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ABSTRACT. This paper discusses issues concerning the validation of solutions of con-

struction problems in Dynamic Geometry Environments (DGEs) as compared to classic

paper-and-pencil Euclidean geometry settings. We begin by comparing the validation

criteria usually associated with solutions of construction problems in the two geometry

worlds – the ‘drag test’ in DGEs and the use of only straightedge and compass in classic

Euclidean geometry. We then demonstrate that the drag test criterion may permit con-

structions created using measurement tools to be considered valid; however, these con-

structions prove inconsistent with classical geometry. This inconsistency raises the

question of whether dragging is an adequate test of validity, and the issue of measurement

versus straightedge-and-compass. Without claiming that the inconsistency between what

counts as valid solution of a construction problem in the two geometry worlds is neces-

sarily problematic, we examine what would constitute the analogue of the straightedge-

and-compass criterion in the domain of DGEs. Discovery of this analogue would enrich

our understanding of DGEs with a mathematical idea that has been the distinguishing

feature of Euclidean geometry since its genesis. To advance our goal, we introduce the

compatibility criterion, a new but not necessarily superior criterion to the drag test cri-

terion of validation of solutions of construction problems in DGEs. The discussion of the

two criteria anatomizes the complexity characteristic of the relationship between DGEs

and the paper-and-pencil Euclidean geometry environment, advances our understanding

of the notion of geometrical constructions in DGEs, and raises the issue of validation

practice maintaining the pace of ever-changing software.
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INTRODUCTION

Despite their fundamental theoretical value, geometrical construc-
tions seem to have lost their centrality in the school geometry cur-
riculum (Mariotti, 2001). At the same time, the learning and teaching
of these constructions has often been dissociated from meaningful
mathematical activity (see, e.g., Schoenfeld, 1988). However, the
appearance of computer geometry software packages seems to be
spurring a new interest in geometrical constructions and supports the
possibility of using construction tasks in Dynamic Geometry
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Environments (DGEs) ‘‘as a key to accessing the theoretical world of
geometry’’ (Mariotti, 2001, p. 279; italics in original). This potential
depends to great extent on the relation between the notion of vali-
dation of solutions of such problems and the corresponding notion in
the paper-and-pencil Euclidean geometry. In this paper we examine
different aspects of this relationship.

In both geometry worlds, geometrical constructions are generally
defined as valid solutions of construction problems. In the classic
paper-and-pencil Euclidean geometry environment, the validation
criterion for a solution of a construction problem requires that a
solution is valid if and only if it has been produced using only
straightedge and compass. In DGEs, the validation criterion most
often used to date has been that a solution of a construction problem
is valid if and only if it passes the ‘drag test’ (Jones, 2000; Mariotti,
2001). As we demonstrate in this paper, acceptance of the drag test as
a necessary and sufficient indicator of validity for solutions of con-
struction problems supports an inconsistency in the set of construc-
tible figures between the geometry embodied in DGEs and the classic
Euclidean geometry tradition. Specifically, the drag test may permit
the validity of constructions created using measurement tools (such
as angle measures, calculations, and rotations using numerically-
specified angles). Such constructions, however, are inconsistent with
the classical geometry, in which the only tools permitted are straight-
edge and compass. These observations raise issues of whether dragging
is an adequate test of validity, and of measurement versus straightedge-
and-compass.

Without claiming that the inconsistency between what counts as a
valid solution of a construction problem in the two geometry words is
necessarily problematic, we examine what in the domain of DGEs
would constitute the analogue of the straightedge-and-compass crite-
rion. An important reason for doing so is to enrich our understanding
of DGEs with a mathematical idea that has been the distinguishing
feature of Euclidean geometry since its genesis. To advance our goal,
we introduce the compatibility criterion, a new criterion for the vali-
dation of solutions of construction problems in DGEs, and we dis-
cuss it in relation to the drag test criterion. This discussion aims to use
the two criteria as a means to advance our thinking about issues of
validity in DGEs, rather than to evaluate their relative worth.

The paper is structured in three sections. In the first section, we
examine whether the drag test is a viable criterion of validation for
solutions of construction problems in DGEs by considering two
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alternative – and robust (under dragging) – constructions of an
angle bisector. Also, we use the same constructions to motivate the
development of the compatibility criterion. In the second section, we
elaborate this new criterion of validation and discuss it in relation to
the drag test criterion. In the third section, we propose two implica-
tions of considering the two criteria; the first relates to the notion of
geometrical constructions in DGEs and the second concerns the issue of
validation practice maintaining the pace of ever-changing software.

THE DRAG TEST AS CRITERION OF VALIDATION FOR
SOLUTIONS OF CONSTRUCTION PROBLEMS IN

DGEs

The two drawings in Figure 1, produced in the dynamic environment
of Cabri Geometry II (Laborde and Bellemain, 1998), represent the
bisectors of two arbitrary angles. Both of these constructions pass the
drag test; when one moves (drags) any of the sides of the given angles,
the rays that represent the angle bisectors change accordingly to
preserve their geometrical properties.

Given the invariance of the two constructions under dragging,
both can be characterized as robust constructions (as opposed to non-
robust constructions). Also, both can be considered as valid solutions
of the angle bisector problem, based on the drag test criterion de-
scribed in the two excerpts below:

The DGE . . . introduces a specific criterion of validation for the solution of a

construction problem: a solution is valid if and only if it is not possible to ‘‘mess it

up’’ by dragging (to use the expression adopted by Healy et al., 1994, see also Noss

Figure 1. The two angle bisectors.
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et al., 1994), or, in other words, that there is ‘‘robustness of a figure under drag’’

(as used by Balacheff and Sutherland, 1994, p. 147). This criterion of validation

does not depend on the perceptive appearance of the product of the construction as

this appearance can be modified using the drag facility. To pass this ‘drag test’ the

figure has to be constructed in such a way that it is consistent with geometrical

theory. (Jones, 2000, p. 58; italics in original)

The presence of the dragging mode introduces a specific criterion of validation for

the solution of construction problems: a solution is valid if and only if the figure on

the screen is stable under the dragging test. (Mariotti, 2001, p. 260)

Although both constructions fulfill the drag test criterion, their
construction processes fundamentally differ (see Table I in relation to
Figure 2). Construction A has been created by using only tools from the
‘creation’ menu (‘circle,’ ‘ray,’ and ‘point’), whereas Construction B has
been created by using measurement tools supplemental to these. In
particular, Construction B has been produced by using the ‘ray’ and
‘point’ tools from the ‘creation’ menu, supplemented by the ‘measure
angle,’ ‘calculate,’ and ‘rotate’ tools from the ‘metric’ and ‘transfor-
mations’ menus. The different processes followed to obtain the two
constructions raise the question of whether we want to consider both
constructions as valid solutions of the angle bisector problem. If the
answer to this question is in the affirmative, the drag test seems to be an
appropriate criterion of validation. If, however, there are cases in which

TABLE I

Descriptions of the two construction processes for the angle bisectors

Construction process A Construction process B

1. Draw an arbitrary circle C1

with center O.

1. Take two arbitrary points on the rays R1

and R2, say A¢ and B¢ respectively, and
mark the angle ff A¢O¢B¢.

2. Label the points of intersection

between the circle C1 and the rays

r1 and r2, say A and B respectively.

2. Measure the angle ff A¢O¢B¢. (In the

particular case presented in Figure 2, this

angle appears to be equal to 54.6�.)
3. Draw circles C2 and C3 with centers

A and B and radii the segments

OA and OB, respectively.

3. Insert as a variable the measure of the

angle ff A¢O¢B¢ into the software calcula-

tor and divide it by 2.

4. Label the point of intersection

between circles C2 and C3, say D.

4. Drag the above result into the screen; this

equals 1/2 Æ ff A¢O¢B¢.
5. Draw the ray from O through D. 5. Rotate point B¢ around point O¢ using the

angle 1/2 Æ ff A¢O¢B¢.
6. Label the point obtained, say D¢.
7. Draw the ray from O¢ through D¢.
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we would like to consider only Construction A as a valid solution
(because, for example, of its correspondence to the straightedge-and-
compass construction of an angle bisector), wemust then reconsider the
drag test as the only criterion of validation for solutions of construction
problems in DGEs. The drag test does not distinguish between solu-
tions involving measurement and solutions involving only those soft-
ware tools analogous to straightedge-and-compass. In sum, the
comparison raises the issue of measurement versus straightedge-and-
compass, and suggests the need for an alternative criterion of validation
for solutions of construction problems in DGEs.2

TWO CRITERIA OF VALIDATION FOR SOLUTIONS OF
CONSTRUCTION PROBLEMS IN DGEs

In this section, we consider two criteria of validation for solutions of
construction problems in DGEs. Our ultimate goal is to further
illuminate issues of validity in DGEs. The section is organized in four
parts. In the first, we present and discuss the two criteria. In the
second, we examine how each of the two criteria represents a different
conceptualization of the relation between the geometry embodied in
DGEs and the classic paper-and-pencil Euclidean geometry
environment. In the third, we use the context of a teaching experi-
ment to explore further the relation between the two criteria. In the
fourth, we investigate what it takes to apply, in practical terms, each
of the two criteria to evaluate the validity of solutions of construction
problems in DGEs.

Figure 2. The two construction processes for the angle bisectors.
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The Two Criteria

Below we present the two criteria of validation for solutions of
construction problems in DGEs. The first criterion is based on the
remarks of Jones (2000) and Mariotti (2001), quoted previously. The
second is an alternative criterion we introduce in this paper.

Drag Test Criterion: A solution of a construction problem carried
out in a DGE is valid if and only if the final construction retains its
geometrical properties under dragging.

Compatibility Criterion: A solution of a construction problem car-
ried out in a DGE is valid if and only if the final construction retains
its geometrical properties under dragging and its construction process
does not violate the DGE-construction restrictions, that is, constraints
in the use of software operations equivalent to those imposed on
straightedge-and-compass constructions.

The notion of DGE-construction restrictions used in the formula-
tion of the compatibility criterion has a contextual character; the set
of constraints is not fixed but can change according to prior con-
structions. For example, in order not to violate the DGE-construc-
tion restrictions when dealing for the first time with the angle bisector
problem, only primitive tools may be used to solve the problem (see
Table I, construction process A); use of the ‘angle bisector’ macro of
the software would certainly constitute a violation of the restrictions.
However, once the angle bisector problem is solved, it can become a
‘theorem’ and the ‘angle bisector’ macro will subsequently become
available for use in the solution of new construction problems.

Contrary to the drag test criterion, the compatibility criterion
considers robustness under dragging a necessary, but not sufficient,
condition for the validity of a given solution of a construction
problem. To exemplify the difference between the two criteria, we
take a closer look at the example about the angle bisectors. Both
constructions are valid under the drag test criterion, for both are
robust under dragging. However, only Construction A is valid under
the compatibility criterion; Construction B uses software commands
whose operations would not be permissible in straightedge-and-
compass constructions. For example, the use of the software tools
‘measure angle’ and ‘rotate’ corresponds to the use of protractor
to produce the equivalent operations in the paper-and-pencil
environment. It is also important to note that, with only slight
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modifications, one could use the same software operations as in
Construction B to provide a solution to the ‘angle trisection problem’
that would be valid under the drag test criterion. Yet, it has been
proved impossible to solve this famous geometrical problem of
antiquity with only straightedge and compass. Put differently, there is
no solution of this problem that is valid under the straightedge-and-
compass criterion. The solution of this problem in DGEs that would
be valid under the drag test criterion would clearly be invalid under
the compatibility criterion.

Different Conceptualizations of the Relation Between Two Geometry
Worlds

The two criteria for what constitutes a valid solution of a construc-
tion problem in DGEs represent, in the specific domain of geomet-
rical constructions, different conceptualizations of the relation
between the geometry embodied in DGEs and the classic paper-and-
pencil Euclidean geometry. In this part, we elaborate these concep-
tualizations.

The drag test criterion allows for an incompatibility between the
two geometry worlds; this disjunction is primarily reflected in the fact
that the sets of constructible figures in the two environments differ, as
indicated by the angle trisection example mentioned previously. This
discrepancy between the two worlds, however, is not necessarily
considered problematic. If one believes that the notion of validation
of solutions of construction problems in DGEs does not have to
follow the norms of the paper-and-pencil Euclidean geometry tradi-
tion, then the drag test criterion is appropriate. The belief associated
with the antecedent of the above conditional statement might be
grounded in that DGEs create a new reality for engagement in con-
struction problems from both practical and conceptual consider-
ations (Straesser, 2001); therefore, these new environments do not
have to be constrained by restrictions analogous to those imposed on
the classic paper-and-pencil Euclidean geometry. Indeed, the two
geometry worlds already differ in many respects. For example, they
use different technologies (computer software versus paper and
pencil) and allow different levels of manipulation of constructed
figures (direct manipulation by use of the drag facility in DGEs
versus static representations in paper and pencil). Furthermore, one
might argue – along lines parallel to the following statement by Hersh
(1993) about rigorous proof – that our inherited notion of validation
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of solutions of construction problems is not carved in stone; if it is
advantageous to modify this notion to adapt better to the new reality
created by DGEs, then we should do so.

Our inherited notion of ‘‘rigorous proof ’’ is not carved in marble. People will

modify that notion, will allow machine computation, numerical evidence,

probabilistic algorithms, if they find it advantageous to do so. (Hersh, 1993, pp.

395–396)

The compatibility criterion aims to address the discrepancy be-
tween the two geometry worlds by requiring consistency between the
restrictions imposed on the operations allowed in the production of
valid constructions. Achieving this kind of consistency is feasible,
because, despite the de facto differences between the two worlds, it
is possible to configure the available tools and menus of Cabri so
that the engagement with construction problems in DGEs becomes
analogous to the straightedge-and-compass experience in paper
and pencil. A possible argument in favour of establishing a firm
correspondence between DGE constructions and paper-and-pencil
Euclidean geometry constructions is that one primary motivation for
the development of DGEs has been the opportunity they offer for the
creation of a dynamic Euclidean geometry environment. Such an
environment can expand our capacity for figure manipulation and
address some of the practical limitations of paper and pencil while
retaining the basic characteristics of the geometry represented. This
argument becomes more pertinent in cases where DGEs are used as
substitutes for the paper-and-pencil environment in the teaching and
learning of Euclidean geometry constructions.

The Relation Between the Two Criteria: An Example From a
Teaching Experiment

Contrary to what the angle trisection example might suggest, the two
criteria do not necessarily oppose one another. In this part, we use the
context offered by Mariotti’s (2000, 2001) teaching experiment with
high-school students to provide an example of how the two criteria
might interrelate, and to demonstrate that one criterion is not in
general more correct than or superior to the other.

Mariotti’s experiment drew heavily on the fact that Cabri not only
provides the user with rich opportunities to engage in geometrical
experiences not (readily) available in the paper-and-pencil environ-
ment, but also allows for the creation of different DGEs with features
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that can accommodate various needs and objectives. For example,
the user can configure the available menus to suppress the tools that
could produce operations incompatible with the operations produced
by the use of only straightedge and compass in the paper-and-pencil
environment.

The set of software tools initially available to the students in the
experiment corresponded to the straightedge and compass tools in the
paper-and-pencil environment. As the students built different geo-
metrical constructions (such as the angle bisector), the Cabri menu
was enlarged to include new macros (such as the ‘angle bisector’
macro) which then became ‘theorems’ available for use in subsequent
constructions. This progressive enlargement of the Cabri menu par-
alleled the enlargement of the theoretical system; the new theorems
were subsequently added to the theory.

In the context of this teaching experiment, the close correspon-
dence between the world of Cabri and the world of Euclidean
geometry was highly desirable. Building this correspondence was
both a goal of the experiment (the students were expected to engage in
constructing a parallel between the two worlds) and the means to
achieve several other interrelated educational objectives (one of them
being the teaching and learning of Euclidean geometry construc-
tions). The compatibility criterion is particularly relevant here, for it
is grounded in the same principle as the one suggested by the design
of the teaching experiment – namely, establishing consistency in
norms of valid construction in both worlds. Also, the progressive
enlargement of the Cabri menu in the experiment reflects the con-
tinuous relaxation of the set of restrictions imposed on the tools
available to the students as they advanced in building the theoretical
system; this relates to the contextual character of the notion of
DGE-construction restrictions.

The drag test criterion, however, would be equally applicable in
this experiment, for the compatibility criterion would be reduced in
this context to the drag test criterion. The configuration of the soft-
ware menu ensured that, at any given time, no software tools with the
potential to violate the concurrent notion of DGE-construction
restrictions were available to the students. In particular, as Mariotti
(2000) notes, it was

possible to interpret the control ‘by dragging’ as corresponding to theoretical

control – ‘by proof and definition’ – within the system of Euclidean Geometry. In
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other words, it [was] possible to state a correspondence between the world of Cabri

constructions and the theoretical world of Euclidean Geometry. (pp. 27–28)

To conclude, in this specific example, the two criteria coexisted:
the spirit of the compatibility criterion was reflected in the develop-
ment of the students’ activities, while the drag test criterion was used
as a practical device for examining validity.

Applying the Two Criteria to Evaluate the Validity of Solutions of
Construction Problems in DGEs

The final part of our discussion of the two criteria centers on the
practical question of how the two criteria can be applied to evaluate
the validity of solutions of construction problems in DGEs. The
application of the drag test criterion goes as follows: If a Cabri
construction, presented as a solution of a construction problem, is
robust under dragging, then the solution is valid.3

Things are often more complicated when applying the compati-
bility criterion. In cases with an appropriate configuration of the
available Cabri tools and menus, application of the compatibility
criterion reduces to application of the drag test criterion. In other
words, we can conveniently examine the validity of solutions of
construction problems by using the drag facility. What happens,
however, in cases where the entire Cabri menu is available and the
examiner of the validity of solutions of DGE construction problems
is committed to the compatibility criterion? In these cases, invariance
under dragging cannot serve as a sufficient indicator of validity. It can
still serve, though, as a necessary indicator of validity, thereby
offering the examiner an important preliminary means of checking
the validity of a solution with respect to the compatibility criterion. If
the construction fails the drag test, then the solution is invalid. If,
however, the construction passes the drag test, then the examiner
must check whether or not the construction process violated the
DGE-construction restrictions. This further requirement can be
investigated in multiple ways. Below we describe three of these ways.

The first way is to have the solvers describe the construction process
they followed. The second way is to use the ‘hide/show’ tool to make
‘visible’ most of the intermediate steps of the construction process, thus
enabling the examiner to understand better the procedure the solver
followed.4 For example, after using this tool in the angle bisector
example (see Figure 2 in relation to Figure 1), the examiner could
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say that Construction A most probably did not violate the
DGE-construction restrictions whereas Construction B most prob-
ably did. The latter observation would alert the examiner to inves-
tigate further the process followed for Construction B. The third
way is to use the ‘replay construction’ tool to observe, in order of
execution, the essential steps in the construction process. By
retracing the steps, the examiner is better prepared to make infer-
ences about the validity of a given construction. Turning back to the
angle bisector example, the ‘replay construction’ tool would provide
the examiner with a clear sense of the process followed for Con-
struction A but not of the process followed for Construction B. The
use of the software calculator is not recorded in the ‘history’ of this
process, thus leaving a gap in tracing the procedure followed for the
creation of Construction B. Nevertheless, the steps tracked in the
history of the creation of Construction B would be enough to alert
the examiner to investigate further this construction process.

The several possible ways we discussed previously for examining
whether a robust construction has violated the DGE-construction
restrictions are particularly important when alignment of a given
construction with (classical) geometrical theory is essential for
validity. In cases where this kind of alignment is not necessary and
the only criterion of validity is robustness under dragging, it would be
acceptable to modify the Cabri environment so that violation of the
DGE-construction restrictions becomes common practice. This can
happen, for example, when the Cabri menu is configured to empha-
size the use of ‘transformation’ tools.

IMPLICATIONS OF THE TWO CRITERIA: GEOMETRICAL
CONSTRUCTIONS AND VALIDATION

PRACTICE IN CHANGING DGE
SOFTWARE

The concept of geometrical constructions as valid solutions of con-
struction problems is inextricably related to the adopted criterion of
validation for solutions of construction problems. In the classic pa-
per-and-pencil Euclidean geometry environment, in which the
straightedge-and-compass criterion is well-established, geometrical
constructions have become synonymous with constructions created
with only straightedge and compass. The situation is less clear in
DGEs, given that they allow the consideration of (at least) two dif-
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ferent criteria of validation. If one adopts the drag test criterion, then
geometrical constructions become equivalent to robust constructions.
If, however, one adopts the compatibility criterion, this equivalence
breaks down – geometrical constructions are necessarily robust but
the converse is not always true. Construction B presents a case where
the converse fails (see Figures 1 and 2). This construction and others
of a similar kind, whereby measurement plays a role in their creation,
can form a new family of constructions, what we name measurement
constructions. This class of constructions, which is a proper subset of
robust constructions, exemplifies the difference between the two
validation criteria – measurement constructions are valid under the
drag test criterion but invalid under the compatibility criterion
Figure 3 summarizes different kinds of constructions in DGEs and
their relations to the two validation criteria.

The remarks above highlight the complexity of issues of validity in
DGEs and suggest that geometrical constructions in these environ-
ments may never achieve a commonly-accepted meaning, for the

Construction presented as a 
solution of a construction 

problem in a DGE 

Is it invariant under dragging? 

Yes No

Does its construction process violate 
the DGE-construction restrictions? 

Yes

Invalid solution under 
compatibility criterion 

(Example: Construction B – a 
measurement construction)

No

Robust construction 
Valid solution under drag test 

criterion 

Non-robust construction 
Invalid solution under any of 

the two criteria 

Valid solution under 
compatibility criterion 

(Example: Construction A) 

Figure 3. Different kinds of constructions in DGEs and their relations to the drag test and

compatibility criteria.
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establishment of such meaning requires universal agreement on a
single criterion of validation. Things become more complicated if one
also takes into consideration the challenge of validation practice in
DGEs maintaining the pace of ever-changing software. The
advancement from Cabri Geometry I to Cabri Geometry II provides a
context in which we elaborate this point.

The tools offered by Cabri I resembled more closely those
associated with straightedge-and-compass Euclidean geometry than
those tools available in the more recent version of the software.
For example, Cabri I did not provide the measurement tools
necessary for creating constructions like Construction B; the con-
struction process associated with this particular construction (see
Table I) became possible only with the development of Cabri II.
Therefore, the drag test – or the robustness of a construction
under dragging – could be linked to different construction pro-
cesses in the two versions of the software. In Cabri I, robustness of
a given construction under dragging would be a fairly viable test
of whether or not its construction process violated the DGE-con-
struction restrictions; in this sense, the compatibility criterion could
almost always be reduced to the drag test criterion. Violation of
the DGE-construction restrictions would still be possible in the
earlier version of Cabri in cases, for example, where construction
macros were used before they were derived as theorems. The
compatibility criterion is more meaningful (and, perhaps, essential)
in Cabri II than in Cabri I, because the measurement tools in this
later version have expanded tremendously the opportunities for
creating constructions whose construction processes do not
resemble the use of only straightedge and compass, thereby vio-
lating the DGE-construction restrictions.

The previous discussion suggests that the advancement of DGEs
not only makes possible different kinds of geometry, but also intro-
duces the need for the development of new validation criteria for
examining compatibility with the straightedge-and-compass Euclid-
ean geometry. More layers of complexity exacerbate this state of
affairs in cases where one is not only interested in the correspondence
between the geometry embodied in DGEs and the classic Euclidean
geometry. If designers or users are interested in examining compati-
bility with other kinds of geometrical theories, the set of validation
criteria in DGEs requires even further expansion. These criteria can,
in turn, serve as a bridge to connect different geometry worlds.

VALIDATION OF SOLUTIONS OF CONSTRUCTION PROBLEMS 43



CONCLUSION

Hersh (1986) noted that the most straightforward answer to the
question of what is mathematics is that ‘‘mathematics deals with
ideas. Not pencil marks or chalk marks, not physical triangles or
physical sets, but ideas (which may be represented or suggested by
physical objects)’’ (p. 22). The straightedge-and-compass criterion for
determining the validity of solutions of construction problems pro-
duced in the paper-and-pencil Euclidean geometry environment
represents a mathematical idea that has been in place for more than
2000 years. The recent development of DGEs has created the need
for the formulation of a criterion of validation for solutions of con-
struction problems in these new environments. The criterion most
often used for this purpose thus far has been the drag test. As we have
shown in this paper, however, acceptance of this criterion reveals an
inconsistency between the geometry embodied in DGEs and the pa-
per-and-pencil Euclidean geometry. This inconsistency is primarily
reflected in the fact that the set of constructible figures in the latter is
only a proper subset of the corresponding set in the former. There-
fore, the drag test criterion in DGEs does not constitute the analogue
of the straightedge-and-compass criterion in the paper-and-pencil
Euclidean geometry environment.5 Based on this remark and fol-
lowing Hersh’s notion of mathematics described above, we may
consider the drag test criterion as a new mathematical idea created in
DGEs while the straightedge-and-compass criterion as an existing
mathematical idea not yet explicitly transferred to DGEs. The new
criterion of validation we introduced in this paper – the compatibility
criterion – fills this ‘gap’ in the existing set of conceptualizations of
validation in DGEs and aims to make possible, when desired, the
establishment of a firm correspondence between geometrical con-
structions in DGEs and the paper-and-pencil Euclidean geometry
environment.

The discussion of the drag test and compatibility criteria in this
paper has developed our conceptualization of the relation between
the world of DGEs and that of paper-and-pencil Euclidean geometry,
and has anatomized the complexity that characterizes the validity of
solutions of construction problems in these two worlds. Also, it has
advanced our understanding of issues surrounding validity in DGEs
in at least two ways. First, it improved our grasp of the notion of
geometrical constructions in these environments, and, second, it in-
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creased our awareness of the issue of validation practice maintaining
the pace of software evolution.

The discussion also raises pedagogical questions for further con-
sideration. For example, what are the advantages and disadvantages of
configuring software menus so that certain solutions of construction
problems are privileged while others are made impossible? For what
populations would dragging be pedagogically sufficient? In cases where
the compatibility criterion is adopted as indicator of validity, how
important is it to ensure that none of the DGE-construction restric-
tions is violated? For example, would it be appropriate for learners to
use the ‘angle bisector’ macro in solving a more complicated con-
struction problem before they had worked out how to construct angle
bisectors for themselves? Some of these questions have previously
appeared in various discussions related to other software. For instance,
discussions about the purity of Logo have raised the issue of providing
arc before or after learners had worked out how to do it for them-
selves. These pedagogical issues are important and complex, and they
deserve research attention. In general, we believe that decisions about
how to handle them should not be made universally. Instead, decisions
should be made in accordance with the specific parameters of given
contexts by well-informed users.

Finally, our discussion of the notion of validation of construction
problems in DGEs and its connection to the corresponding notion in
paper-and-pencil Euclidean geometry may be seen in the broader
context of the relation between the mathematics embodied in com-
puter environments and the mathematics outside these environments.
In studying this relation, our field often tends to focus on the
developments introduced to mathematical practice by the growing
use of computers. One example relates to the major role of computers
in the introduction of the relatively new concepts of zero-knowledge
and holographic proofs (Cipra, 1993; Goldreich, 2002), and the
development of graphic-oriented fields, such as the chaos and
dynamical systems theories (Ott, 1993). These innovative types of
proof and the reviving interest in experimental methods have changed
our views of proving and thinking about mathematics (Dubinsky and
Tall, 1991; Hanna, 1995). Yet, it is equally important, we argue, to
pay attention to some significant mathematical ideas that do not seem
to have found a firm place in computer environments. The case of the
straightedge-and-compass criterion of validation for solutions of
construction problems in DGEs constitutes one such example. What
might be some other examples and how could they be transferred to
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the mathematics embodied in computer environments? How might
this process of transfer affect the way we understand the mathematics
embodied in these environments and its relation to the mathematics
outside them?

ACKNOWLEDGEMENTS

We wish to thank the editor, Richard Noss, and two anonymous
reviewers for their helpful comments on an earlier version of this paper.

NOTES

1 The two authors have contributed equally in the preparation of this paper, some ideas

of which have been presented at the 10th International Congress on Mathematical

Education, Copenhagen, Denmark (July 2004).
2 It is possible that the validation criterion suggested by Mariotti (2001) was formulated

specifically for Cabri Geometry I; the software used in the teaching experiment she

conducted was Cabri I, but by the time she reported this experiment Cabri II was also

available. The Cabri I tools resembled more closely those associated with straightedge-

and-compass Euclidean geometry than the tools available in the more recent version of

Cabri; the angle bisection method associated with Construction B would not be

possible in Cabri I. Therefore, the drag test – or the robustness of a construction under

dragging – could be linked to different construction processes in the two versions of the

software. This observation does not affect our argument regarding the tradition that

considers the drag test as a necessary and sufficient criterion of validation for solutions

of construction problems in DGEs, primarily because no alternative criterion seems to

have been proposed to cope with the expanded set of tools introduced in the newer

version of Cabri. Rather, the observation raises the interesting issue of how validation

practice in DGEs may maintain the pace of ever-changing software. We take up this

issue later on in the paper.
3 We acknowledge the case of constructions in which dragging appears to confirm

invariance but in fact the invariance is ‘approximate.’ Although this is an important

issue, we do not discuss it further as it goes beyond the scope of this paper.
4 The ‘hide/show’ tool cannot provide conclusive evidence for the use or not of tools like

‘rotate.’ For this reason, the examiner cannot be sure about the exact process followed

by the solver.
5 With this remark we do not mean to suggest that the drag test criterion should have

been, or that it was intended to be, the analogue of the straightedge-and-compass

criterion.
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