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ORDERED INCIDENCE GEOMETRY AND THE GEOMETRIC
FOUNDATIONS OF CONVEXITY THEORY ?

Aharon Ben-Tal and Adi Ben-Israel

An Ordered Incidence Geometry, that is a geometry with certain axioms of
incidence and order, is proposed as a minimal setting for the fundamental con-
vexity theorems, which usually appear in the context of a linear vector space, but
require only incidence, order (and for separation, completeness), and none of the
linear structure of a vector space.

INTRODUCTION

We study the following question: What are the relevant geometric assump-
tions for convexity, especially for separation theorems? For answers, i.e. con-
vexity theorems under different axioms see the survey by Danzer, Griilnbaum
and Klee [7], Ky Fan’s generalization of the Krein-Milman Theorem [9], the
Helly-type theorems of Levi [15] and Griinbaum [10], and the separation
theorem of Ellis [8]. Axiom systems for convexity geometries were given
by Prenowitz and Jantosciak [20] and Bryant and Webster ([3],{4],[5]) using
joins (intervals joining pairs of points) as primitives.

Our objective is to develop convexity geometry using affine sets as primi-
tives, in analogy with the classical (Hilbert) approach to Euclidean geometry.
The notions used in separation theorems: convex sets, hyperplanes and
sides of a hyperplane, are described here in terms of: affine sets, their in-
cidence properties and order relations. The geometry is called Ordered
Incidence Geometry, since for two or three dimensions the axioms resem-
ble Hilbert’s incidence and order axioms [11], see also [25].

1Research supported by the National Science Foundation.
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An application to sub-F functions, 1], is given in §8.

The order of development allows using standard arguments (e.g. [14]) in
proofs, which are mostly omitted. An infinite dimensional case is discussed
in [23].

We thank Professor J. Strantzen and the referees for their helpful sugges-
tions.

1. AXIOMS

An Ordered Incidence Geometry (abbreviated OIG), G, is a triple
G ={X, A, dim }

and an order relation (betweeness), endowed with ten axioms given below.
Here

X is the space of elements (points),

A is a family of subsets of X, called the affine sets of G,

“dim” a function : A — { integers } U {o0}, the dimension.
An affine set A € A is called a k-affine if dim A = k. In particular, we use
the terms: point for a 0-affine?, line for a 1-affine, plane for a 2-affine. By
convention dim § = —-1.

AXIOM 1. A contains X, §, and all singletons {z}, z € X.
AXIOM 2 (Intersection Axiom). A is closed under arbitrary intersections.

DEFINITION 1. For S C X, the affine hull of S is
a(S)=n{A: A€ A, S C A}

which by Axiom 2 is an affine set. We use this to define a hyperplane (needed
in §7):

DEFINITION 2. A set H € A is a hyperplane if exists z € X \ H such
that a(H U {z}) = X.

The next three axioms express monotonicity properties of dimension.
AXIOM 3. If A, B€ A, A C B then dim A < dim B.

21t should be clear from the context whether a “point” is an element of X or of A.
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AXIOM 4. Ifz € X, A€ A,z ¢ A then dim a(AU {z}) = dim 4 + 1.3
AXIOM 5. For A, B, H € A,

if{B, HCA, dim H=dim A-1

BnH#m’B thend1m(BﬂH)=d1m3_1

Points lying on the same line are called collinear. For the geometry to have
more than one line we need:
AXIOM 6. There exist three non-collinear points.

The remaining 4 axioms define the order relation betweeness. For dis-
tinct collinear points a,b,c we denote by abc the fact that b is between a
and ¢. The set of all points between a and b is called the open segment or
open interval joining a,b and is denoted by (a,b).

AXIOM 7. abc is equivalent to cba.

AXIOM 8. If @ # ¢ then there exist points b,d such that abc and acd.
AXIOM 9. If a, b, c are distinct and collinear then one and only one of them
is between the other two.

AXIOM 10 (The Pasch Axiom*). If a,b,c are distinct, and if L is a line in
a({a,b,c}) with a,b,c not in L and LN (a,b) # @, then either LN (a,c) # 0
or LN (b,c) #0.°

2. IMMEDIATE CONSEQUENCES

The results in this section are immediate consequences of the axioms. Some
could be taken as alternative axioms for the same geometry.

COROLLARY 1. If A€ Aand S C Athena(S)C A. O
This reduces to Hilbert’s Incidence Axiom 1,6 [11] for dim A = 2 and
#S = 2, where # denotes number of elements.

COROLLARY 2. If A is a k-affine, A # 0, then there is a subset S of
A with #(S)=k+1 anddim a(S)> k-1 O
For k = 1,2 and 3, Corollary 2 reduces to Hilbert’s Incidence Axioms I,3

3Thus, for dim X < oo, hyperplanes are (dim X — 1)-affines.

*[18], §2, Kernsatz IV.

5If a,b, ¢ are collinear, Axiom 10 can be stated as follows: Let k € (a,b),h # c. Then
either & € (a,c) or k € (b,c). (The point k is the intersection of the lines a({a, b, c}) and

L)
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and 1,8 specifying the existence of (i) two distinct points on any line, (ii)
three non-collinear points on any plane, and (iii) four non-coplanar points
in the 3-dimensional space.

COROLLARY 3. IF S C X, z € X then a(SU {z}) = a(a(S)u {z}). DO
COROLLARY 4. f SCX, #S=k+1,thendima(S)<k. O
COROLLARY 5. Let A, B be k-affines, S C AN B. Then

either a(S)=A=B or dima(S)<k O
COROLLARY 6. A,B€EA, ACB = dmA=dmBiffA=5B. O

A converse of Corollary 2 is:

COROLLARY 7. If @ # S C X, #S =k +1, dim a(S) > k — 1 then there
is a unique k-affine containing S. O

For k = 1 and 2, Corollary 7 reduces to Hilbert’s Incidence Axioms I,1-2
and 1,4-5, respectively [11].

The following corollary states roughly that if a(S) is “overdetermined” by
S, then certain points of S are “affine combinations” of others.
COROLLARY 8. If S C X, #S =k +1, dim a(S) < k — 1 then there is
an z € S such that z € a(§\ {z}). O

In plane geometry it is well known that the Pasch Axiom is equivalent to a
Plane Separation Axiom, ([16], Chapter 12). This holds also here.
DEFINITION 3. Let A,H be affine sets, H C A, 0 # H # A. Then H
separates A if for any two points z,y € A\ H such that

(z,9)nH£0 (1)
there is no point z € A \ H such that®,
(2,2)NH =0 and (y,z)NH =0 (2)

THEOREM 1. Let A,H € A, dimA > 1, H C A,dim H = dim A — 1.
Then H separates A. .

PROOF. The case dim A = 1 follows from Axiom 10 (footnote 5). Let
dim A > 2, and suppose H does not separate A, i.e. there are distinct
points z,y,2z € A\ H satisfying ( 1) and ( 2). It follows from Axiom 10 that

I.e. z and y cannot be, at the same time, on “opposite” sides of H and on the “same”
side of H.
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z,y, z are non-collinear. Let P be the plane through z, 3, 2. The intersection
PnHis

(i) H if dim A = 2 (i.e. P = A),

(ii) a line if dim A > 2 (by Axiom 5),
so that, in either case, PN H is a line, say L. Since L intersects (z,y), it
follows from Axiom 10 that L also intersects (z, 2) or (y, z), violating ( 2). O
Conversely, Axiom 10 follows from Theorem 1, i.e. the two are equivalent.

3. MODELS

Concrete models of Ordered Incidence Geometries include: The real Eu-
clidean n-dimensional space (X = R", with “affine sets” and “dimen-
sion” given their standard vector space meanings), the Poincare half-
plane incidence plane (X is the upper half-plane, and 1-affines are the
restrictions to X of (i) vertical lines, and (ii) circles with centers on the
z-axis) and the Moulton incidence plane, [16]. The last two models are
special cases of Beckenbach geometries, defined below.

DEFINITION 4 ([1], see also ([21], §§84-85). Let (a,b), (c,d) be open in-
tervals (not necessarily bounded) in R. A family F of continuous functions
F:(a,b) - (c,d) is a Beckenbach family (B-family for short) if for any
two points (z1,11), (z2,¥2) with a < 21 < 23 < b, y1,¥2 € (c,d) there
exists a unique F' € F, denoted by Fiz, such that

Fia(2;) = v, (=1, 2) (3)

DEFINITION 5. Let (a,b), (c,d) be as above and let F be a B-family
of functions : (a,b) — (c,d). The Beckenbach geometry (B-geometry),
G 7, determined by F, is a two dimensional geometry with X = (a, b)x (¢, d),
and the 1-affine through any pair of points (z1,%1), (¢2,¥2) in X is,

(i) the vertical line z = z1 if 1 = 22,

(ii) the graph of Fi2 (defined by ( 3)) if 21 # z2.

For a B-geometry Axioms 1-9 are easily verified, and Axiom 10 follows from:
LEMMA 1 (Beckenbach [1]). Let @ < zo < b and let Fy, F5 be two distinct
members of F such that F(zo) = Fa(zo). Then

Fo(z) > Fp(z) for all z in (a,b) on one side of zo,

F,(z) < Fp(z) for all z in (a,b) on the other side of zo. O
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The next four examples use B-families in the form F = {F(z ; @, )}, where
a, 3 are real parameters.

EXAMPLE 1. 71 = {/B-(z—-0a)? : 8 > 0, @ € R} with (a,b) =
R, (¢,d) = (0,00), and G#, gives the Poincare half-plane incidence plane.

EXAMPLE 2. F; = {a¢1(z) + Bo2(z) + ¢3(z)} where:

(i) ¢; are given continuous functions, and

(ii) ¢2(z) > 0 on (a,b).
A necessary and sufficient condition for F; to be a B-family is that ¢;/¢;
is strictly monotone. For example, with (a,b) = R, F = {ae” + fe %} is a
B-family, while = {az? + $} is not.

EXAMPLE 3. F3(z; e, 8) = (e, &) — f with ¢ differentiable in o for all z.
A necessary and sufficient condition for F3 to be a B-family is that 8¢/0a
is a srictly monotone function of z. For ¢(a,z) = az, Gz, is the Euclidean
plane geometry.

EXAMPLE 4. Fy(z;a,8) = a(a)u(z) + b(a)v(z) — B, where a and u
are strictly increasing, b and v strictly decreasing. For example, F =

{cosh(a+z) - f:a,B8 € R}.

4. TRIANGLES

Three non-collinear points {a,b,c} constitute a triangle Aabc. The ba-
sic properties of triangles ([18], §2) are sampled in the following two pairs
of lemmas, each pair consisting of a result and a (sort of) converse:

LEMMA 2. For any u € (a,c) and v € (u,b), there is a point w € (b, c) such
that v € (a,w). O

LEMMA 3. For any u € (a,¢) and w € (b,c) there is a point v in the inter-
section (a,w) N (b,u). O

LEMMA 4. Let u € (a,c), w € (b,c). Then for any v € (u,w) there is
a z € (a,b) such that v € (¢,2). O

LEMMA 5. Let z € (a,b). Then for any v € (c,z) there exist two points
u € (a,c¢), w € (b,c) such that v € (u,w). O
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5. LINEAL HULLS

In the Euclidean geometry R™ a set A is affine if and only if

A={d Xzi: z;€ 4, ) N\ =1} (4)

i.e. A coincides with the set of affine combinations of its elements. The
analogous representation in an OIG (where algebraic constructions such as
( 4) are not available) is given in Theorem 2. First we require:

DEFINITION 6. For a given subset S of X, the lineal hull of 5, is
LS)=u{zy: z,y€ S}

the union of lines through pairs of points in S. By convention, £(§) = § and
£({z}) = {z}, Vz € X. We also use the abbreviation £?(8) = £(£(5)).

LEMMA 6. If A is affine, ¢ ¢ A, then a(A U {z}) = £D(A U {z}).
PROOF. Use Corollary 1 and Axiom 8. O

THEOREM 2. S is an affine set if and only if S = £(S). O

6. CONVEX SETS
The basic properties of convex sets are developed in this section.

DEFINITION 7. Aset S C X is:
(i) star shaped at z if for all y € S, (z,y) C S,
(ii) convex if for any two points z,y € S, (z,y) C S.
DEFINITION 8. For any set § C X, the convex hull of 5, conv (5), is the
intersection of all convex sets containing S.
DEFINITION 9. For any set S C X,
(i) the core of S is

core S={z € S:VyeX, y#z, Iz € (z,y) such that (z,2) C S} (5)
(i) the relative core of S, relcore S, is defined by ( 5) with

“Yy € a(S)” replacing “Vy € X”
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(iii) the set linearly accessible from S, is
lina $ = {y € X: 3z € S such that (z,y) C S}
(iv) the closure of S is ¢l § = S Ulina S.
LEMMA 7. Let a set S with a nonempty relative core” be star shaped

at p. Then z € relcore S == (p,z) C relcore S i.e. relcore S is also star
shaped at p. O

THEOREM 3. Let S be a convex set, y € lina S, ¢ € relcore S, y # =.
Then (z,y) C relcore S.
PROOF. Use Axioms 8, 10 and Lemma 7. O

THEOREM 4. If S is convex, then relcore S and cl S are convex. O

This section ends with a result of a topological nature, Theorem 5, that
a (nonempty) finite-dimensional convex set has a nonempty relative core.
DEFINITION 10. For any § C X, the dimension of S is defined as the
dimension of its affine hull, dim S = dim a($).

DEFINITION 11. An n-simplex is the convex hull of a set § with

#S=n+1,dimS=n

We prove first that a simplex has a nonempty relative core.
LEMMA 8. Let A,, = conv {z1,...,2,+1} be an n-simplex. Then

relcore A,, # 0

PROOF. By induction on n. For n = 1 the result follows from Axiom 8. In
the inductive step use Axioms 4,5 and 10. O

LEMMA 9. If @ # C is a convex set, dim C < oo, then dim C = dim Apax
where Amnmax is @ maximal dimensional simplex contained in C.

PROOF. The existence of a maximal A, follows since C is finite-dimensional.
Then use Axiom 4 to prove a(C) = a(Dpax). O

THEOREM 5. If C i$ a nonempty convex set, dim C' < oo, then
relcore C#0. O

"In the finite-dimensional case, relcore S # B for any convex set S, see Theorem 5.
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7. SEPARATION

The main result here is Theorem 7 stating conditions under which two dis-
joint convex sets can be separated by a hyperplane.

From Theorem 1 it follows that any hyperplane separates the space in the
sense of Definition 3. We elaborate on this statement in the following:
LEMMA 10. Given a hyperplane H in X, there exist unique nonempty
convex sets Ht, H~ such that

(2) H, H*, H~ are disjoint, and

(b)) X=HUHYUH".
PROOF. Select any z¢ € X \ H and define:

HY ={y¢ H: (zo,y) N H = 0}, (6)

H™ ={y¢ H:(z0,y) N H # 0}. (D

Then (a) and (b) are obvious. Nonemptyness, convexity and uniqueness &
of HT and H~ use standard arguments. O
One can similarly obtain:
LEMMA 11. Let H, H*, H™ be as in Lemma 10. Then
(i) Ht =core H*, H™ =core H™
(ii) H = lina H* Nnlina H~
(iii) FUHY =cl HY, HUH  =c H~. O

DEFINITION 12. A convex set C is
(i) open if C = core C,
(ii) relatively open if C = relcore C,
(iii) closed if C = ¢l C.

The following definitions are suggested by Lemma 11.
DEFINITION 13. Let H, H*, H™ be as in Lemma 10. Then
(i) H*, H~ are the open halfspaces of (i.e. corresponding to) H.
(i) HU H*, HU H~ are the closed halfspaces of H.
DEFINITION 14. Let A, B C X, and let H be a hyperplane. Then
(i) H separates A and B if A and B are contained in opposite closed
halfspaces of H.

8Uniqueness means that the (unordered) pair { H*, H™} is independent of the partic-
ular z¢ used in ( 6),( 7).
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(i) Moreover, if AU B is not a subset of H then H separates A and B
properly.

The next lemma implies a converse of Theorem 1: The only affine sets
with the separation property (Definition 3) are hyperplanes.
LEMMA 12. If A, B,C are affine sets, A C B and A # B, and if B separates
C, then A does not separate C.
PROOF. Suppose A separates C and let A*, A~ be the “opposite sides” of
AinC,ie.
C=AUATUA™

where A, AT, A~ are disjoint,

z,yin At orin A= = (z,y)NA =10,

tEAY, ye Am = (z,y)NA£0.
Given that B separates C, let

C=BuBt*uUB~

be the analogous decomposition of C' with respect to B.
Now let z € Bt. Then z ¢ A, and without loss of generality let z € A*.
Any other point in B* must also be in At forifz # y € B*,y € A~ then
(z,y) intersects A but not B, a contradiction. Therefore

Bt C At (8)
and similarly,

B~ CA” ' (9)
The inclusions ( 8) and ( 9) lead to contradiction. O

DEFINITION 15. A convex pair in X is an unordered pair {C,D} of
nonempty convex sets with

X=CuD,CnD=19

A classical result of Mazur [17] and Kakutani [13], (see also [24], Theorem
2.3 and references therein), can be stated for OIG as follows:
THEOREM 6. If A, B are disjoint convex sets in X, then there exists a
convex pair {C, D} with

AcC,BCD (10)
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PROOF. We first prove an auxilliary result:
(a) If S is a nonempty convex set, and zo ¢ S, then the set

K(S,z0) = {z: 2 € [z0,9], y € S}

is convex. Here we denote by [a,b] the closed segment joining a, b:
[a,b] = (a,b) U {a} U {b}

Given (a), the proof of ([24], Theorem 2.3) can be followed, using Zorn’s
Lemma to obtain {C, D} as a maximal element of the set (partially ordered
by inclusion) of disjoint convex sets {C, D} satisfying ( 10). O

Convex pairs are used to prove existence of hyperplanes separating disjoint
convex sets. First we require:

DEFINITION 16. An affine set is openly decomposable if it is the union
of two disjoint, relatively open, nonempty convex sets.

DEFINITION 17. A geometry G = {X,A,dim} is a Complete Ordered
Incidence Geometry (COIG for short) if it satisfies, in addition to Ax-
ioms 1-10 (of §1), the following:

AXIOM 11 (Completeness Axiom). No line in G is openly decomposable.

This usage of completeness is standard, see also [5]. An example of a
non-complete OIG is the rational Euclidean n-dimensional space with
X = @™, the set of rational n-tuples, and A and “dim” given their standard
vector space meanings.

Lemma 14 below requires the following property (seemingly stronger than
completeness): No affine set (of any dimension) is openly decomposable. We
show this to be equivalent to completeness.

LEMMA 13. Let G = {X,A,dim} be a COIG. Then no affine set is openly
decomposable. '

PROOF. Let A € A be openly decomposable, i.e.

A=CiUC, (11)

where Cy, C; are disjoint, nonempty, relatively open, convex sets. From ( 11)
follows A = a(C1) U a(C3) and consequently A = a(C;) = a(C3), showing
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that, restricted to A, the relative cores of Cy and C5 can be taken as cores,
i.e.
Ci=coreC;, i=1,2 (12)

Choose any two points z; € C; and let L be the line Z7Z3. From ( 12) follows
the existence of points z; € C;, (i = 1,2), such that

(ziyz) CL, i=1,2

Extending the two (relatively) open segments (z;, z;) beyond z;, (i =1,2),
we get the intervals (unbounded on one side):

L= (zi,z)U{y € L:z; €(21,9)}, i=1,2

By Zorn’s Lemma, the set of such intervals has a maximal element {I;, I},
and consequently L = I U I, violating Axiom 11. O

Given a convex pair {C, D}, the following lemma gives conditions for the
existence of a hyperplane with opposite sides {core C,core D}.

LEMMA 14. If {C, D} is a convex pair in X, then the set H defined by
H=clCncD

satisfies:
(a) HNcore C =0 = HNcore D
If the geometry is complete then:
(b) H+# ®and X = HUcore CUcore D
(c) If either core C # 0 or dim X < oo, then H is a hyperplane. O

Combining the above results, we finally prove:
THEOREM 7. (The Separation Theorem). Let G = {X,.4,dim} be a
COIG, and let A, B be disjoint convex sets in X. Then a hyperplane H
properly separating A and B exists if:

(a) core A # 0, in which case H N core A =0,
or if

(b) dim X < oo.
PROOF. Let {C, D} and H be given by Theorem 6 and Lemma 14. Then
H separates A and B in the sense that

ACHUcoreC=HUHY BCHUcore D=HUH~ (13)
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To prove proper separation (Definition 14(ii)) we show that
AuB¢ H (14)

(a) If core A # 0 then, by ( 10), core A C core C # 0 and ( 14) follows from
Lemma 14(a).

(b) Let dim X < oo, core A = @ (otherwise it is case (a) again), and
AUBCH

We restrict the discussion to H which we denote by H;. In Hy thereis a
hyperplane Hj (i.e. dim H, = dim H; — 1) separating A and B in the sense
of ( 13). Now there are two cases: .
(i) H; separates A and B properly, (ii) AU B C Ha.

In case (ii) we repeat the process: Restrict to Ha, find a hyperplane Hs (in
H,) separating A and B, etc. From dim H;y, = dim H; — 1 it follows that
after finitely many repetitions, an affine set H; is reached in which one of
the sets A, B has a nonempty core, i.e.

dim H; = max {dim A,dim B}

and, by part (a), it is case (i), (although case (i) may occur sooner.) Sup-
pose then that case (i) is reached after k successive restrictions, a situation
described by

' X=H03H13H23"'3Hk+1

where H;y, separates 4 and B in H; (: = 0,...,k), AUB C H; and
AUB ¢ Hyp,q. Reversing our steps we construct a sequence of affine sets
{H:} o o

Hypy=Hgp1 CH,C---CH CHyp=X (15)
where H; separates A and B properly in X. A sequence ( 15) is defined
recursively as follows:

Fori=k,---,1
choose any z; € H;; \ a(A U B)
define A; = a(H;yy U{z;}) O

REMARKS. (a) If core A # @, the assumption “AN B = @” in Theorem 7
can be replaced by “core AN B = {".

(b) To show that completeness is needed in Theorem 7, consider the rational
line Q, in which the sets {z : < v/2} and {z : > v/2} cannot be separated
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by a hyperplane (the hyperplanes of Q are its points).‘

8. APPLICATIONS TO FUNCTIONS ON THE REAL LINE:
SUB-F FUNCTIONS AND FENCHEL DUALITY.

We use the terminology of §3. Let F be a given B-family on the inter-
val (a,b) (we take (¢,d) = R), and let Gx be the associated B-geometry.

DEFINITION 18 (Beckenbach [1]). A function f : (a,b) — R is sub-

F if for any two points ¢ < 27 < z3 < b and Fi; € F defined by
FlZ(mi) = f(xi)v i= 172’

f(x) < Fip(z) forallzy <z < 29 (16)

f is super-F if the reverse inequality holds in ( 16). Sub-F functions are
generalizations of convex functions. Indeed, for the family F of affine func-
tions, sub-F and super-F become convex and concave (in the ordinary
sense), respectively. Sub-F functions have been applied to 2nd order differ-
ential inequalities, e.g. [6], [12] and [19].

In this section we study the geometric properties of sub-F functions (in the
geometry G z) and establish a Fenchel duality theorem (Theorem 8).

As usual, denote the epigraph and hypograph of f by

epif={(jj):nzf(m)} (17)

hypo f = {( , ) i< (@)} (18)

Here also, “convexity of a set” and “convexity of a function” are related:
LEMMA 15. A function f : (a,b) — R is:

(a) sub-F iff epi f is convex.

(b) super-F iff hypo f is convex. O

The following characterization of the core of epi f is useful.
LEMMA 16. Let a < a1 < b3 < b, let f be sub-F on (a1, 1), and

z ) afz<lbh
Az{(n)' b2 f(a) }
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z a <z <bh
ore A = : O
¢ {( p > p> f(z) }
REMARK. The separation theorem (Theorem 7), applied to the sets

4 = core (epi f) andB={(f(w>>}

for given z € (a,b), shows that a sub-F function is supported at each point
in (a,b) by a function F' € F, [19]. Indeed, the support property is necessary
and sufficient for f to be sub-F.

From here on we specialize to the B-families of §3, Example 3,

F = {F(z) = $(a,z) - f: @, f € R} (19)

where ¢ is differentiable in a,z and

Then

g—g is an increasing function of z. (20)
As in [2] define the dual family®
F*={F*(a)= ¢(a,z) - pf:2,8 € R} (21)

which is a B-family if 1°

— is an increasing function of a. (22)

dz
The effective domain of a function f, [22], is denoted by dom f.

DEFINITION 19. Given f : (a,b) — R,
(i) the (convex) conjugate of f, f*, is

ffle)y=sup  {¢e,2) - f(2)} (23)

z € dom f

(ii) the (concave) conjugate of f, f,, is

ful@)=inf  {¢(e,z)— f(z)} (24)
z € dom f

®Note that in F* the argument is o (one of the parameters of F) and the parameters
are 7, 8. Thus any pair {z, 8} determines a unique F* = F*( - ;z, ) in F*.
10The conditions ( 20) and ( 22) guarantee that both F and F* are B-families.
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In convex analysis, the conjugate f* is convex, regardless of f. The analo-
gous result here is:

LEMMA 17. For any function f: (a,b) — R,
(a) f* is sub-F*,
(b) f is super-F*. O

A duality theorem of Fenchel type (see also [22], Theorem 31.1) now fol-
lows. A (somewhat weaker) Fenchel duality theorem was proved in [2} for
F-convex functions : R™ — R.
THEOREM 8. Let

f be a sub-F function: (a,b) — R,

g be a super-F function: (a,b) — R,
and consider the pair of problems!!

inf {f(z) - g(¢):z € dom fndom g} (P)
sup {g«(@) — f*(e) : a € dom f*Ndom g.} (D)
12 '
int dom f Nint dom g # @ (25)
then

inf (P) = max (D)
PROOF. The proof is similar to the proof of ([22], Thorem 31.1). From
( 23) and ( 24),

9(z) + gu(@) < #(a,2) < f(z) + f*(@), Vo,
so that
f(z) — 9(z) 2 gu(@) - f*(e), Vz,a
proving
inf (P) > sup (D) (26)
In particular, inf (P) = —co = sup (D) = —oo. Let inf (P) > —oo, and
denote '
v *= inf (P)
= sup {B: f(=) > (&) + B, Va) (27)

1 The difference f — g was shown in ([2], Theorem 4) to be unimodal
12dom f and dom g are intervalsin (a,b), and “int” denotes the interior of a real interval.
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By ( 26) it suffices to show the existence of @ € dom f* N dom g, such that
gu(@) = fH(@) 2 v (28)

Define two sets

A =epi f, B:hypo(g+’y)={( Z ) 3#39(@‘)”"7}

Note that for families F of type ( 19),

. sub — F ) sub - F
fis { super—-]—'}_:.(f_*_ﬂ/) 1 { super—f}’ Vre R

Therefore, using Lemma 15, A and B are convex in Gz. Now {core A}nB =
® by Lemma 16, and by theorem 7 there is a hyperplane H separating core A
and B, and therefore separating A and B. In the geometry Gz hyperplanes
are the lines of Definition 5. By ( 25), the separating line H cannot be
vertical, and is therefore of the form

r={() ]

for some pair of parameters a*, 8*. Since H separates A and B,
fz) 2 #le”2)—-F 29(z)+7, Ve
LB 2 sup {gane) - S@)} = £(@)
- v+ < inf {g(a”,2) - g(z)} = gu(c")

And finally, v < gu(a*) — f*(a*), proving ( 28). O
The following example illustrates Theorem 8. Here (P) is a convex program,
and there are infinitely many possible Fenchel duals, corresponding to the
various decompositions of the objective function f — g, and the choice of the
underlying family F. One such dual is (D) below.

EXAMPLE 5. Let the primal problem be
: z -z
xlIZIfO (e®+e77) (P)
with optimal solution z* = 0. We choose
f(z) = e+¢€e7% dom f =R,

9(z) = —5(wlR+)={ 0,220

. dom g = RY
—o00 , otherwise ’ g
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Consider the family F = {F(z) = cosh (a+ z) — 8}, (§3, Example 4). Here
F = F* and ( 20), ( 22) are satisfied. Since f € F, f is sub-F. Also (since F
consists of convex functions), the indicator function g is (strictly) super-F.
The conjugates can be computed to give:

F(a) = {—\/(ea—zj(e-a—ﬂ if |o < log 2

%) otherwise

g«(a) = cosh (max {0,a})

so that dom f* = [—log 2, log 2], dom g« = R and the dual program is

sup  {cosh (max {0,a})+ \/(e" - 2)(e—> - 2)} (D)
le] < log 2

It can be verified that the optimal solution of (D) is a* = 0, and inf (P) =
sup (D) = 2.

9. THE THEOREMS OF RADON AND HELLY.

The (closely related) theorems of Radon, Helly and Caratheodory (see e.g.
[7]) hold also for OIG.

LEMMA 18. If S C¢ X, #S5 = n+ 2, dim S = n, then there is a subset
TCS, #T =n,such that S=TU{z}U{y} and a(T)N[z,y] #0 . O

THEOREM 9 (Radon). Let S C X, #S > n+ 2, dim § = n. Then § can
be partitioned into S = SUS, where $3NS2 = @ and conv S;Nconv 57 # 0.
PROOF. Enough to consider the case #S = n + 2. We prove by induction
on n. For n = 1, the theorem follows from the order axioms. For n = 2 and
the inductive step, use Lemma 18. O

The proof of [24] can now be used, verbatim:

THEOREM 10 (Helly). Let dim X = n and let S be any family of convex
sets in X, #5 = k > n+ 1. If every n + 1 sets in S have a nonempty
intersection, then S has a nonempty intersection. &
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