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ORDERED INCIDENCE GEOMETRY AND THE GEOMETRIC 
FOUNDATIONS OF CONVEXITY THEORY 1 

Aharon Ben-Tal and Adi Ben-Israel 

An Ordered Incidence Geometry,  that is a geometry with certain axioms of 
incidence and order, is proposed as a minimal setting for the fundamental con- 
vexity theorems, which usually appear in the context of a linear vector space, but 
require only incidence, order (and for separation, completeness), and none of the 
linear structure of a vector space. 

INTRODUCTION 

We study the following question: What are the relevant geometric assump- 
tions for convexity, especially for separation theorems? For answers, i.e. con- 
vexity theorems under different axioms see the survey by Danzer, Griinbaum 
and Klee [7], Ky Fan's generalization of the Krein-Milman Theorem [9], the 
Helly-type theorems of Levi [15] and Griinbaum [10], and the separation 
theorem of Ellis [8]. Axiom systems for convexity geometries were given 
by Prenowitz and Jantosciak [20] and Bryant and Webster ([3],[4],[5]) using 
jo ins  (intervals joining pairs of points) as primitives. 

Our objective is to develop convexity geometry using affine sets  as primi- 
tives, in analogy with the classical (Hilbert) approach to Euclidean geometry. 
The notions used in separation theorems: convex  sets, h y p e r p l a n e s  and 
sides of a hyperplane, are described here in terms of: affine sets ,  their in- 
c i d e n c e  properties and o r d e r  relations. The geometry is called O r d e r e d  
I n c i d e n c e  G e o m e t r y ,  since for two or three dimensions the axioms resem- 
ble Hilbert's incidence and order axioms [11], see also [25]. 

1Research supported by the National Science Foundation. 
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An application to sub-~" functions, [1], is given in w 

The order of development allows using standard arguments (e.g. [14]) in 
proofs, which are mostly omitted. An infinite dimensional case is discussed 
in [23]. 

We thank Professor 3. Strantzen and the referees for their helpful sugges- 
tions. 

1. AXIOMS 

An O r d e r e d  I n c i d e n c e  G e o m e t r y  (abbreviated OIG),  G, is a triple 

G = { X ,  A, d im}  

and an order relation (be tweeness) ,  endowed with ten axioms given below. 
Here 

X is the space  of elements (points) ,  
,4 is a family of subsets of X, called the affine sets of G, 
"dim" a function : A --* { integers } u {oo}, the d imens ion .  

An affine set A 6 A is called a k-affine if dim A = k. In particular, we use 
the terms: po in t  for a 0-affine 2, l ine for a 1-affine, p l ane  for a 2-affine. By 
convention dim 0 = -1 .  

AXIOM 1 . . 4  contains X, O, and all singletons {x}, x 6 X. 
AXIOM 2 (Intersection Axiom). ,4 is closed under arbitrary intersections. 

DEFINITION 1. For S C X, the affine hul l  of S is 

a(S) = fl{A : A 6 A,S C A} 

which by Axiom 2 is an affine set. We use this to define a hyperplane (needed 
in w 
DEFINITION 2. A set H 6 ,4 is a h y p e r p l a n e  if exists x 6 X \ H such 
that a (H u {x}) = X. 

The next three axioms express m o n o t o n i c i t y  p roper t i e s  of dimension. 
AXIOM 3. If A, B 6 A, A C B then dim A <_ dim B. 

2It  shou ld  be  c lear  f rom the  con tex t  w h e t h e r  a "po in t "  is a n  e lement  of  X or of .4. 
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AXIOM 4. If x 6 X, A 6 A, x • A then dim a(A U {x}) = dim A + 1. 3 
AXIOM 5. For A, B, H 6 .4, 

B, H C A ,  d i m H = d i m A - 1  
if B N H i~ 0, B then dim (B n H) = dim B - 1 

Points lying on the same line are called col l inear .  For the geometry to have 
more than one line we need: 
AXIOM 6. There exist three non-collinear points. 

The  remaining 4 axioms define the order relation b e t w e e n e s s .  For dis- 
t inct  collinear points a,b, c we denote by abc the fact that  b is between a 
and c. The  set of all points between a and b is called the o p e n  s e g m e n t  or 
o p e n  i n t e r v a l  joining a, b and is denoted by (a, b). 
AXIOM 7. abc is equivalent to cba. 
AXIOM 8. If a ~ c then there exist points b, d such that  abc and acd. 
AXIOM 9. If a, b, c are distinct and collinear then one and only one of them 
is between the other two. 
AXIOM 10 (The Pasch Axiom4). If a, b,c are distinct, and if L is a line in 
a({a,b,c}) with a,b,c not in L and L n (a,b) ~ ~, then either L n (a,c) ~ 0 
or L n (b, c) # 

2. IMMEDIATE CONSEQUENCES 

The results in this section are immediate consequences of the axioms. Some 
could be taken as alternative axioms for the same geometry. 

COROLLARY 1. If A E A and S C A then a(S) C A. D 
This reduces to Hilbert's Incidence Axiom 1,6 [11] for dim A = 2 and 
# S  = 2, where # denotes n u m b e r  o f  e l e m e n t s .  

COROLLARY 2. If A is a k-affine, A ~ ~J, then there is a subset $ of 
A w i t h # ( S ) = k - } - i  and d i m a ( S ) > k - 1  [] 
For k - 1, 2 and 3, Corollary 2 reduces to Hilbert's Incidence Axioms 1,3 

3Thus, for dim X < oo, hyperplanes are (dim X - 1)-affines. 
4118], w Kernsatz IV. 
sIf a, b, c are collinear, Axiom 10 can be stated as follows: Let h 6 (a, b), h r c. Then 

either h 6 (a, c) or h 6 (b, c). (The point h is the intersection of the lines a({a, b, c}) and 
L.) 
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and 1,8 specifying the existence of (i) two distinct points on any line, (ii) 
three non-collinear points on any plane, and (iii) four non-coplanar points 
in the 3-dimensional space. 

COROLLARY 3. IF S C X, x 6 X then a ( S u  {x}) = a(a(S) u {x}). 
COROLLARY 4. I f S c X ,  # S = k + l ,  then dim a(S) <_ k. [] 
COROLLARY 5. Let A, B be k-affines, S C A N B. Then 

either a ( S ) = A = B  or d i m a ( S ) < k .  [] 
COROLLAlZY6. A, B 6 A ,  A c B  ~ d i m A = d i m B i f f A = B .  [] 

[] 

A converse of Corollary 2 is: 
COROLLARY 7. If ~ # S C X, # S  = k + 1, dim a(S) > k - 1 then there 
is a unique k-affine containing S. [] 
For k = 1 and 2, Corollary 7 reduces to Hilbert's Incidence Axioms 1,1-2 
and 1,4-5, respectively [11]. 

The following corollary states roughly that if a(S) is "overdetermined" by 
S, then certain points of S are "atone combinations" of others. 
COROLLARY 8. If S C X, # S  = k + 1, dim a(S) _< k - 1 then there is 
an x E S such that x E a ( S \  {~}). [] 

In plane geometry it is well known that the Pasch Axiom is equivalent to a 
Plane Separation Axiom, ([16], Chapter 12). This holds also here. 
DEFINITION 3. Let A,H be affine sets, H C A, 0 # H # A. Then H 
sepa ra t e s  A if for any two points x,y E A \ H such that 

(x ,y)  n H :/: r (1) 

there is no point z 6 A \ H such that 6, 

(x,z) M H - ~  and (y,z) N g = 0  (2) 

THEOREM 1. Let A,H E .4, d imA >_ 1, H C A, d i m H  = d i m A - 1 .  
Then H separates A. 
PROOF. The case dim A = 1 follows from Axiom 10 (footnote 5). Let 
dim A > 2, and suppose H does not separate A, i.e. there are distinct 
points x ,y , z  6 A \ H  satisfying (1)  and (2).  It follows from Axiom 10 that 

6I.e. z and y cannot  be, at  the same time, on "opposite" sides of  H and  on the  "same" 

side of H .  
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x, y, z are non-collinear. Let P be the plane through x, y, z. The intersection 
P N H  is 

(i) H if dim A = 2 (i.e. P = A), 
(ii) a line if dim A > 2 (by Axiom 5), 

so that, in either case, P A H is a line, say L. Since L intersects (x, y), it 
follows from Axiom 10 that L also intersects (x, z) or (y, z), violating (2). [] 
Conversely, Axiom 10 follows from Theorem 1, i.e. the two are equivalent. 

3. MODELS 

Concrete models of Ordered Incidence Geometries include: The real  Eu-  
c l idean  n -d imens iona l  space  (X = R n, with "affine sets" and "dimen- 
sion" given their standard vector space meanings), the P o i n c a r e  half- 
p l ane  i nc idence  p lane  (X is the upper half-plane, and 1-affines are the 
restrictions to X of (i) vertical lines, and (ii) circles with centers on the 
x-axis) and the M o u l t o n  i n c i d e n c e  plane,  [16]. The last two models are 
special cases of B e c k e n b a c h  geomet r i e s ,  defined below. 

DEFINITION 4 ([1], see also ([21], w167 Let (a,b), (c,d) be open in- 
tervals (not necessarily bounded) in R. A family ~" of continuous functions 
F : (a,b) ~ (c,d) is a B e c k e n b a c h  fami ly  (B-fami ly  for short) if for any 
two points (zl ,yx),  (x2,y2) with a < za < x2 < b, Yl,Y2 E (c,d) there 
exists a unique F 6 $', denoted by F12, such that 

= (i = 1 , 2 )  (3)  

DEFINITION 5. Let (a,b), (c,d) be as above and let f be a B-family 
of functions : (a,b) --~ (c,d). The B e c k e n b a c h  g e o m e t r y  ( B - g e o m e t r y ) ,  
G~,  determined by 9 v, is a two dimensional geometry with X = (a, b) x (c, d), 
and the 1-affine through any pair of points (xa, Ya), (x2, y2) in X is, 

(i) the vertical line x = xl if xl = x2, 
(ii) the graph of F12 (defined by (3))  if xl # x2. 

For a B-geometry Axioms 1-9 are easily verified, and Axiom 10 follows from: 
LEMMA 1 (Beckenbach [1]). Let a < xo < b and let F~, F~ be two distinct 
members of ~ such that F~,(xo) = F~(xo). Then 

F~(z) > Ft~(x ) for all x in (a,b) on one side of x0, 
F~(x) < F/3(x) for all x in (a,b) oll the other side of x0. [] 
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The  next  four examples use B-families in the  form .T = { F ( x  ; a ,  fl)}, where 
a ,  fl are real parameters .  

E X A M P L E  1 . . T 1  = { ~ / f l - ( x - a )  2 : fl > O, a 6 R }  with (a ,b)  = 
R, (c, d) = (0, co), and G~" 1 gives the Poincare half-plane incidence plane. 

E X A M P L E  2. ~'2 = {a r  + flr + r  where: 
(i) r are given continuous functions,  and 
(ii) r > 0 on (a,b) .  

A necessary and sufficient condit ion for .T2 to be a B-family is tha t  r162 
is strictly monotone.  For example,  with (a, b) = R,  .7" = {ae  ~ + fi e - z )  is a 
B-family, while ~" = {ax  2 + fl} is not.  

E X A M P L E  3. ~ '3(x;a , f l )  = r  - fl with r differentiable in a for all x. 
A necessary and sufficient condit ion for ~-3 to be a B-family is t ha t  0 r  
is a srictly monotone  function of x. For r  = ax ,  G73 is the  Eucl idean 
plane geometry. 

E X A M P L E  4 . . T 4 ( x ; a , f l )  = a ( a ) u ( x )  + b ( a ) v ( x )  - fl, where a and u 
are strictly increasing, b and v strictly decreasing. For example,  .P = 
{ c o s h ( ~ +  x) - f l :  ~ , f l  6 R}. 

4. TR IA N G LES 

Three  non-coUinear points  {a,b,c} const i tute  a t r i a n g l e  Aabc .  The  ba- 
sic properties of triangles ([18], w are sampled in the following two pairs 
of lemmas,  each pair consisting of a result and a (sort of) converse: 

L EMMA 2. For any u 6 (a ,c )  and v 6 (u ,b) ,  there is a point  w 6 (b,c)  such 
tha t  v 6 (a ,w).  [] 
L E M M A  3. For any u 6 (a, c) and w 6 (b, c) there is a point  v in the inter- 

section [] 

L E M M A  4. Let u 6 (a ,c ) ,  w 6 (b,c).  Then  for any v 6 ( u , w )  there is 
a z 6 (a ,b)  such tha t  v 6 ( c , z ) .  [] 
L EMMA  5. Let z e (a,b) .  Then  for any v 6 (c,z) there exist two points  
u 6 (a ,c ) ,  w 6 (b,c) such tha t  v 6 ( u , w ) .  [] 
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5. LINEAL HULLS 

In the Euclidean geometry R '~ a set A is affine if and only if 

A={~Aixi: x i e A ,  E A I = I }  (4) 

i.e. A coincides with the set of aftlne combina t ions  of its elements. The 
analogous representation in an OIG (where algebraic constructions such as 
(4 )  are not available) is given in Theorem 2. First we require: 

DEFINITION 6. For a given subset S of X, the l ineal  hul l  of S, is 

= x , y  e s }  

the union of fines through pairs of points in S. By convention, s -- 0 and 
s = {x}, Vx 6 X. We also use the abbreviation ~(2)(S) = g.(s 

LEMMA 6. If A is affine, x 9~ A, then a(A U {z}) = s U {x}). 
Pt~OOF. Use Corollary 1 and Axiom 8. [] 

THEOREM 2. S is an affine set if and only if S = s • 

6. CONVEX SETS 

The basic properties of convex sets are developed in this section. 

DEFINITION 7. A set S C X is: 
(i) s t a r  s h a p e d  at x if for all y 6 S, (x, y) C S, 
(ii) convex  if for any two points x, y 6 S, (x, y) C S. 

DEFINITION 8. For a.ny set S C X, the convex hul l  of S, cony (S), is the 
intersection of all convex sets containing S. 
DEFINITION 9. For any set S C X, 

(i) the core  of S is 

core S = {x 6 S :Vy 6 X, y # x, 3z 6 (x,y) such that (x,z)  C S} (5) 

(ii) the r e l a t i ve  core  of S, relcore S, is defined by (5)  with 

"Vy 6 a(S)" replacing "Vy 6 X" 
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(iii) the set l i n e a r l y  a c c e s s i b l e  from S, is 

l i n a S = { y e X :  3x 6 S such that  (x, y) C S }  

(iv) the c l o s u r e  of S is cl S = S u lina S. 

L E M M A  7. Let a set S with a nonempty relative core 7 be star  shaped 
at p. Then x 6 relcore S ==~ (p, x) C relcore S i.e. relcore S is also star 
shaped at p. [] 

T H E O R E M  3. Let S be a convex set, y 6 l inaS ,  x G re lcoreS,  y r x. 
Then (x, y) C relcore S. 
P R O O F .  Use Axioms 8, 10 and Lemma 7. [] 

T H E O R E M  4. If S is convex, then relcore S and cl S are convex. [] 

This section ends with a result of a topological nature, Theorem 5, that  
a (nonempty)  finite-dimensional convex set has a nonempty  relative core. 
DEFINITION 10. For any S C X,  the d i m e n s i o n  of S is defined as the 
dimension of its affine hull, dim S = dim a(S).  
DEFINITION 11. An n - s l m p l e x  is the convex hull of a set S with 

# S = n + l ,  d i m S = n  

We prove first that  a simplex has a nonempty relative core. 
LEMMA 8. Let A,~ = conv {xa, . . .  ,xn+x} be an n-simplex. Then 

relcore A,~ r 0 

P R O O F .  By induction on n. For n = 1 the result follows from Axiom 8. In 
the inductive step use Axioms 4, 5 and 10. [] 

LEMMA 9. If 0 ~ C is a convex set, dim C < oo, then dim C = dim/km~ x 
where Amax is a maximal dimensional simplex contained in C. 
PRO OF. The existence of a maximal Area x follows since C is finite-dimensional. 

Then use Axiom 4 to prove a (C)  = a(Am~x). [] 

THEOI~EM 5. If C it a nonempty  convex set, dim C < c~, then 

relcore C r 0. [] 

~In the finite-dimensional case, relcore S ~ 0 for any convex set S, see Theorem 5. 
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7. SEPARATION 

The main result here is Theorem 7 stating conditions under which two dis- 
joint convex sets can be separated by a hyperplane. 

From Theorem 1 it follows that  any hyperplane separates the space in the 
sense of Definition 3. We elaborate on this s ta tement  in the following: 
LEMMA 10. Given a hyperplane H in X, there exist unique nonempty 
convex sets H +, H -  such that  

( a ) / / ,  H +, H -  are disjoint, and 
(b) X =  H O H + t J  g - .  

PROOF.  Select any x0 6 X \ H and define: 

H + = {y r H :  (x0,y) N H = 0}, (6) 

H -  = {y r H : (x0, y) n H # 0}. (7) 

Then (a) and (b) are obvious. Nonemptyness, convexity and uniqueness 8 
of H + and H -  use s tandard arguments. [] 
One can similarly obtain: 
LEMMA 11. Let H, H +, H -  be as in Lemma 10. Then 

(i) H + = c o r e H  +, H -  = c o r e H -  
(ii) H = lina H + [q lina H -  
(iii) H U H  + = c l H  +, H U H - = c l H - .  [] 

DEFINITION 12. A convex set C is 
(i) o p e n  if C = core C, 
(ii) r e l a t i v e l y  o p e n  if C = relcore C, 
(iii) c losed  if C = cl C. 

The following definitions are suggested by Lemma 11. 
DEFINITION 13. Let H, H +, H -  be as in Lemma 10. Then 

(i) H +, H -  are the  o p e n  ha l f spaces  of (i.e. corresponding to) H. 
(ii) H U H +, H t3 H -  are the c losed ha l f spaces  of H. 

DEFINITION 14. Let A, B C X, and let H be a hyperplane. Then 
(i) H s e p a r a t e s  A and B if A and B are contained in opposite closed 

halfspaces of H.  

8Uniqueness means that the (unordered) pair {H +, H-} is independent of the partic- 
ular xo used in ( 6),(7). 
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(ii) Moreover, if A U B is not a subset of H then H sepa ra t e s  A and B 
p rope r ly .  

The next lemma implies a converse of Theorem 1: The only affine sets 
with the separation property (Definition 3) are hyperplanes. 
LEMMA 12. If A, B, C are affine sets, A C B and A ~ B, and if B separates 
C, then A does not separate C. 
PROOF. Suppose A separates C and let A +, A- be the "opposite sides" of 
A in C, i.e. 

C = A U A + U A  - 

where A~ A +, A- are disjoint, 
x , y  in A + or in A-  :- (x,y) N A = ~, 
x e  A +, y E A -  ==~(x,y) D A  ~{K 

Given that B separates C, let 

C =  B U B + U B  - 

be the analogous decomposition of C with respect to B. 
Now let x 6 B +. Then x ~ A, and without loss of generality let x 6 A +. 
Any other point in B + must also be in A + for if x ~ y 6 B +, y 6 A -  then 
(x, y) intersects A but not B, a contradiction. Therefore 

B + C A + (8) 

and similarly, 
B -  c A -  (9) 

The inclusions (8 )  and (9 )  lead to contradiction, o 

DEFINITION 15. A convex  pai r  in X is an unordered pair {C,D} of 
nonempty convex sets with 

X = C U D ,  C n D = O  

A classical result of Mazur [17] and Kakutani [13], (see also [24], Theorem 
2.3 and references the.rein), can be stated for OIG as follows: 
THEOREM 6. If A, B are disjoint convex sets in X, then there exists a 
convex pair {C, D} with 

A c C ,  B c D  (10) 
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PROOF. We first prove an auxilliary result: 
(a) If S is a nonempty convex set, and x0 r S, then the set 

g ( S ,  xo) = e [xo, y], y e s }  

is convex. Here we denote by [a, b] the closed s e g m e n t  joining a, b: 

[a,b] = (a,b) u {a} U {b} 

Given (a), the proof of ([24], Theorem 2.3) can be followed, using Zorn's 
Lemma to obtain {C, D} as a maximal element of the set (partially ordered 
by inclusion) of disjoint convex sets {C,D} satisfying (10).  [] 

Convex pairs are used to prove existence of hyperplanes separating disjoint 
convex sets. First we require: 

DEFINITION 16. An affine set is open ly  decomposab l e  if it is the union 
of two disjoint, relatively open, nonempty convex sets. 

DEFINITION 17. A geometry G = {X,A, dim} is a C o m p l e t e  O r d e r e d  
I n c i d e n c e  G e o m e t r y  (COIG for short) if it satisfies, in addition to Ax- 
ioms 1-10 (of w the following: 
AXIOM 11 (Completeness Axiom). No line in G is openly decomposable. 

This usage of completeness is standard, see also [5]. An example of a 
non-complete OIG is the ra t iona l  Euc l idean  n -d imens iona l  space  with 
X = Q", the set of rational n-tuples, and ,4 and "dim" given their standard 
vector space meanings. 

Lemma 14 below requires the following property (seemingly stronger than 
completeness): No affine set (of any dimension) is openly decomposable. We 
show this to be equivalent to completeness. 
LEMMA 13. Let G = {X,`4,dim} be a COIG. Then no affine set is openly 
decomposable. 
PROOF. Let A 6 ,4 be openly decomposable, i.e. 

A = C1 U C2 (11) 

where C1, C2 are disjoint, nonempty, relatively open, convex sets. From (11) 
follows A = a(C1)U a(C2) and consequently A = a(C1) = a(C2), showing 
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that, restricted to A, the relative cores of C1 and C2 can be taken as cores, 
i.e. 

C i = c o r e C i ,  i = 1 , 2  (12) 

Choose any two points xi 6 Ci and let L be the line xlx2. From (12) follows 
the existence of points zi E Ci, (i -- 1,2), such that 

(xi, zi) C L ,  i = 1 , 2  

Extending the two (relatively) open segments (xi, zl) beyond xi, (i = 1,2), 
we get the intervals (unbounded on one side): 

Ii=(xi,zi)u{ye i =  1,2 

By Zorn's Lemma, the set of such intervals has a maximal element {/1, I2), 
and consequently L = / 1  tJ/2, violating Axiom 11. [] 
Given a convex pair {C, D),  the following lemma gives conditions for the 
existence of a hyperplane with opposite sides {core C, core D).  

LEMMA 14. If {C, D)  is a convex pair in X, then the set H defined by 

H =cl  C N c l D  

satisfies: 
(a) H ncore  C = 0 = H n  core D 

If the geometry is complete then: 
(b) H # 0 and X = H u core C u  core D 
(c) If either core C # 0 or dim X < oo, then H is a hyperplane. [] 

Combining the above results, we finally prove: 
THEOREM 7. (The Separation Theorem). Let G = {X,~4, dim} be a 
COIG, and let A, B be disjoint convex sets in X. Then a hyperplane H 
properly separating A and B exists if: 

(a) core A # 0, in which case H n core A = 0, 
or if 

(b) dim X < oo. 
PROOF. Let {C, D)  ~nd H be given by Theorem 6 and Lemma 14. Then 
H separates A and B in the sense that 

A c H u c o r e C = H U H  +, B c H U c o r e D = H U H -  (13) 
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To prove proper separation (Definition 14(ii)) we show that 

A u B  ~_ H (14) 

(a) If core A • 0 then, by (10), core A C core C # ~ and (14) follows from 
Lemma 14(a). 
(b) Let dim X < oo, core A = 0 (otherwise it is case (a) again), and 

A U B C H  

We restrict the discussion to H which we denote by H1. In H1 there is a 
hyperplane H2 (i.e. dim H2 = dim H1 - 1) separating A and B in the sense 
of (13). Now there are two cases: 

(i) H2 separates A and B properly, (ii) A U B C H2. 
In case (ii) we repeat the process: Restrict to H2, find a hyperplane//3 (in 
H2) separating A and B, etc. From dim Hi+l = dim Hi - 1 it follows that 
after finitely many repetitions, an affine set Hi is reached in which one of 
the sets A, B has a nonempty core, i.e. 

dim Hi = max {dim A, dim B} 

and, by part (a), it is case (i), (although case (i) may occur sooner.) Sup- 
pose then that  case (i) is reached after k successive restrictions, a situation 
described by 

X - -  H o D  HI D H2 D " "  D Hk+l 

where Hi+l separates A and B in Hi (i = 0 , . . . , k ) ,  A U B  C Hk and 
A U B ~_ Hk+l .  Reversing our steps we construct a sequence of affine sets 

Hk+l  = /Ik+l C Hk C . . .  C /~1 C ]to = X (15) 

where/ i t  1 separates A and B properly in X. A sequence (15)  is defined 
recursively as follows: 

For i - k, . . . ,1 

choose any xi 6 H/-1 \ a(A U B) 
define Hi = a(~ri+l u {xi}) [] 

REMARKS. (a) If core A # 0, the assumption "A A B = 0" in Theorem 7 
can be replaced by "core A A B = 0". 
(b) To show that  completeness is needed in Theorem 7, consider the rational 
line Q, in which the sets {x : x < x/2} and {x : x > V~} cannot be separated 
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by a hyperplane (the hyperplanes of Q are its points). 

8. APPLICATIONS TO FUNCTIONS ON THE REAL LINE: 
SUB-.T" FUNCTIONS AND FENCHEL DUALITY. 

We use the terminology of w Let Y- be a given B-family on the inter- 
val (a, b) (we take (c, d) = R), and let G~- be the associated B-geometry. 

DEFINITION 18 (Beckenbach [1]). A function f : (a,b) ---, n is sub- 
Y- if for any two points a < xl < x2 < b and /'12 6 Y- defined by 
F12(xi) = / ( x i ) ,  i = 1,2, 

f(x) ~ F12(IE) fo r  all  X 1 '~ T < X 2 (16)  

f is super-y- if the reverse inequality holds in (16).  Sub-y- functions are 
generalizations of convex functions. Indeed, for the family Y- of affine func- 
tions, sub-y- and super-y-  become convex and concave  (in the ordinary 
sense), respectively. Sub-y- functions have been applied to 2ad order differ- 
ential inequalities, e.g. [6], [12] and [19]. 
In this section we study the geometric properties of sub-y- functions (in the 
geometry Gy)  and establish a Fenchel duality theorem (Theorem 8). 
As usual, denote the e p i g r a p h  and hypograph  of f by 

epi f = # 

f(x)} (18) hypo f = { # 

Here also, "convexity of a set" and "conve~ty of a function" are related: 
LEMMA 15. A function f : (a, b) --* R is: 

(a) sub-y- iff epi f is convex. 
(b) super-Y" iff hypo f is convex. [] 

The following characterization of the core of epi f is useful. 
LEMMA 16. Let a < al < bl < b, let f be sub-y- on (al ,b l ) ,  and 

A={( x ) : al<xKbl } 
# > f ( x )  
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Then 

: [] 
/.* # > f ( x )  

KEMARK. The separation theorem (Theorem 7), applied to the sets 

A = c o r e ( e p i f )  a n d B =  f ( x )  

for given x 6 (a,b), shows that a sub-.~" function is supported at each point 
in (a, b) by a function F 6 .)c [19]. Indeed, the support property is necessary 
and sufficient for f to be sub-.~'. 
From here on we specialize to the B-families of w Example 3, 

~" = { F ( x )  = r  - / 3  : a , f l  6 R} (19) 

where r is differentiable in a, x and 

0r is an increasing function of x. (20) 
0a 

As in [2] define the dua l  family  9 

F = {F*(~) = r  ~: x,~ e R} (21) 

which is a B-family if lo 

c0_r162 is an increasing function of a. (22) 
Ox 

The effect ive d o m a i n  of a function f ,  [22], is denoted by dora f .  

DEFINITION 19. Given f : (a,b) ~ R, 
(i) the (convex)  c o n j u g a t e  of f ,  f*, is 

/*(~) = s u p  {r  (23 )  
x e  d o m /  

(ii) the (concave)  c o n j u g a t e  of f ,  f . ,  is 

f~(a) = inf {r - f (x ) )  (24) 
�9 dom / 

9Note that in ~'* the argument is a (one of the parameters of ~ and the parameters 
are x, ft. Thus any pair {z, fl} determines a unique F* = F*( �9 ;x,/~) in jr*. 

1~ conditions (20)  and (22)  guarantee that both ~ and jr* are B-families. 
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In convex analysis, the conjugate f* is convex, regardless of f .  The analo- 
gous result here is: 
LEMMA 17. For any function f : (a, b) ~ R, 

(a) f* is sub-5 r*, 
(b) f ,  is super-~-*. [] 

A duality theorem of Fenchel type (see also [22], Theorem 31.1) now fol- 
lows. A (somewhat weaker) Fenchel duality theorem was proved in [2] for 
~-convex functions : R n ~ R. 
THEOREM 8. Let 

f be a sub-.T function: (a, b) ~ R, 
g be a super-) r function: (a, b) --, R, 

and consider the pair of problems u 

inf {f(x) - g(x) : x 6 dom f n dora g} (e) 

if12 

then 

sup { g , ( a ) -  f * ( a ) :  a 6 dom f* n dom g.} 

int dom f n int dom g # (3 

inf (P) = max (D) 

PROOF. The proof is similar to the proof of ([22], Thorem 31.1). 
(23) and (24),  

(D) 

(25) 

From 

g(x) + g,(o 0 < r  < f ( x )  + f*(~), Vx, a 

so that 
f ( x )  - g(x) >_ g,(a) - i f (a ) ,  Vx,a 

proving 
inf (P) >_ sup (D) (26) 

In particular, inf (P) = - c o  =~ sup (D) = -oo. Let inf (P) > -oo,  and 
denote 

7 " =  inf (P) 
= { :  : > + : ,  w }  (27) 

n T h e  difference f - g was shown in ([2], Theorem 4) to be unimodal 
12dora f and d o m e  are intervals in (a, b), and "int" denotes the interior of a real interval. 
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By (26) it suffices to show the existence of a 6 dom f* n dom g. such that 

g , ( a ) -  f * ( a )  _> 3' (28) 

Define two sets 

A = e p i f ,  B = h y p o ( g  

Note that for families ~" of type ( 

/ / f is s u p e r -  ~ ~ (f  

( ( x ) )  = : u < g ( x )  + 3' +3') 

19), 

+3') is { s u b - ~  } V3'ER 
s u p e r -  .T ' 

Therefore, using Lemma 15, A and B are convex in Gy.  Now {core A ) n B  = 

O by Lemma 16, and by theorem 7 there is a hyperplane H separating core A 
and B, and therefore separating A and B. In the geometry Gy  hyperplanes 
are the lines of Definition 5. By (25) ,  the separating line H cannot be 
vertical, and is therefore of the form 

: ~ = r  - 8" 
# 

for some pair of parameters a*, 8*. Since H separates A and B, 

f (x )  > r  - 8" > g(~) + 3', w 

.'. /~* > sup {r f ( x ) )  = f* (a*)  
X 

�9 " .  3' + 8" -< inf {r - g ( x ) )  = g.(a*) 
X 

And finally, 7 -< g , (a*)  - f*(a*), proving (28). [] 
The following example illustrates Theorem 8. Here (P) is a convex program, 
and there are infinitely many possible Fenchel duals, corresponding to the 
various decompositions of the objective function f - g, and the choice of the 
underlying family ~'. One such dual is (D) below. 

EXAMPLE 5. Let the primal problem be 

inf (e x + e -x) (P) 
x > 0  

with optimal solution x* = 0. We choose 

f ( x )  -- e x + e  - x ,  d o m f = R ,  

i R+)=~ o , x > o  R+ g(:r,) -oo  , otherwise ' do ing  = ( 
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Consider the family ~" = {F(x)  = cosh (a + x) - fl}, (w Example  4). Here 
~" = ~ '  and (20) ,  (22 )  are satisfied. Since f E ~-, f is sub-9 r .  Also (since 5 r 
consists of convex functions),  the indicator funct ion g is (strictly) super-~-. 
The  conjugates  can be computed  to give: 

- x / ( e  ~  - ~ - 2 )  i f l , l < l o g  2 
i f (cO i cr otherwise 

g . ( a )  = cosh (ma• {0,~}) 

so that  dora f* = [ -  log 2, log 2], dora g. = R and the dual  program is 

sup {cosh (max {0, a})  + ~/(e~ - 2)(e-~ - 2)} 
I~I ~ log 2 

(D) 

It can be verified tha t  the optimal solution of (D) is a* -- 0, and inf (P) = 
sup (D) = 2. 

9. T H E  T H E O R E M S  OF RADON AND HELLY. 

The  (closely related) theorems of l~adon, Helly and Cara theodory  (see e.g. 
[7]) hold also for OIG. 
LEMMA 18. I f S  C X,  # S  = n + 2 ,  d i m s  = n, then  there is a s u b s e t  
T C S ,  # T = n ,  s u c h t h a t  S = T O { x } U { y }  a n d a ( T )  n [ x , y ] # 0 .  [] 

T H E O R E M  9 (Radon) .  Let S C X, # S  >_ n + 2, d im S = n. T h e n  S can 
be par t i t ioned in to  S = $1 U $2 where $1 n $2 = 0 and conv $1 n conv $2 # 0. 
P R O O F .  Enough  to consider the case # S  = n + 2. We prove by induct ion 
on n. For n = 1, the  theorem follows from the order axioms. For n = 2 and 
the induct ive step,  use L e m m a  18. [] 

The  proof  of [24] can now be used, verbatim: 
T H E O R E M  10 (Helly). Let dim X = n and let S be any family of convex 
sets in X,  # S  = k > n + l .  If every n + l  sets in S h a v e a  nonempty  
intersection, then  S has a nonempty  intersection. D 
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