42. 

Proof (i) (11.9) gives the shape of C(P). Without  toss, i =  4. Let 
(z> := Cu(e). Replacing e by an element of eU if necessary, we observe that  
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conjugacy in N(U) gives six conjugates of e and 12 of ex in P\Z ,  for 
x ~ U \ ( z ) .  We have that dim(CG(P))=8+8=16.  So, using (1.5), 
432=27.16=248+8.5+6tr(e)+12tr(ex),  or 144=6tr(e)+12tr(ex), or 
24 = tr(e) + 2 tr(ex). Available values for traces here are - 4, 5, 14 and 77. The 
possible solutions here are (tr(e), tr(ex))= (14, 5) and ( - 4 ,  14). We claim that 
the latter pair is impossible. So, assume tr(e)= - 4  and tr(ex)= 14. The group 
Q:= ( z , e )  has class distribution A6B 2 and so centralizer in E8(~ ) of 
dimension 9 - ~ { 2 4 8 - 2 4 +  10} =26, whence the dimension of the 3E6(1~ )- 
centralizer is 2 6 - 8  = 18; however, the centralizer dimension for an element of 

order 3 in 3E6([K ) is at least 24, a contradiction. 
Let (z, e)  be a 3B-pure group of order 9. We may arrange notation so that 

the action of e cycles the three components X2, X 3 and X4 and satisfies 
z~=zi+a for i = 2 ,  3 and 4 (zs:= z2). Thus, C((U,e))  contains a copy of 
PSL(3, ~) x SL(3, ~(), as required. So, (i) follows, and to prove (ii) notice that 

its denial leads to (e, z)  of type T4D 4 which has no subgroup of the form 
PSL(3, •) × SL(3, ~). [] 

(11.12) NOTATION.  We drop the notations (11.1) and (11.8) and now take 
G = 3E6(~ ) and H = E8(~). Recall that Z(G) = ( z )  has order 3. Then, let E be 
an elementary abelian group which centralizes x (rood (z)),  x ~ G of order 3 
with centralizer C(x)= 32A~. If zi, i =  1, 2, 3, generate the centers of the 

respective components Xi, we may arrange z~z2z 3 = 1 by replacing some zi by 
their inverses if necessary. All relations among the zi follow from this one. Let 
U := Z(C(x)) ~- 32 and let X 4 := Cn(G ) ~- SL(3, ~); U = (x, z). Distributions 

will refer to H-classes. 

(11.13) THEOREM.  (i) For G = 3E6([K ) and p = 3, there are (up to conjugacy) 
one maximal nontoral, of rank 4, with normalizer 31 +3 +3:SL(3, 3), and one 
nonmaximal one, of rank 3, with normalizer 3 x 33:SL(3, 3); the nonmaximal 
one lies in a natural Fj~)-subgroup. I f  E is a rank 4 nontoral, N(O3(N(E))) has 
shape 31 + 3 + 3 : SL(3, 3) (this proves the statement in (11.5) about NE8(c)(E) for E 
of type 1) and 03(NG(E)) has Es-distribution B148~C 7°2. (ii) There are nontoral 
9roups in G which normalize U (see (11.12)) but do not centralize U; the radical 
of a type 1 9roup in E8(~) occurs this way (but not the radical of a type 2 9roup). 

Proof Let E be a nontoral elementary abelian 3-group. 
CASE 1. Suppose E does not centralize x. Then F : =  E n C(U) satisfies 

F # _ 3B by (ll.3.r = 3), F has index 3 in E and e 6 E \ F  cycles the three 
factors of C(x) transitively and C(e)c~C(x(mod(z)))  has the form 
( z )  x L x (e) ,  where L ~  PSL(3, ~(). Thus, if E is a maximal such group in 
N(U), it has rank 4; the structure of L implies that there are two possibilities, 

up to conjugacy. 
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We now study E8(E)-class distributions and see how such an E may be 

toral; (ii) will follow. From (11. t0) and (11.5), we see that if such an E contains 

an element of 3C, it is toral. If  E is nontoral,  there is e ~ E c~ 3B, by (11.11). On 
the other hand, every element of order 3 in CG(U)e/U is conjugate by 

CG(U)/U, so we may use (11.11) and replace E by F(e)  where e ~ UE\UF is in 

3B, we see from (11.5) and the facts that E centralizes X 4 and dim(C(E)) = 8 

that E is nontoral, as required to prove (ii). All elements of E\F are conjugate 

in N(E) because this is so modulo U and all elements of e(z) are conjugate by 
U, so all are in 3B. Thus, E is 3B-pure and so is the radical of a type 1 
maximal nontoral (the radical of a type 2 group is toral in Es(~)). 

CASE 2. Suppose that E does centralize x and is maximal nontoral; thus 

U ~< E. Let Qi >/(zi) be the quasiprojections of E (see (2.6)) and set 

Q := Q1Q2Q3. Then Qi is elementary abelian or extraspecial. Suppose one Qi 
is abelian, say for i = 1. Then Q1 is toral, and since X2X3 = X2 × X3, the fact 
that all relations among the z i derive from zlz2z 3 = 1 implies that all Qi a re  

abelian, whence E is toral. Therefore, each Q~ is extraspecial; exp(Qi) = 3 since 

Qi is contained in SL(3, E). Consequently, U ~< Q. 

We now study elements of E\U. For  e~E, write e=eleze 3 with eiEQ~; 
these are uniquely determined modulo U. We claim that if e ~ U, each e~ ~ U. 

Let e be a counterexample to this claim. Since E is nontoral, E ~ (U,  e). Let 

f ~ E satisfy: e and f are independent modulo U. Then ef = fe and r = 3 for 

every element of (e, f ) \ U ,  whence ei and f. are independent for i =  1,2, 3. 

Now use the fact that I-e, f ]  = II[e~, f J  and the fact that relations on the z~ 
follow from ZlZzZ 3 = 1 to contradict independence. The claim follows. So, 
each e ~ E\U is described by (11.3.r = 3). Orthogonality relations (1.3) and 

the fact that any group of order 3 3 in C(U) with r = 3 for every noncentral 
element is nontoral since its centralizer in Es(~) is of dimension 8 and 

contains X 4. Such E do exist: take E = (U,  e, f ) ,  where (ei, fii) = Qi for all i. 
Furthermore, the structure of NG(QIQ2Q3) show that all such E are 
conjugate. 

Let 7 be the graph automorphism of G of order 2 whose fixed point 
subgroup is K ~_ F4(E). Then ~ centralizes a nontoral E* ~ 3 3, which we may 
assume is in N(U). If E* does not centralize U, it must lie in the radical of E**, 

a type 1 maximal for Es(E) and so is unique up to conjugacy in N(E**); we 

quote Case 1. So, we may assume that E* ~< C(U); nontorality implies that 

IE*c~ UI = 3 and, by remarks at the end of the last paragraph, E*U is 
conjugate to E. It follows that E and E* are conjugate. 

We now look at normalizers. We apply (7.4) to get a subgroup 
L ~ 3 3 : SL(3, 3) of N(E). It is clear that from C(E) <~ C(U) that C(E) = (z, E) 
and that C(U)n C(E/(z)) has order 3 6 and commuta tor  subgroup U. Let 
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D := C(E/(z)); using N(U), we see that IDI = 37. Since C(U) n C(E/(z)) is a 
maximal subgroup of D which admits L, D has class 3 and the lower central 
series is a chief series for the action of SL(3,3) via L. So, 
N(E)~-3~+3+a:SL(3,3), with D/E the module dual to E/(z )  for 
N(E)/D _~ SL(3, 3). If we extend G by the graph automorphism, N(D) picks up 
an involution V such that F : =  Co(V) complements (z)  in D '=  E and 
CN(r)(V) = 3a:SL( 3, 3). The distribution follows from (11.11.i), (11.3. r = 3) and 
the transitive action of N(E) on the nonidentity elements of the rank 3 chief 

factors of 03(N(E)). [] 

(11.14) THEOREM. Assume (11.12), except let Z : =  Z(G) <~ E <~ G be such 
that E/Z is a maximal elementary abelian 3-group. One of the following holds: 

(i) E is toral, hence has shape 9 x 35; 
(ii) E is abelian, but nontoral, whence E is elementary abelian and is 

described in (11.13); 
(iii) E is nonabelian and has the form 31+ +2 x 3 x 3; there are two conjugacy 

classes of such; groups in one class contain conjugates of U, some central 
and some noncentral; groups from the other class contain conjugates of 
U and all such lie in the center. 

The Es(~)-class distributions a r e  B188C 54 and AI2B152C72D 6. Accordingly, 
we call the groups type BC and type ABCD, respectively. Their centralizers 
have the shapes Z(E) ~- 33 and ~2 X 3 while N(E)/EC(E) ~- [32 × 32] : 
[-3 x GL(2, 3)] and Dih12 x 32:SL(2, 3), respectively (in the latter case, Dih12 
corresponds to a group of automorphisms on the toral factor of C(E)). (If we go 
up to G: 2, these sections expand to [32 X 3 2] " E~3 X GL(2, 3)] and 

Diht2 x 32 : GL(2, 3).) 
Proof If E is elementary abelian, we use (11.13) and if E is abelian of 

exponent 9, we argue as follows that E is toral: The tables in (2.14) or [-CoGr] 
do not list elements of order 9, though one can get elements whose cube 
generates Z(G) using [MoPa]. A more elementary argument is the following. 
We classify automorphisms of order 3 in 3E6(~( ) by, say, (8.6) of [Kac]; the 
fixed point subgroups have types A 3, TED4, T1AIA4, TID5 and T1A5; if y ~ E 
has order 9, C(y) cannot be of type A2 a, and in all other cases, E must be a toral 

subgroup of C(y). 
We may assume that E is nonabelian. We may take E to be in the 

normalizer of a torus, and even to normalize a G-conjugate of U, whence 
U ~< E by maximality. So, we look in N(U) and use to get the possibilities, 

which we discuss below. Let H := Es(D4). 
CASE 1. U is not central in E. From (11.11), we get that 
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C(E)c~ N(U)= Z(E)X  4 ~ 32×  SL(3, ~). The  center is a 3B-pure group  of 

order  27 containing rank  2 groups of bo th  c-types. F r o m  (11.3) and (11.11), we 
get the distribution. Since U is conjugate to a subgroup  of c-type A 4, such an 

E occurs also in Case 2, where we analyze its normalizer .  

CASE 2. U is central. Then, U <~ E <~ X1X2X 3. Let Qi, i = 1, 2, 3, be the 

quasiproject ions of E and let Q:=Q1Q2Q3. Let x, y e E  such that  
[x, y] = z = z 4. Since nonzero  te t racode words  have weight 3, it follows that, 

in the nota t ion  of (11.3), r >~ 2 for all noncentral  elements in (x ,  y) .  
Let  s be the m i n i m u m  value of r for elements of E \  U. We claim that  s = 1 

or  2. If  s = 3, the fact that  no te t racode word  has length 4 means  that  for at 

least one i, xl and y~ are dependent  modulo  U and that  we get an element of 

(x, y ) \U  with r ~ 2. The  claim follows. 
Subcase 2.1. s = 1. Fo r  some index i, Qi c~ E has order 9; say i = 1. Since 

E' # 1, E = (E c~ Q 0  x R, where R is diagonally embedded  in Qz x Q3. All 

groups of this description (with E ' =  ( z ) )  are conjugate  in N(U). Also, 
N(E) <~ N(U) since U is the unique group  of c-type A 4 in Z(E). We have 
C(E)E = T 2 x 31 +2 and N(E)/EC(E) ~- [2  3 x 3 z : SL(2, 3)]. Expanding  our  

picture to G:2, we have NG:2(E)= N(E)(g), where g is an involut ion 

normal iz ing each X i and inducing a s tandard  graph au tomorph i sm on each. 
The  fact that  31+2: SL(2,3) is not  embeddable  in SO(3, N;) implies that  g 

extends our  32:SL(2, 3)-factor to an AGL(2,  3). 
Subcase 2.2. s = 2. Let v be an element of E\U with r = 2. Let v = vlv2v 3, 

with v~ ~ X~, i = 1, 2, 3 (and use similar nota t ions  for other  elements of E). If v 

were in Z(E), every x = xlx2x 3 would satisfy: xi and vi are dependent  modu lo  
U, for all i (because the min imum weight in the te t racode is 4). Consequently,  

every quasiproject ion of E would be abelian, except possibly at  index i where 

vi~U; since ( z ) n Q ' i =  1, E is abelian, a contradict ion.  So, such a v is 

noncentral .  If  x e E and [x, v] # 1, x~ and vg are independent  modu lo  U at 
those two indices where v~ is nontrivial.  Therefore,  CE(v ) is abel ian of index 3 

and it contains no element with r = 2 outside U(v). I f y e E \ U  is central, r = 3 
and for all i, Yi and v i are dependent  modu lo  U. Thus, Z(E)= (U, y) and 
E = ( U ,  y, v, x ) ,  where x must  satisfy: x~ and y~ are independent  modu lo  U, 
for all i. Conversely,  such an E obviously exists in C(U) and cannot  be 

expanded  to a larger g roup  in N(U). Clearly, C(E) = Z(E). Also, C(Z(E)) is in 

C(U) and has the form q]-6 : 3. The  explicit forms of the elements v, x and y and 
the fact that  3C n E = Uv w Uv- 1 means  that  Nc~z~g))(E) induces 3 3 o n  E (via 
conjugat ion with cube roots  of the y~). No te  also that  the distr ibution here is 
B188C 54. Thus,  the group  of Case 1 is conjugate  to this g roup  E. 

Wha t  abou t  N(E)? Since ( z )  is normal ized by N(E), N(E) induces a 
subgroup  of AGL(2,3)  on Z(E)~-3 3. TO get the normalizer ,  we let 
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F : =  (U, x, y),  a 3B-pure group of order 81 which is the radical of a type 1 
maximal elementary abelian in G; see (11.13); there are three such groups F. 
Recall, that N := N(F) -~ 31 +3 + 3:SL(3, 3). Clearly, E ~< R := O3(N(F)) (E 
looks like 31+3+1) and we get NN(E)/E ~ [32x 32] :GL(2, 3), with each 32 
factor representing an irreducible and faithful GL(2, 3)-module. Notice that 
NN(E ) normalizes each of the four subgroups between Z(E) and E (since there 
is exactly one containing elements of 3C, the image of NN(E) in this Z4 is at 
most Z2; however, the actions of NN(E) on both F/Z(E) and E/F are 
equivalent since these factors are in duality). Using the previous paragraph, 
we have the required structure of N(E). 

Going up to G:2 (extension of G by graph automorphism, we get 
[32X 32]:[323 x GL(2,3)], since the fixed points of an involutory outer 
automorphism of G may be arranged to centralize exactly a 33:SL(3,3)- 
subgroup of N(F). Note that a Za-subgrou p which commutes with a GL(2, 3)- 
subgroup acts as a subgroup of the group of units of the commuting algebra 
on the direct s u m  [32 × 3 2] of irreducible GL(2, 3)-modules, because its action 
on this module corresponds to its action on the three G-conjugates of F in E. 

[] 

(11.15) NOTATION. G = 2Ev(•). 

(11.16) THEOREM. An elementary abelian 3-subgroup is toral, with the 
following conjugacy classes of exceptions (the rank 4 group is maximal 
elementary and the rank 3 group is not). 

rk E = 3, 4; 
C(E) ~- 33 × q]-i in either case; 
N(E) ~- [33:SL(3,3)× ~-1]'2, [3~+3+3:SL(3,3)oYl]'2, in the re- 
spective cases (note the nonsplitting). Both normalizers map onto 
AGL(3, 3) and 0(2, ~). 

Proof We have E ~< C(x), where x has order 3 and C(x) ~- 3E 6 o ~-1 (group 
of order 3 amalgamated). Let E 1 and E 2 be the quasiprojections of E; both E i 
are abelian. Note that exp E1 divides 3 iff exp E 2 does. 

Suppose exp E 1 = 3. Then, E 2 ~< Z(C(x)) and so E = E 1 . The discussion for 
3E6(~) applies here to give just two conjugacy classes of nontoral E, of ranks 
3 and 4. 

Suppose expE~ =9.  Then E~ lies in C(y), where y3 = x  and y~L,  the 
3E6(~()-component of C(x). We get possible shapes of C(y) from (2.14); we get 
toral groups only. The tables in [CoGr] do not list elements of order 9, but 
one can classify automorphisms of order 3 in 3E6(~( ) by, say, (8.6) of [Kac]; 
the fixed point subgroups have types A 3, T2D4, T1A1A 4, T1D 5 and TaAs; in 
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the first case, y would have order 3 and in all other cases, we get toral groups 

only. 
Getting the structures of the normalizers is an exercise. Recall that G has 

no Chevalley involutions (2.23); elements in N(V) which represent - 1 in the 
Weyl group square to a generator of Z(G), which lies in the Vl-factor; use (9.5) 
to prove nonsplitting. []  

12. EXTRASPECIAL SUBGROUPS o r  Es(N ) 

As an application of our results, we study extraspecial subgroups of 
G :-- Es(~) and show how to locate the maximal ones; see (1.8), Table IV. 
Except for certain extraspecial 2-groups with a 2B-involution in the center, it 
is easy to prove that the groups are small and analyze with earlier results, so 

we treat only the case p = 2. 

(12.1) NOTATION.  Let P be an e×traspecial 2-group of order 2 a + 2d in E8(~) 
with z a generator for Z(P). 

(12.2) LEMMA. Suppose z~2B. There are, up to conjugacy, two maximal 
extraspecial 2-groups in C(z) ~- H Spin(16, K), they are isomorphic to 21+2r for 

r = 3 and 7. 
Proof Let 7 r : H ~  C(z), where H =  Spin(16, ~). Let P be a maximal 

extraspecial subgroup of C(z), P =  ( z )  and Q:= Pi t - l ;  then Q/Z(H) is 
elementary abelian. Let Z be the kernel of H acting on the natural module V 
of dimension 16. 

Suppose Q/Z is elementary abelian. Then Q/Z is in a diagonal frame group 
and Q has the form 21+ + 24 x 2. Since Q' = Z, we get an extraspecial subgroup 
Qn = 21+ + 14, unique up to conjugacy. 

Suppose Q/Z is not elementary abelian. From (2.22.ii), if only one spin type 
is present, ~(Q/Z) = a~(Q)Z/Z, q~(Q)Z = cb(Q) x Z and Q/Z ~- P; maximality 
gives P ~ 21+6. We claim that only one spin type occurs (if so we are done). 

Suppose both spin types are present. Then, in the notation of (2.22.ii), 
[Q+, Q - ]  = 1 and, for some e, (QE)/> ker(z0, whence (Q~)~ is a nontrivial 
central direct factor of the extraspecial group P, a contradiction. [] 

(12.3) PROPOSITION.  For any z~2A, let P ~- 21 +2d be a maximal extra- 

special 9roup, ( z )  = Z(P). Then d <~ 2. Also, P is a subgroup of a group of the 

form A x R, as follows. There are quaternion 9roups PI and P2, where the Pi lie 
in the distinct factors of C(x) ~- 2E7([~)Al(~ ) (there are three possibilities for P1 
and one for P2, up to conjugacy), A -~ 4 x 2 or 23 and ]A ~ P1P2J = 2. 

Proof Use (9.5) and (12.2). [] 



298 ROBERT L. GRIESS, JR 

13. CONCLUDING REMARKS 

(13.1) Results in the spirit of complexity are likely to exist for p = 2 in the 
nonsimply connected cases, though we have not worked them out. Here is an 
easy result of this kind for type A. Let G = SL(n, ~;), with n even, and let Z be 

an even order subgroup of Z : =  Z(G). Base the notion of complexity in G/Z 
on the class of Zx, where x is conjugate to diag(i "/2, - in/2). If Z ~< E ~< G and 

E/Z is elementary abelian, E is a central product Q o(AZO, where Q is 
extraspecial, A is elementary abelian, Z 1 is cyclic and contains Z and 
[A, ZI] <~ f~l(Z). Noncentral elements of QA which square to - 1  are 
precisely the elements of the class of x. Now make the special assumption that 

Z = Z1. The group E is toral iff Q = 1 iff the complexity of E/Z is at most 1. 

(13.2) For  p odd, complexity results are elusive. Inspection of the E8(E) case 
for p = 3  reveals examples of pairs of groups (E,,F,), where 
rk(E,) = rk(Fr) = r e  {3, 4}, there exist isomorphisms cpr: E~ ~ F, such that x 
and x% are in the same Es(~)-class, for all x e E,, but E~ is total and Fr is not. 
For instance, we may take Er in the radical of a type 2 maximal, F4 the radical 
of a type 1 maximal and F 3 a complement to the socle in F 4. These four- 
groups are 3B-pure. Furthermore, their normalizers induce on them the 

groups 

Er Fr 

r = 3: 32: GL(2, 3) x 2 GL(3, 3) 

r = 4: Sp(4, 3).2 33: GL(3, 3). 

It follows that, for r e  {3, 4}, there exist monomorphisms of an elementary 
abelian group of order 3 r to E8(N) such that the two images of every element 

are conjugate, yet the monomorphisms do not differ by conjugation with an 
element of E8(~ ). Serre called my attention to this question: for a particular 
Lie group G and two embeddings q0 i of a finite group F into G such that xq h 
and x(p2 are conjugate for all x e F, is there g e G such that xq) 2 = g-a(xcca)g, 
for all x e G? This is true, for example, for SL(n, C) but false for PSL(n, C) 
(easy) and E8(C), as the above remarks show. 

On the positive side of the ledger, one has Theorem B of [Bo], which says 
in part that if G is a compact and connected Lie group, then every elementary 
abelian p-group is contained in a torus iff that is so for elementary abelian 
groups of rank at most 3; the proof depends on the classification of simple 
algebraic groups. Of course, this statement may be deduced from the results 
of this paper. 

In [Bol, one finds that if G is nearly simple, connected and simply 
connected and IZ(G)I is divisible by the prime p, then for an element z ~ Z(G) 
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of order p, there is an extraspecial group P of order p3 in G with (z )  = Z(P) 
and P quaternion if p = 2 and exp(P) = p if p is odd; this, too, follows from 
this article. An analogous statement for central extensions of finite simple 
group would be false, e.g. 2 ' M 2 2 .  

(13.3) The result for E8(~), (8.4), came before most of the others. The 
statement is neat, at least if one can forgive the eccentric rank 5 2B-pure 
example. Our analysis of the orthogonal groups and examples of nontoral 
elementary abelian 2-subgroups, suggests that such eccentric groups are 
really a generic part of the theory. The reason is that the set of conjugacy 
classes used to define complexity could be avoided by nontoral groups E 
corresponding to codes of high minimum weight (see (5.3)); in this case the 
characteristic function would be identically 0 on E. 

Alternatively, if a nontoral E is allowed to meet classes defining complex- 
ity, the complexity can become quite high. In the example (5.3), E # consists of 
conjugate involutions, so the complexity of E would be k, its dimension, yet E 
is nontoral. 

It would be interesting if complexity were replaced by a notion which 
doesn't make certain nontoral groups an exception to an otherwise simply 
stated criterion. 

(13.4) One would like 'natural' explanations of the rather exotic looking 
normalizers in Tables I and II. 

The nonsplit extension 23 . GL(3, 2) occurs in Gz(~) and as the automorph- 
ism group of a Moufang loop, O16; see [Gr3] for several uses of this loop for 
constructions of so-called parabolic subgroups of sporadic simple groups. In 
a different direction, we used (~16 to construct the subgroup 
22 + 3 + 2.3. [GL(3, 2) × Z3] of Spin(8, ~): Z3. This group occurs as the norma- 
lizer of the unique maximal elementary abelian 2-group in F4(]~); this follows 
directly from the containment of Spin(8, ~): E3 in F4(~). 

Recently, some progress has been made for the prime 3 [Gr4]. The 
subgroup 33: SL(3, 3) of F4(~) and its associated decomposition of the 27- 
dimensional exceptional Jordan algebra may be explained by a Moufang 
loop of order 81. The construction of an associated cubic form explains the 
group 31+3+3:SL(3,3) in 3E6(~ ). It is an analogue for p = 3 of the 
phenomena mentioned in the previous paragraph. 

APPENDIX 1: A PROOF OF ADAMS' THEOREM 

J. Frank Adams circulated a preprint in 1986 which classified the maximal 
elementary abelian subgroups of Es(C). We give here an alternate proof of his 
theorem (2.17). In the arguments below, we use results of this paper proved 
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before Section 9, where we quoted Adams' theorem. We use an algebraically 
closed field K of characteristic not 2. 

That two maximal elementary abelian groups exist in G is easy to prove; 
existence is sketched in the statement of (2.17) and the verification of the 
stated properties of their normalizers is a routine calculation in 

G2(N;) x F4(~) and 2ZD4(~)2:[2 x E3]. 

(AI.1)NOTATION. G = Es(N) and E is a maximal elementary abelian 
group. We refer to (2.14) for information on conjugacy classes. 

(A1.2) LEMMA. Suppose E contains a fours-group U with distribution A 3. 

Then, E is conjugate to one of the two groups in (2.17). 
Proof From [CoGr, (3.8)], C(U)°~ 71-2 °3E6([N) and C(U)= C(U)°(t), 

where t has order 2 and induces a graph automorphism on X, the 3E6(~)- 
component and inverts T, the T2-component. We quote (2.18), r o w  E6, then 
(2.21), and (7.3) to get at most four possibilities for E. 

We claim that the two rank 8 cases are conjugate by X. Consider U, the 
rank 5 group coming from fixed points of type C4. Use (2.21) (1, 4, 0, 4) then 
(2.26) and (2.16.iii) to get a 2A-pure eights-group in U. By (8.2), U is nontoral 
and the claim follows. These groups are type 2. 

The rank 9 cases here lead to type 1 since (E c~ T)(E n X) is toral, by (8.2). 
[] 

What remains is for us to verify the hypothesis of (A1.2). We deny it and seek 
a contradiction. We may assume that E is nontoral, so that by (2.13.vi), 

rk(E) >~ 3. 

(A1.3) HYPOTHESIS. E contains no fours-group with distribution A 3. 

(A1.4) LEMMA. E does not contain a fours-group with distribution AB 2. 
Proof Suppose U is such a subgroup. Then [CoGr, (3.8)] gives 

C(U) ~-4A72-1:2 (actually, it gives only the factor types and component 
group, Z2; we use the fact that Ea(N;) has a Chevalley involution, (2.23); note 
also that the two factors of C(U) ° intersect in a group of order 2 (containing 
the 2A involution of U) since C(U) lies in a 2ET(N)AI(~) subgroup. 

Let H be the 4AT-factor, so that H -= SL(8, ¼)/{ _+ 1}. A maximal torus S of 
H lies in T, a maximal torus of G and 1"]]-(2); S O "1]-(2)1 = 2. It follows from 
(2.16.ii) that S contains a fours-group with distribution A 3. 

Define F:=E n C(U) °. I fE  = F, and E is toral, we may assume E lies in S. 
Maximality implies E = S and so we contradict (A1.2). If E = F is not toral, 
maximality of E, (3.1) and (2.26) contradict (A1.2). 

We may suppose now that F < E. Let eeE\F.  From (2.18), row A, we get 
that F lies in Cc(ts)o(e) = K x 2 x 2, where K _----- PSO(8, ~) or PSp(8, N). 

In case K ~ PSp(8, N;), if rk(F) = 6, F is toral in G (1.8), Table III, row E6. 
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Considering a 3AzE6-subgrou p of G which contains our K, we see that F is a 

nonsingular rank 6 subspace of nonmaximal Witt index in ~-(2), in conflict 

with (A1.3). If F is a rank 5 maximal of K, it is a rank 5 maximal of a natural 

F4-subgrou p of G and so contains a 2A-pure eights-group, again contradict- 

ing (A1.3). 
In case K -~ PSO(8, ~), we use (5.4) and (5.5) to get that F is the image of a 

diagonal frame group, the image of a toral group of exponent 4 or a 

nonabelian group as in (2.19). Using (2.14) and (2.26), we contradict (A1.3). 
[] 

(A1.5) LEMMA. E n 2A is nonempty. 
Proof Otherwise, E is 2B-pure and [CoGr,  (3.8)] tells us that rk(E) <~ 5 

and gives the structure of C(E). However, E then is not maximal abelian, for 

C(E) contains a conjugate of q]-(2). [] 

(A1.6) LEMMA. E n 2B generates a subgroup, F, of index 2 in E and 
F # = E n 2B. Consequently, E \F  = E ca 2A. 

Proof Use (A1.5), then (A1.3) and (A1.4). [] 

(A1.7) LEMMA. Let r = rk(F). Then r <~ 3. 
Proof Suppose r ~> 4. Let D be a subgroup of E generated by five 

independent elements of 2A n E. Then rk(D) = 5 and, letting tr denote trace 

on the adjoint module, we have Zo~Dtr(9 ) = 248 + 16.24 + 1 5 ( - 8 ) =  512, 

whence d i m C ( D ) =  512/32= 16. From [-CoGr, (3.8)], we have that 
C(F n D) ~- ~ .  21+ +6 has dimension only 8, a contradiction. [] 

(A1.8) T H E  F INAL C O N T R A D I C T I O N .  We have rk (E )=  3 or 4. It is 
almost trivial to prove that E is not a maximal elementary abelian group. 

If rk(E) = 3, C(F) _~ 22D4(~)2:2 (again, by [CoGr,  (3.8)]). Let x ~ E \ F .  If 

x ¢ C(F) °, x interchanges the two factors and so has fixed point subgroup 
PSO(8, E), which contains involutions, in violation of maximality of E. 

Consequently x ~ C(F) ° and so x and therefore E are in a torus ~- of C(F) and 

so are in a group 1-(2), again in conflict with maximality. 
If rk(E) = 4, rk(F) = 3 and so [CoGr,  (3.8)] tells us that C(F) ° ~- 24A1(~) 8 

and E = Z(C(F)°). Since C(F) ° has a rank 8 torus, there certainly are 
involutions in C(E)\E. This is our final contradiction. 

In the second case, rk(F) = 7 and F is not toral in K but is toral in H and so 
is a hyperplane of some ~-(2) in G. This contradicts the hypothesis of (A1.4). 

APPENDIX 2: LIFTING 

We describe a sufficient condition for lifting a subgroup of a Chevalley group 
over one ring to a Chevalley group over another ring. 
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(A.1) NOTATION. Let G(') be a functor from commutative rings to groups 
which gives a simply connected Chevalley group when applied to ~ and the 
universal Steinberg group when applied to finite fields and suppose also that 
it commutes with inverse limits (see, e.g., the procedure of Section A in [Bo2]). 

For an ideal J of the ring R, G(R, J) denotes the kernel of the map 
G(R) --} G(R/J). 

(A2.2) NOTATION. Given the finite field F of q elements, with q a power of 
the prime p, we let R be the ring Z[(], where ( = exp(2ni/(q - 1)), ~ a prime 
ideal containing p. Let /~ be the ~-adic completion. 

For an integer k >~ 1, define Rk:=R/~ k. We let ~/ij be the natural 
epimorphism Ri ~ R j, defined iff i ~> j. The functor G(.) then gives corre- 
sponding maps go o of groups Gi := G(Ri). We take the index set I to be all 
nonnegative integers. 

(A2.3) LEMMA. Let K be the fraction field of R. Then, K has cardinality 
2 s° and there is an embedding of K into C. 

Proof Let S = {0, 1 . . . . .  p - 1}. The set of p-adic integers is, via taking a 
power-series representation with coefficients in S, set-isomorphic to the set of 
all formal sequences S ~, whence the set of p-adic integers has cardinality 2 s°. 
The same holds for R, a finite extension of the p-adics, and for K. In general, if 
E is an infinite field and X a set of variables, E and its algebraic closure have 
the same cardinalities and the cardinality of E[X] is the larger of card (E) and 
card (X). It follows that the transcendence degree of K over Q is 2 so. At once, 
there is an embedding of K into C. [] 

(A2.4) LIFTING CRITERION. Let p be a prime number and F a field of 
characteristic p. Let R be a complete discrete valuation rin9 with R/J ~ F, 
where J is the radical of R. Assume also that card(R) ~< 2 s°. Suppose G(. ) is a 
Chevalley 9roup functor and H is a subgroup of G(F) such that H2(H, M) = O, 
where M ~- G(R, J)/G(R, j2). Then, there is a subgroup of G(R) whose image is 
H under the natural map G(R) ~ G(F). 

Proof For any n t> 0, G(R, J")/G(R, j ,+ l )  ~_ M. To see this, notice that we 
get a morphism of modules G(R, J")/G(R, J"+ 1) __. G(R, J"+ 1)/G(R, jn+2) from 
the pth power map. 

Let q,:R/J "+1 --*R/J" be the quotient of rings and p,:=G(q,) the as- 
sociated quotient of groups. Since H2(H, M) = 0, there is, by induction, a 
homomorphism ~b,: H ~ G(R/J") such that ~b,p,_ i = ~b,_ 1. We get a homor- 
phism ~: H ~ G(R) by 'taking the limit', i.e. ~b(h): = lira, ~b,(h) for h ~ H, and its 
image has the required property. Notice that we have used the commuting of 
inverse limits and G(') here. [] 
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(A2.5) REMARK. Actually, the module M for G(F) in (A2.4) is the adjoint 
module for the group G(F) (i.e. the tensor o f f  with the Z-form spanned by the 
Chevalley basis), but we do not need this fact. Observe that if G(- ) is based on 
the root system E and F is a parabolic subsystem, then we have a 
corresponding subfunctor Go(. ) of G(') and the corresponding module M o is 
a submodule of M, as a Go(F)-module. In case F is a root system, 'submodule' 
may be replaced by 'direct summand' in the previous statement about 
modules. Thus, if Go(" ) gives the Levi factor of a parabolic subgroup P(. ) of 
G(" ), M o occurs naturally as a P(F)-subquotient module of M. 

(A2.6) REMARK. If H is a finite subgroup of G(F) and p = char(F) divides 
Inl, we get a nonsplit extension of H over G(R, J) in some cases. A sufficient 
condition is that the degree of the minimal polynomial of the adjoint 

representation of every element of order p in G(F) be less than p; this requires 
p t> 5 (see [Gr7 (5.111)]; unfortunately the result is misstated there). To prove 
this, we may assume that H = (x> has order p and that the root system for G 
is indecomposable. Let H ~< U, a maximal unipotent group of G(F). If there is 
a parabolic P ~> U such that x ~ Op(P), we use induction (in the notation of 

(A2.5), there is a submodule with quotient Mo in which yP~ 1, where 
yG(R, J) = x; the hypothesis on the canonical form insures that no element of 
yG(R, J) has pth power in G(R, j2)). If there is no such P, when we write x as a 
product of root elements; each root which occurs has height at least 2. There 
is an element n ~ G(F) corresponding to a simple reflection such that the least 
root in the support of x n ~ U is less than that of x. Induction on the height of 
this least root then shows that if yG(R, J) = x, yP ~ G(R, j2). 

(A2.7) COROLLARY. Suppose that char F = p > 0 and that H is a finite 
subgroup of G(F) of order prime to p. Then H lifts to a subgroup of G(K), where 
K is a subfield of C. 
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