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Abstract

Subsampling techniques are important for the determination of precise plankton density estimates . A
binomial model of random subsampling, and its Poisson extension, were developed for the purpose of
evaluating the performance of compartment-type plankton subsamplers . Two approaches were used to assess
the performance of the Folsom plankton splitter on an extensive series of nearshore Lake Michigan
crustacean zooplankton samples collected between 1974 and 1979 . First, Folsom subsamples were observed
to be significantly (p < 0 .05) more variable than expected from the random model of subsampling . Second, a
random effects ANOVA model was used to compare fractions of the total variance in density estimates that
were attributable to subsampling and sampling phases of a specially designed study . Departures from
randomness in subsampling were sufficiently small that an analysis of optimal allocation of effort between
subsampling and sampling phases, based on the ANOVA model, indicated that only one to three subsamples
needed to be examined per sample .

Introduction

Subsampling of plankton samples is usualy ne-
cessary because of the large numbers of organisms
caught with net hauls, water bottles, plankton traps
and other collecting techniques . In an excellent re-
view of statistical aspects of plankton sampling,
Cassie (1971) categorized subsamplers into three
functional types: 1) subsamplers having compart-
ments into which the sample is divided (e.g . the
Folsom splitter), 2) pipette subsamplers (e.g . the
Hensen-Stempel pipette), and 3) chambers in which
the subsample is part of a larger field (e.g . the
Sedgwick-Rafter cell) . Several compartment-type
subsamplers (Gibbons 1933 ; Wiborg 1951 ; McEwen
et a1. 1954; Motoda 1959; Cushing 1961 ; Mednikov
& Starobogatov 1961 ; Waters 1969; Hickley 1975)
have been widely used for a variety of freshwater
and marine organisms . Modifications of the Fol-
som splitter (Longhurst & Seibert 1967 ; Scarola &
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Novotny 1968) and. the Whirling vessel (Kott 1953)
have been proposed to aid in the ease and reliability
of the use of these devices .

Two statistical questions should be posed when
evaluating the utility of a subsampling device for
any kind of samples. First, are estimates derived
from the use of the subsampler statistically unbi-
ased? Second, how large is the variability in esti-
mates resulting from subsampling? Cassie (1971)
generalized that compartment subsamplers are su-
perior to pipette devices in the ease and certainty
with which bias can be eliminated, while chambers
have intermediate characteristics . The second ques-
tion is important in evaluating what size subsam-
ples should be (i .e . how many organisms should be
enumerated in a subsample) and how many repli-
cate samples versus how many replicate subsamples
should be examined in a particular study .

Ricker (1937) suggested the use of binomial
models to describe the variability inherent in the
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plankton subsampling process. McEwen et al.
(1954) evaluated a complicated model, which in-
cluded a binomial component, for subsampling
marine zooplankton using a Folsom plankton split-
ter. Ricker's simple binomial model, and its Pois-
son extension, will be developed here to examine
the bias and variability associated with the opera-
tion of compartment-type subsamplers . The devel-
opment of these models clarifies the notion of'ran-
domness' of subsamples and allows a straightfor-
ward assessment of subsamplers . Further, analysis
of variance is used to estimate variability intro-
duced by subsampling in the context of variability
in collecting replicate vertical net hauls at a location
in Lake Michigan. These variance component esti-
mates are used to derive an optimal allocation of
effort between these sampling phases for this study .
Although we assess the randomness of subsampling
Great Lakes crustacean zooplankton with a Fol-
som plankton splitter, the statistical procedures
have general use . Evaluations of laboratory sub-
sampling techniques are an important aspect of the
design of surveillance, monitoring, and other quan-
titative studies .

Materials and methods

As part of an environmental monitoring pro-
gram for the Donald C . Cook Nuclear Power Plant,
our group has been collecting zooplankton samples
in southeastern Lake Michigan since 1970 . Station
locations, collection procedures, and laboratory
techniques used for these samples are described by
Evans (1975), Evans et al. (1978), Hawkins & Evans
(1979), and Evans et al. (1980). Folsom plankton
splitters have been used for subsampling in our
program since 1972 . Plankton in the Folsom split-
ter were stirred vigorously with a glass stirring rod
to disperse clumps . The operator judged when
plankton were best dispersed within the splitter
before dividing the sample (Longhurst & Seibert
1967). The Folsom subsampler was examined daily
or weekly to ensure it was level by measuring vol-
umes of water split into aliquots . The Folsom split-
ter was maintained so that it divided a 500 ml vol-
ume of water into 250 ± 2 ml aliquots . Typically, a
sample fraction was selected so that 350-700 ani-
mals could be enumerated in each of two paired
subsamples obtained from a sample .

A special series of collections was taken on 13
June 1980 for a study of analysis of variance
(ANOVA) . Fourteen replicate vertical net hauls
were made from 2 m above the bottom to the sur-
face at a 52-m station in Lake Michigan directly
west of St. Joseph, Michigan. The first seven hauls
employed a 0 .5 m diameter 78-µm mesh net and the
last seven hauls were taken with a 0 .5 m diameter
156-µm mesh net. Sampling was conducted be-
tween 1 615 and 1 820 EDT . Calibrated flowmeters
were used in the mouth of each net . In the laborato-
ry, these samples were also subsampled with a Fol-
som plankton splitter, but the subsampling proce-
dure differed from the routine samples . Preliminary
examination of the samples indicated a high degree
of subsampling was required . A subsampling
scheme was set up to allow four replicate subsam-
ples of a 1 / 1 024 fraction to be randomly selected
for examination from each sample. The 1 024 pos-
sible subsamples that could be generated with 10
sequential uses of the splitter were ordered and
numbered (Fig . 1) . Four random numbers between
1 and 1 024 were drawn from a random number
table to determine which subsamples would be ex-
amined from each sample . A one-way random ef-
fects ANOVA model was used to estimate variance
components due to subsampling (4 replicates) and
vertical hauls (7 replicates) for the data from each
mesh netting .
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Fig. 1 . Schematic illustration of the subsampling design to gen-
erate replicate subsamples of I / 1 024 fraction from ten sequen-
tial uses of the Folsom plankton splitter . The numbering of the
resulting subsamples is shown . Note that subsample I I is gener-
ated by ten sequential uses of the splitter in which the left aliquot
is always chosen for further subdividing .



Results

General subsampling model

Most subsampling devices are designed so that
each compartment should receive an equal fraction
of the sample to be divided . Thus, the expected
value of the fraction of the sample settling into the
i-th compartment (E(p i )) is usually assumed to be
E(p i) = 1 / I, where I is the number of compartments
in the device . Several studies have examined the
utility of subsampling devices for various types of
organisms by statistically testing whether E(p) _
1/1 for all I compartments (Scarola & Novotny
1968 ; McWilliam 1970) . If it is known that E(p i) =
1 / I, the total number of animals in the sample (Y)
can be estimated (Y) from a count of the animals in
the i-th compartment (y) :

Y=Iyi .
Also, it can be shown that Y is an unbiased estima-
tor of Y, i .e . that the expected value of Y, E(Y), is
equal to Y . Even if the expected fractions of animals
falling into the different compartments are unequal
and unknown, it can be shown that E(p i) = 1 / I and
E(Y) = Y provided the subsample counted is select-
ed randomly (Cassie 1971), with an equal probabili-
ty of selecting any of the I subsamples . However,
there is still an important advantage in designing
subsampling devices so that all compartments
should receive equal fractions of a sample . When
selection of one of I subsamples is randomly deter-
mined, the variance of counts of animals in sub-
samples selected in this manner is minimized when
E(p) = 1 / I for all compartments .
The subsampling scheme may be extended by

taking subsamples from subsamples . Let y ij be the
number of animals settling into the j-th compart-
ment upon re-splitting the i-th subsample . Furth-
ermore, let p j = yij / yi, and let pij = yij/ Y . Assuming
that a second use of the subsampler is independent
of the first, then
E(pij) = E(pjpi) = E(pj) E(p) = (I/ I)'
Y=12 yij

and it can be shown that Y is an unbiased estimator
of Y. This general scheme may be extended to any
number of sequential subsamples, assuming that
each use of the subsampler is independent of pre-
vious uses . The assumption of independence may
simply be met by randomly choosing the subsample

to be further subdivided .
The variance of the estimate of total number,

V(Y), may be determined from survey sampling
methods (Raj 1968 ; Sukhatme & Sukhatme 1970)
by counting the number of animals in replicate
subsamples and estimating V(y k ) directly :

V(Y) = Wyk) / E(pk) 2
where yk is, in the general case, the number of
animals in the Pk sample fraction . If the estimate of
Y is based on the mean number of animals (YO in n
of N (where N = 1 / pk ) possible replicate subsam-
ples, then

Y=N(Yk)
V(Y) = N2 Wyk)

V(Y) = N2 V(Yk) n
where Wyk) = (N-n)/(nN) Y, (Yk-Yk)'/(n-1) .

k=1
Binomial model

Another approach toward estimating V(Y) is to
use a mathematical model which describes the sub-
sampling process . Three assumptions are necessary
to apply Ricker's (1937) binomial model : 1) each
animal in a fraction to be divided has an equal
probability of going into any of the I compartments
of a subsampler, 2) each animal's outcome is inde-
pendent of all others, and 3) each use of the sub-
sampler is independent of previous uses . Under
these conditions, V(Y) may be calculated from a
single count, y k , of animals representing the p k-th
fraction of the sample:

V(Y) = N2 Wyk)

where V(y k ) and its estimate V(yk) are calculated
from the binomial :

V(Yk) = Y E(pk) [1 - E(pk)]

V(Yk) = Yk [1 - E(pk)] .
For a Folsom plankton splitter with two equal-

sized compartments the general model may be sim-
plified . Let s be the number of sequential uses of the
splitter to generate subsamples of fraction 1/2S .
Then

Y = 2S Yk
V(Y) = Y (2 5-1)

V(Y) = 2 S Yk(2s- 1) .

225



226

This model may be used to calculate the coefficient
of variation of Y :

CV(Y) = 100 [Y(2s-1)]u/2

and its estimate

CV(h) = 100 [2s yk(2 s-1)]l/2 / (2s Y k ) .

CV(Y) is given as a fucntion of Yk and s in Fig. 2 .
Note that for large s a Poisson model is appropriate
and

Fig. 2 . The predicted coefficient of variation for the estimate of
total number of animals in a sample (CV(4)) as a function of the
number of animals counted in a subsample(y k ) derived from the
binomial subsampling model . s is the number of sequential uses
of the plankton splitter .
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Use ofthe Folsom plankton splitterfor Great Lakes
zooplankton

Coefficients of variation (CV) calculated from
replicate subsamples of the 14 special hauls are
shown in Fig . 3 versus the mean number of animals
counted . Because a high degree of subsampling was
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Fig . 3 . Calculated coefficient of variation for the estimate of
total number of animals in a sample (CV(S')) as a function of the
mean number of animals counted in a subsample (y k ) . Curves
representing expectations from the Poisson and negative binom-
ial (with clumping parameter c = 0 .01) formulations are also
shown .
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Fig. 4 . The fraction of animals in the smaller of paired splits versus the total number of animals in both compartments . The 99%
confidence limits, derived from the binomial and Poisson distributions, are also shown .



performed, the appropriate random expectation is
derived from the Poisson model . Also shown in Fig .
3 is the expected CV for a negative binomial distri-
bution with a clumping parameter value (Cassie
1971) of c = 0 .01 . In spite of the small sample size, it
appears that the observed CVs tended to be greater
than expected from the Poisson model .

A more substantial data set on which to test this
observation consists of counts of zooplankton in
pairs of splits from 1 791 samples collected from
nearshore Lake Michigan between April 1974 and
June 1979. For each pair of splits the fraction of
animals in the smallest split is plotted in Fig . 4
against the total number of animals in both com-
partments . Because the paired splits represent the
outcome of a single use of the Folsom splitter, the
binomial model is the appropriate random model .
However, if the data are more variable than expect-
ed from the Poisson model then there must be an
even stronger departure from the binomial . The
99% confidence limits, calculated using normal ap-
proximations for binomial and Poisson distribu-
tions, are also shown. Approximately 15% of the
points lie outside the binomial 99% confidence limit
and 5% lie outside the poisson confidence limits . A
direct check of the fit to a Poisson model for the
plankton splitter consists of comparing the mean to
the variance (Winsor & Walford 1936 ; McEwen et
al. 1954; Cassie 1971 ; Elliott 1971) :

X 2 = (Y1 - Y2) 2 / (Y1 + Y2) .

If the distribution of splits truly followed the Pois-
son distribution, the test statistic should approxi-
mate X1 . Table 1 gives the sum of values for each
date and its degrees of freedom (the number of pairs
of splits) . At all but four dates the statistic is signifi-
cantly (p < 0 .05) larger than expected from a Pois-
son distribution .

Comparison of sampling and subsampling variabil-
ity

Table 1 . Degrees of freedom, chi-square values for the compari-
son of mean to variance, and their significance for deviations of
replicate subsamples by month of collection. * indicates p <
0 .05, ns indicates p > 0 .05 .
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The variance components estimated for sampling Table 2. Estimates of variance components (as % of total var-

and subsampling in the June 1980 collections using iance), based on a random effects ANOVA model, due to sub-

the ANOVA model are given in Table 2 . Variability

	

sampling and collecting replicate net hauls for nets having
156 µm and 78 µm mesh netting .between hauls accounted for a larger fraction of the

total variance than did variability between subsam-
ples for either the 78-gm or the 156-µm mesh net

The estimated coefficient of variation
for hauls (ignoring subsampling variability) was

Date D.F. x 2 Signif.

4/74 51 116 .6 *
5/74 25 81 .5 *
6/74 24 75 .1 *
7/74 45 250.0 *
8/74 23 92.5 *
9/74 26 95 .7 *

10/74 53 165 .0 *
4/75 59 210.3 *
5/75 27 78 .2 *
6/75 26 98 .2 *
7/75 54 279 .2 *
8/75 59 193 .1 *
9/75 28 109 .7 *
10/75 54 257 .6 *
12/75 30 177 .2 *
4/76 49 258 .0 *
5/76 52 172 .5 *
6/76 28 108 .6 *
7/76 56 131.9 *
8/76 28 71 .2 *
9/76 28 65 .4 *
10/76 52 198 .6 *
4/77 60 225 .0 *
5/77 28 33 .6 ns
6/77 28 85 .5 *
7/77 60 231.8 *
8/77 28 131.0 *
9/77 28 78 .1 *
10/77 60 138 .6 *
11/77 28 39 .8 ns
12/77 28 70 .8 *
4/78 60 113 .4 *
5/78 28 41 .7 ns
6/78 28 105 .4 *
7/78 60 193 .1 *
8/78 28 41 .5 ns
9/78 28 94 .5 *
10/78 60 117 .2 *
11/78 28 124 .0
4/79 55 163 .2
5/79 24 71.1 *
6/79 26 72 .0

Variance component 156 µm 78 µm

Variabilityriability from hauls
Variability from subsamples 46%

46% 33%
33%
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12 .8% for the 156-µm mesh net and 19 .8% for the
78-µm mesh net .

An optimal allocation of effort may be derived
from the ANOVA model based on the ratio of costs
of collecting samples compared to enumerating
subsamples and the ratio of variance components
attributed to these two sampling phases (Sokal &
Rohlf 1969). Figure 5 presents in graphical form the
optimal number of subsamples (rounded to the
nearest integer value) to be examined from each
sample determined in this manner. Assuming the
total combined cost of these sampling phases is
fixed, the more subsamples examined from each
sample, the fewer samples can be collected . The
range of the two variance ratios presented in Table
2 and an hypothetical range of cost ratios appro-
priate for our study are indicated in Fig . 5 . The
resulting region defines a desired range of subsam-
ples examined per sample to be from one to three .

Discussion

The most often used criteria for `randomness' are
based on the Poisson distribution (Cassie 1971 ;
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Fig . 5 . The optimal number of subsamples (rounded to the
nearest integer) to be examined from a sample, determined from
the ratio of cost of collecting a net haul compared to the cost of
examining a subsample, and the ratio of variances attributed to
subsampling and net hauls . This formulation is derived from an
ANOVA model .

Elliott 1971) whether or not there is a straightfor-
ward interpretation of its use . Poisson models of
randomness have allowed insight into subsampling
schemes for chambered devices, such as the Sedge-
wich-Rafter cell, which are composed of a large
number of fields (Serfling 1949 ; Kutkuhn 1958) . As
shown above, the binomial subsampling model has
a general application in describing the operation of
compartment-type subsamplers, with the Poisson
model appropriate when small fractions of the orig-
inal sample are examined . The binomial model al-
lows an intuitive interpretation of randomness of
subsampling for compartment-type devices in that
each individual organism is viewed as having an
equal chance of settling into any compartment . Al-
though graphical analyses (e.g . Fig. 4) are apt, one
advantage of applying the Poisson model is that the
chi-square test for equality of mean and variance is
easy to perform .
The finding that the Folsom plankton splitter

produced greater variability than expected from a
random model may be explained in two ways : 1) if
assumption #1 of the binomial model were violated
such that organisms had an unequal chance of set-
tling into the two compartments, a larger variance
than predicted would result ; 2) zooplankton ap-
pendages become entwined and cladoceran carap-
aces are notorious for their tendency to adhere to
one another despite precautions to disperse them -
these factors violate assumption #2 underlying the
binomial model that each animal's outcome is in-
dependent of all others . Our frequent inspection of
the Folsom apparatus indicated that differences in
amounts of water divided between compartments
were small . On this basis, it appears that the first
assumption of the binomial model was not violated
seriously. McEwen et al. (1954) and Longhurst &
Seibert (1967) discussed clumping of particular ma-
rine plankton organisms when using the Folsom
splitter and both studies suggested that clumping
was partially responsible for higher than expected
variances .
The large sample size employed in this study

potentially allows the detection of relatively small
departures from randomness . Many published ex-
aminations of subsampling devices either have not
used statistical tests or else have been limited to
small sample sizes . Most studies employing statisti-
cal tests have concluded that compartment-type
devices provide satisfactory results (Kott 1953 ;



McEwen et al. 1954; Scarola & Novotny 1968 ;
H ickley 1975) although Longhurst & Seibert (1967)
cautioned against too ready an acceptance of pre-
vious statistical evaluations of Folsom subsampler
performance.
The estimation of variance components and op-

timal numbers of subsamples to examine from each
sample illustrates that, despite statistically signifi-
cant departures from randomness, relatively few
subsamples per sample needed to be worked up in
the Lake Michigan study in order to obtain precise
density estimates at a sampling location . Variability
introduced by several sampling phases may be ex-
pected to differ with sampling design, study site,
sampling gear (Table 2), and other factors such that
a comprehensive analysis of optimal allocation of
effort may not be possible . Indeed, it is likely that a
fixed optimum effort does not strictly apply
throughout the course of any study . Nevertheless,
these statistical tools provide insight into experi-
mental design that can not be obtained otherwise .
These procedures are particularly useful in pilot
studies but also have value when used in retrospect
to evaluate techniques .

The focus of this paper has been on the use of
subsamplers to estimate zooplankton population
abundances from large initial samples . Vertical
tows illustrate the advantage of collecting large
samples in many studies because they integrate ver-
tically stratified distributions of organisms . Sub-
sampling of integrated collections allows precise
estimates of average volumetric (#/ m3) or areal
(#/ m2) densities . On the other hand, estimates of
plankton spatial variability, or 'patchiness,' are
most precise when small initial samples are ob-
tained and subsampling is minimized (Venrick
1971). The particular objectives of a study and the
nature of the variability of organisms within the
habitat has the most direct influence on survey
design(Cassie 1971 ; Venrick 1978 ; Cuff& Coleman
1979; Green 1979), but variability introduced by
subsampling is an important consideration .
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