JOURNAL OF ELECTRONIC TESTING: Theory and Applications 10, 231-244 (1997)
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Hierarchical Delay Test Generation

C.P. RAVIKUMAR
Department of Electrical Engineering, Indian Institute of Technology, New Delhi 110016, INDIA
rkumar@ee.iitd.ernet.in

NITIN AGRAWAL *
S3 India, 5th Floor, Prestige Meredian, M.G. Road, Bangalore 560001, INDIA

bewad@cyberspace.org

PARUL AGARWAL*
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan,
48109, USA

pagarwal@eecs.umich.edu
Received July 19, 1995; Revised September 6, 1996 and October 28, 1996

Editor: K. Kinoshita

Abstract. Delay testing is used to detect timing errors in a digital circuit. In this paper, we report a tool called
MODET for automatic test generation for path delay faultsrindularcombinational circuits. Our technique
uses precomputed robust delay tests for individual modules to compute robust delay tests for the module-ley
circuit. We present dongest path theorerat the module level of abstraction which specifies the requirements for
path selection during delay testing. Based on this theorem, we propose a path selection procedure in module-le
circuits and report efficient algorithms for delay test generattd©DET has been tested against a number of
hierarchical circuits with impressive speedups in relation to gate-level test generation.

Keywords: delay test generation, hierarchical testing, path selection

1. Introduction model and is used in this paper; a path delay fault is
characterized by a tuplg, 8), wherep is a path from
For today’s high speed integrated circuits, it is as im- a primary input of the circuit to a primary output, ahd
portant to verify the timing behaviour of a circuit as it is thetypeof transition that must be propagated along
is to test the circuit for static faults such as the pop- pathp. The transition type can be a falling transition
ular “stuck-at” faults. The gate-delay and the path- | or arising transitiont. A path delay is said to have
delay fault models were introduced [1, 2] to test for occurred on patlp if the transition of type’ fails to
the presence of timing faults in the circuit due to which propagate across the path within time equal to the clock
the circuit may fail to function properly at the design period. A pair of test vectors must be applied to test for
clock speed. Between these two fault models, the path a path delay fault [3]. Many efficient algorithms have
delay fault model has prevailed as the more popular been reported in the literature for generation of delay
tests [3-5]. However, generating delay tests for a cir-

*Formerly with the Indian Institute of Technology, New Delhi, where ~ CUit Of VLSI complexity can be quite time consuming
this work was carried out. due to several reasons (a) The number of paths, and

232 Ravikumar, Agrawal and Agarwal

hence the number of path delay faults, can be exces-The stimulus/response files are processed symbolically
sively large (b) The test generation for a single delay using techniques derived from artificial intelligence.
fault can be time consuming since most test generatorsThe test generation algorithm using in PathPlan is a
used PODEM-like [6] backtracking algorithms and (c) variant of theD-algorithm.
When the circuit description is available at block-level Sarfert et al. [13] present a hierarchical test genera-
(or macro-level), an overhead is encountered in the flat- tion scheme for stuck-at faults in large combinational
tening of the netlist to gate-level. The situation can be circuits. The authors distinguish between high-level
improved in the following ways. Efficiergath selec- primitives (HLP) and gate-level representations (GLR)
tion algorithms [7, 8] can be used to reduce the size of of the primitives. Thus &-input multiplexer can be
the fault set. Improved delay test generators (such asviewed as an HLP or a black box withdata inputs,
the FAN-based algorithm described in [4] or the algo- [log, k] control inputs, and a single output. An HLP
rithm based on binary decision diagrams described in may be associated with several GLRs. For instance,
[9]) can reduce the test generation time by reducing the a GLR associated with 2-input multiplexer consists of
number of backtracks or through the use of algebraic two two-input AND gates and one two-input OR gate.
techniques). To alleviate the problem of flattening the Stuck-at faults that are internal to a GLR carnttaans-
hierarchical netlist, we propose in this paper a scheme ferredto the inputs of the corresponding HLP by con-
to perform delay test generation at the module level sidering fault collapsing rules such as fault equivalence
itself. A modulein this paper is a combinational logic and fault dominance. However, some faults internal to
block consisting of one or more logic gates; examples a GLR cannot be transferred to the inputs of the corre-
of modules are full adders, multiplexers, comparators, sponding HLP; in a hierarchical representation of the
and so on. Our experimental results show that hier- circuit, such faults will remainnternal to the corre-
archical delay testing can provide orders of magnitude sponding HLP. Tests can be generated for faults which
speedup over gate-level test generation. To provide fur- are at the boundaries of an HLP without flattening the
ther speedups, we also report a path selection algorithmHLP to its GLR. On the other hand, the ATG algo-
which works on hierarchical netlists. rithm of [13] expands an HLKX to its GLR if there
Hierarchical test generation has been known for are internal faults associated withonly when the in-
stuck-at faults. Well known test generation algorithms ternal faults of X are under consideratiorThus the
such as théd-algorithm and PODEM [10] have been speed and memory advantage in [13] comes predomi-
extended to work for module-level circuits. As part nantly due to thiselective flatteningThe strategy in
of the OASIS design automation package, a test gen- MODET differs from [13] in a fundamental way in
erator for stuck-at faults, called MODEM, is available that, during test generation, flattening of a high-level
[11]. MODEM, or module-oriented decision making, primitive to its gate-level representation is unnecessary.
is an extension of PODEM and is applicable for cir- In MODET, we find a sufficient number of path delay
cuits which contain small macros such as EXOR gates. faults at thehierarchical levelbased on dongest path
Calhoun and Brglez observed an interesting fact with theoremas will be explained in Section 2.
respect to hierarchical testing [11]. The authors clas- Recently, Pomeranz and Reddy [14] have reported
sified stuck-at faults into module-internal and module- a test generator for circuits composed of macro blocks
external faults, depending on whether a fault appears when the internal gate-level implementation of the
on a line which is internal to a module or on a line macros are unknown. Thus their technique is useful
which connects two or more modules. It was observed in technology-mapped circuits implemented as FPGAs
that tests which were generated with module-external or PLAS; it is assumed that the truth table of the macro
faults as targets also tend to cover most of the module- is known and the number of outputs per macro is re-
internal faults as well. Patel and Chandra [12] pre- stricted to 1. In our work, we assume that gate-level
sented a hierarchical test generator called HIPODEM realization of modules is known through a library, and
which also uses a branch-and-bound algorithm similar do not place any restrictions on the number of inputs
to PODEM [6]. In tune with the observation of [11], and outputs of a macro. Pomeranz and Reddy do not
HIPODEM considers only module-external faults dur- use the conventional path delay fault model for macro-
ing test generation. Murray and Hayes proposed atech-level circuits since the internal details of macros are
nigue calledPathPlan in which test data for modulesis unknown; they introduced new fault models analogous
described using precomputed stimulus/response pairs.to gate delay and gate-level path delay fault models.

Hierarchical Delay Test Generation 233

In comparion, our hierarchical delay tester as well as The computational effort in synthesizing the library is
the hierarchical path selection algorithms deal with the also not significant, since it is a one-time effort.
conventional gate-level path delay fault model, and it We employ 5-valued logic (see [3]) in our test gen-
is therefore easier to interface our tools with existing eration algorithm. Such a logic system consists of five
delay test software such as delay fault simulators. logic values, namelyS0 (static 0),S1 (static 1),U0
This paper is organized as follows. In the next sec- (transition from unknown valué& to O if the corre-
tion, we describe the notion afiodule-level paths a sponding line is not on the path being tested, or transi-
modular circuit and discuss a hierarchical path selec- tion from 1 to O if the line is on the path being tested),
tion algorithm. In Section 3, we describdODET , U1, andX X (don’t care). We generate robust tests for
our module-level test generator for combinational cir- each of the selected path delay faults in the module-
cuits. We have implementddODET on Sun/SPARC level circuit, provided such a test exists for the fault
workstations; Section 4 describes experimental results under consideration.
on anumber of common hierarchical circuits. Section5

provides conclusions. 2.2. Modular Fault Model

2. Module-Level Path Selection Given the gate-level realization of a modWk we re-
fer to a path in moduléM as a module-internal path.

2.1. Assumptions Given a modular circuit, a module-level path is viewed

as a concatenation of several module-internal paths.

In our present implementation, each gate is assumedConsider the example of Fig. 1 which shows a hierar-
to have one unit delay, and the rise delay of each gate chical circuit composed of two moduléd1 andM2.
output is assumed to be equal to its fall delay. However, The pathP highlighted in the figure is

the above two assumptions can be easily relaxed by

appropriately modifying the cell library information. P= (X1, X, X5, X7, X5, Y1. Ya Y. X7).
We assume that apart from a hierarchical netlist of the P can be viewed as a chain of two module-internal
circuit, we are also given a netlist description of each paths, namelyP; = (X1, X1, X5, X7, Xs) throughM 1
module type. Thus our delay testgenerator assumes theand (Xs, v, Va, Vs, X7) throughM2. We now intro-
presence of anodule library for each module in the duce the notion ofirtual fanoutsin the module-level
library, we also assume that the following information representation of circuit; if there afemodule-internal

is available. paths from an input pia to an output pirb of a module,
we abstract these paths in the form of “virtual fanouts”
at pina. In the above example, there are 3 paths from
pin Xs to pin X7 in moduleM2. Thus, in the abstract
representation of the modular circuit (see Fig. 2) we

1. Every module-internal path is described in terms of
module-internal names.

2. Testvectors are provided for every module-internal
path.

3. Total delay for each module-internal path is avail-
able. x1

The above assumptions are realistic, since gate-level
descriptions for standard MS|-level library components *3
(such as full adders, multiplexers, decoders, compara- ** =
tors, and so on) are available from the vendors. Since xs
the modules are smallin size, itis not expensive torun a
gate-level delay test vector generator to precompute the

Fig. 1. A path in a flattened module-level circuit.

test vectors for the module-internal paths. In fact, our o
hierarchical delay tester can itself be used to synthesize :; X5 [)
the module information by selecting logic gates as the 4, M1 @ o X
building blocks. The storage overhead associated with xa ff;
the cell library is not significant in comparison to the ’—E @

amount of main memory that would have otherwise
been required had we considered a flattened netlist. Fig. 2. Modular circuit with virtual fanouts.

234 Ravikumar, Agrawal and Agarwal

show three fanouts at the piXs. The module-level
pathP in the abstract representation will be simply de-
noted asP = X4(0), X5(1), X7(0), where the notation
y(i) denotes theéth virtual fanout of nely. It is easy

to see that a module-level pahcan be uniquely con-
structed for a gate-level pathin the flattened version
of the modular circuit. The user of our modular-delay
tester must specify a path delay fault in the form of a
tuple(path, fault type, wherepathis a module-level
path andault typee {1, |}.

2.3. Path Selection

In a multiple-input, multiple-output combinational cir-
cuit, the total number of paths can be exponential in
the number of signal lines in the circuit (see Section 4).
It is impractical to consider all path delay faults dur-
ing delay testing. Li et al. gave algorithms fpath
selectionin gate-level combinational circuits [8]. As

the gate-level in accordance to Theorem 1, and finally
interpreting the gate-level paths as module-level paths.
The second approach (called Approach 2 hereafter)
works directly on a hierarchical netlist, using precom-
puted information about module-internal paths. Our
path selection algorithms can handle mixed-level cir-
cuits containing modules as well as logic gates.

The flattening procedure required in our first ap-
proach (denoted by Approach 1 hereafter) generates
a gate-level netlist from the given hierarchical netlist,
while retaining the line numbers of the module-level
nets in the corresponding gate-level circuit. Such a
numbering is useful when the selected paths are to
be mapped back to the module-level. The gate-level
path selection procedure has two preprocessing steps,
namelyMark_DepthandMark_Level The former pro-
cedure traverses the circuit graph from primary outputs
to the primary inputs, marking depths for eachline. The
depth of aling is defined as the maximum distancé of

the cost of generating robust delay tests for a circuit from any primary output. The latter procedure makes a
depends on the number of paths in the fault set, it is forward pass throughthe circuitgraph and marks levels
desirable that the selected set of paths SP be as smalfor each lind; the level of a lind is the maximum dis-

as possible. At the same time, it is important that the tance fromany primaryinputto lineThese procedures
selected paths are fairly representative of all the paths are described in detail in [15]. After the preprocessing,
in the circuit, and, if a delay fault exists in the circuit We selectlongestdelay paths through every primary in-
then we are more likely to detect the fault by testing Putand every fanout branch except the ones having the
for only the selected paths. The most popular way to highest depth at the fanout stem. The gate-level paths
perform path selection [8] at gate level is to select a are then mapped to module-level paths using the line
set of paths SP in the logic circuit such that for each number information stored during the flattening step. In
lead| in the given circuitC there is at least one target Our experimentation, we found that the Approach 1 for
path in SP, whose propagation de|ay is no less than thepath selection is inefficient (See Section 4), we there-

delay of any other path containing the ldadBBesides

fore developed a path selection algorithm which works

reducing the number of paths to manageable propor- directly on module-level netlists.

tions, this strategy also generates a wide spectrum of

paths from the point of view of testability and the prop-

agation delays. Based on this criteria for path selection

alongest path theorerhas been derived in [7] which
states.

Theorem 1 (Heragu et al.). In a circuit, the mini-

2.4. Module-Level Path Selection

Path selection at module-level makes use of the con-
cept of virtual-fanouts introduced earlier (Section 2.2).
Three preprocessing procedures are involved, namely,

mum set of paths from inputs to outputs such that each Virtual_Fanouts Mark Level and Mark Depth The

circuitlead is included in at least one path whose prop-

agation delay is no less than the delay of any path con-

taining the lead comprises the longest path thro(egh
all primary inputs and(b) all fanout branches except
the ones having the highest level numbeith respect
to a primary output at their fanout stem.

We have implemented two approaches for per-
forming path selection at hierarchical level The
first technique involves flattening of the module-level

first procedure creates virtual fanouts for every input
line | of every moduleM if the number of module-
internal paths fronh to any of the output lines df1 is
more than one. The procedures for marking the level
and the depth for the lines in the module-level circuit
are shown in Figs. 3 and 4.

The proceduréiark_ Depth Hierarchical shown in
Fig. 3 uses a breadth-first search algorithm to mark the
depths of all the signal lines in a hierarchical represen-
tation of the circuit. The primary outputs of the circuit

description to gate-level, performing path selection at are entered into a que@and their depths are marked

procedure Mark Depth-Hierarchica{)

begin

Hierarchical Delay Test Generation 235

Let M be the set of all modules in the netlist;
Let L be the set of all lines in the netlist;
Let PO be the set of all primary output lines;

Q :=NIL;

for all linesl e POdobegin
|.depth=1;
enterl into queueQ);

end
while (Q # NIL) dobegin
Delete entryt from Q;

/* Queue for Breadth-first Search */

Let m be a module irM such that is

the output ofm;

Let | be the set of inputs to;

for each linei in | dobegin

Let F be the set of fanouts of line
Let f be a fanout branch i which feeds gaten;
LetV be the set of virtual fanouts from fanofitto outputl;
for each virtual fanout in V dobegin
v.depth:=|.depth+ delay(f _v_1);
f.mark:= f.mark+ 1,
if (f.mark = # virtual fanouts off) then

begin

f.depth:= max(v.depth) Vv € V;
i.mark:=i.mark+ 1;

end
end

if (i.mark = number of fanout branches dfthen

begin

i.depth:= max(f.depth) for all f in F;
if i is not a primary input then
enteri into queueQ;

end
end
end
end

Fig. 3. ProcedurMark_Depthfor a hierarchical netlist. The notatioin.v_|
denotes a module-internal path frofrto| throughw.

as 1. The queu® is used by the breadth-first search
algorithm to traverse the signal lines in the circuit. An
entryl is deleted from the queu®@ and the modulen,
whose output is, is identified. The inputs to the mod-
ule m are examined one by one. An inpud module

The above computation is repeated for all signal lines
of the circuit traversing the circuit from the primary
outputs of the circuit towards the primary inputs of the
circuitin a breadth-first-search manner. The procedure
Mark_LevelHierarchicalis similar to the procedure for

m may have a number of physical fanout stems, and marking depths, exceptthatthe circuitis traversed from
each fanout branch may be associated with a set ofthe primary input side to the primary output side in a
virtual fanouts. The delay of the module-internal path breadth-first search manner.

from a virtual fanout branch of the physical fanout
branchf to the output is computed using the proce-
duredelay The depth of the virtual fanout braneh

Now we extend Theorem 1 for path selection in
module-level circuits.

is computed as the sum of the path delay above andTheorem 2 (Hierarchical longest path theorem).

the depth of the primary outpuit The depth of the
physical fanout branclf is computed as the maximum

In a modular circuit the minimum set of paths from pri-
mary inputs to primary outputs such that each circuit

of the depths of all virtual fanout branches associated lead is included in at least one path whose propagation

with f. Finally, the depth of the inpuis the maximum
of the depths of all fanout branches associated with

delayis nolessthanthe delay of any path containing the
lead comprises the longest path throughall primary

236 Ravikumar, Agrawal and Agarwal

procedure Mark_Level-Hierarchica{)

begin

Let M be the set of all modules in the netlist;
Let L be the set of all lines in the netlist;
Let Pl be the set of all primary inputs;

Q :=NIL;

for all linesl € Pl dobegin
I.level=1;
enterl into queueQ;

end

while (Q # NIL) dobegin
delete entry from Q;
Let F be set of all fanout branches of lihe
for each fanoutf in F dobegin

end
end
end

Determinem in M which hasf as an input;
m.mark:= m.mark+1;
Let V be the set of all virtual fanouts from
fanout f of linel at the input of modulen;
for each virtual fanout in V do
v.level:= | .level+ delay(v);
if (m.mark= # of inputs tom) then begin
Let O be set of all output lines of modute;
for each output lin® in O dobegin
LetU be the set of all virtual fanouts
ending at outpub of m
o.level= max(u.depth Yu € U;
if ois nota primary outputhen
entero into queueQ;
end
end

Fig. 4. ProceduréMark_Levelfor a hierarchical netlist.

inputs(b) all fanout branches except the ones having
the highest deptkwith respect to a primary outpuat
their fanout stemand (c) all virtual fanout branches
except the ones having the highest depth at their virtual
fanout stem.

The algorithm for path generation in a modular
circuit based on the hierarchical longest path the-
orem consists of three phases and is described in
Figs. 5, 6, and 7. These subprocedures correspond
to criteria (a), (b) and (c) of the hierarchical longest
path theorem respectively. The procedttierarchi-
cal_Path . SelectPhasd identifies the set of longest
paths from each primary input to a primary output. For
a given primary input, the while loop in the proce-
dure identifies a longest path frdnto a primary out-
put by traversing forward in the circuit frointo sig-
nals that are reachable frdnuntil a primary output is
encountered. During this forward traversal, thepths
of the signal lines computed using tihdark Depth
procedure are utilized. For a lihawe identify a fanout
branch f max such thatf max the the highest depth
among all the fanout branchesloSimilarly, we iden-
tify the virtual fanout branclvmaxsuch that its depth
is highest among the virtual fanout branches associated
with f max The path fronh to vmaxis concatenated to
the longest path identified thus far. Tiaile loop ter-
minates when a primary output is encountered during
the forward traversal.

procedure HierarchicalPath SelectPhasel)

/* Initialize a path */

Let F be the set of fanouts of lirle
fmax= f such thatf.depthis maximumv f € F;
Let m be the module itM such that

fmax is an input tam;

LetV be the set of all virtual fanouts

from fanoutf of | at the input of modulen;
vmax= v such that.depthis maximumvv € V;
path = concatenate (patH ,vmax);
Determind such that is the output line ofm

which is fed by vmax;

begin
Let M be the set of all module in the netlist;
Let L be the set of all lines in the netlist;
Let Pl be the set of all the primary inputs;
for each lind in Pl dobegin
path = NULL;
while (I is not a primary output) dbegin
end
print path;
end
end

Fig. 5. Longest paths from primary inputs in a hierarchical netlist.

Hierarchical Delay Test Generation 237

procedure Hierarchical_Path SelectPhase?2)

begin
for each lind in L dobegin

Let E be the set of all fanout branches of

line | except fmax;

for each fanoue in E dobegin

path = NULL;

Let m be the module fed by fanoetof linel;
Let V be the set of all virtual fanouts from fanoéit
of line | at the input of modulen;
vmax= v such thaw.depthis maximumvv € V;
path = concatenate(patH ,umax);
Determineo such thab is the output line ofn fed by vmax;
while (o is not a primary output) dbegin
Let F be the set of fanouts of ling
fmax= f such thaf.depthis maximumv f € F;
Let m be the module iM such that fmax is an input tm;
LetV be the set of all virtual fanouts
from fanout f of line o at the input of modulen;
vmax= v such that.depthis maximumv v € V;
path = concatenate(patho,vmax);
Determineo such thab is the output line ofm fed by vmax;

end

Letm be a module irM such that is the output ofn;
Let | be the set of input lines tm;
imax =i such that .levelis maximumvi € I;
while (imax is not a primary input) dbegin
Determinev such thab is the virtual fanout
with the longest delay
from imax to module output;
path = concatenateifmaxw, path);
Let m be a module irM such thai maxis the output ofn;
Let | be the set of input lines tam;
imax=i such that.levelis maximumvi < I;

end
print path;
end
end
end

Fig. 6. Longest paths corresponding to criterion (b) of Theorem 2.

Procedure HierarchicalPath.SelectPhas® of

whereas the seconahile loop maximizes the signal

Fig. 6 applies Rule (b) of the hierarchical longest levelateach stage. This ensures that the path identified

path theorem. For every signal linein the circuit,

for each fanout branck is a longest path. The pro-

the procedure considers all the fanout branches ex- cedureHierarchical Path SelectPhase of Fig. 7 ap-

cept those which correspond fanax, i.e., a branch

plies Rule (c) of the hierarchical longest path theorem.

whose stem has the highest level with respect to a pri- The procedure is similar in spirit tdierarchical_ Path.

mary output. Note that maxhave been identified by
the procedureéHierarchical Path SelectPhasel For
each selected fanout braneh a longest path from
a primary inputi to a primary outpub is identified
using the twowhile loops in the procedurélierar-
chical Path SelectPhas®. The first loop traverses
from branche forward towards the primary outputs
and the second loop traverses frarbackward to-
wards the primary inputs. In moving forward, the first
while loop maximizes the signalepthat each stage,

SelectPhase.

The performance of hierarchical path selection al-
gorithms on several of module-level circuits will be
described in Section 4.

3. Test Generation

MODET (MOdular DElay Tester) isa PODEM-based
[6] test generation procedure. PODEM is a automatic

238 Ravikumar, Agrawal and Agarwal

procedure Hierarchical Path SelectPhas&()
for each lind in L dobegin
Let F be the set of all fanout branches of lihe
for each fanoutf in F dobegin
Let V be the set of all virtual fanouts df;
vmax= v such thaw.depthis maximumvv € V;
LetU c V such that) contains alb € V except vmax;
for each virtual fanouti in U do begin
path = NULL,;
path = concatenate (pathu,)
Let m be the module fed by fanout of linel;
Determineo such thab is the output line ofn fed byu;
while (o is not a primary output) do
begin
Let F be the set of fanouts of line
fmax= f such thaf.depthis maximumv f € F;
Let m be the module ifM such that fmax is an input tm;
LetV be the set of all virtual fanouts from fanoéitof line o
at the input of modulen;
vmax= v such that.depthis maximumvv € V;
path = concatenate(patho, vmax);
Determineo such thab is the output line ofn fed by vmax;
end
Let m be a module irM such that is the output ofn;
Let | be the set of input lines tm;
imax =i such thai.levelis maximumvi € I;
while (imax is not a primary input) do
begin
Determinev such thab is the virtual fanout with the longest delay
from imax to module output;
path = concatenateimaxv , path);
Let m be a module irM such thaimaxis the output ofm;
Let | be the set of input lines tm;
imax =i such thati.level is maximumi € |;
end
print path;
end
end
end

Fig. 7. Longest paths corresponding to criterion (c) of Theorem 2.

test pattern generator for combinational logic circuits to the off-path lines of the modules on path This is
for single stuck-at faults; it is based on the paradigm calledoff-path sensitizationand is determined by the
of branch-and-bound. PODEM implicitly examines all precomputed test vectors for the module types stored in
possible combinations of primary inputs as possible module library. Off-path sensitization results in a list
test vectors for a given fault. A high level description of objectiveso be achieved, where an objectigev)
of MODET s given as a flowchart in Fig. 8. is the assignment of a logic valueto an off-path line
| in the circuit. Consider generating a test for the fault
(a(l) f(2)i(0),Ul) inthe 2-bit ripple carry adder of
3.1. Determine Objectives and Prioritize them Fig. 9. The primary objective is to propagate a rising
transition U 1) from primary inputa(1)* to line f and
Given a path delay faulp, type, delay test genera- from line f (2) to primary output (0).
tion attempts to propagate the desired transition type The gate-level implementation of the full adder in
from the primary input in which the pathis rooted to our library is shown in Fig. 10. The precomputed li-
the primary output wher@ terminates. Such a prop- brary information for the full adder is summarized in
agation requires that proper logic values be assignedTable 1. The gate-level pati74) corresponds to the

Determine
Objectives

l

Prioritize
Objectives

F

Backtrace
(Assign PI)

I

Backtrack:
Change PI

Imply

All

Objectives
Met?

Fig. 8. MODET algorithm.

Fuil adder

!

[

Full adder

Fig. 9. Determining objectives for test generation.

Hierarchical Delay Test Generation 239

Table 1 Library information for full adder.

Gate level Hierarchical Parity Testvectors Test vectors

path path of path 0 @)
174 1040 even UOS1UO U1U1SO
18124 1140 even Uo uo S1 Ul S0Ul

169105 1250 even U0 S0 SO Ul S0 SO
179115 1350 even U0 S1S1 U1s1s1
0169115 1450 odd U0 SO0 S1 Ul1S0Ss1
179105 1550 odd U0 S1 S0 U1l S1S0
274 2040 even S1U0 U0 Ulu1lso
28124 2140 even UouU0S1 Soulul
269105 2250 even S0 U0 SO S0 U1 S0
279115 2350 even S1U0S1 S1uUls1
269115 2450 odd S0 U0 Ss1 SO0 uU1S1
279105 2550 odd S1 U0 S0 S1U1S0

3124 3040 even S1U0 U0 SouUl1Ul
U0OS1U0 Ul1sSoul

3105 3150 even S0 S0 U0 S0 SO0 Ul
S1S1U0 S1S1U1l

3115 3250 odd S0 S1 U0 SO0S1Ul

S1S0U0 S1S0Ul

hierarchical patki1_04_0); the notatiora_j in a hierar-
chical path denotes thigh fanout of linea. The parity

of a path denotes the number of inversions along the
path. The test vectgtJ0 U0 S1) is a robust test for
the falling transition delay fault on the path 1 4 0).
Similarly, (U1 SO U1) is a robust delay test for the
rising transition delay fault on the patth_1 4.0).

The hierarchical patta(1) f) inthe circuitof Fig. 9
corresponds to the hierarchical pathl 4.0) in the full
adder module. Since the path delay fault{aql) f)
is a rising path delay fault, we look up the robust test
for a rising path delay fault ofl._1 4.0) from Table 1.
This test vector happens to kg1 SO U1). Further
noting that the parity of the path 1 4.0) is even, we
must setb to SO andc to U1 to propagate the rising
transition tof. This leads us to the objectivie, S0)

Fig. 10. Gate level diagram of a full adder.

240 Ravikumar, Agrawal and Agarwal

and(c, U1). Similarly, the reader may verify that the

objectiveqd, S0) and(e, S1) are generated by the path

delay fault(f (2) i)(U1).

Thus the precomputed tests for the path delay fault
(a(1) f,Ul)and(f(2)i,U1), stored as part of the li-
brary information for a full adder leads to the following
objectives—b, S0), (c, U 1), (d, 0), (e, S1).

From this list of objectives, one which is not already
satisfied is chosen based on the following heuristics
aimed at reducing the number of backtracks [5].

1. Order the objective list such that the entries of the

form (I, S1) or (I, SO) come before entries of the

form(,U1) or(,UO0).

. Further order the objective list in the descending
order of the degree of difficulty in satisfying an ob-
jective. A suitable measure for the degree of diffi-
culty of an objectivel, v) is the minimum distance
of line| from one of the primary inputs, signifying
that closer a line is to the primary inputs, the easier
it is to satisfy the objective.

An unsatisfied objectivé, v) is selected from the
prioritized objective list, and, to satisfy the objective, an
assignment of a valu¢ is attempted to primary input
line I. We now explain how andV are selected using
the procedur8acktrace(Fig. 11). Abackward search
is made from liné towards the primary inputs of the cir-
cuit; whenwe backtrace from an outputline of amodule
M, we may have more than one inputfwhich is yet

procedure Back Traceg()
begin

unassigned. We choose the input linehdfwhich is
closest to the primary inputs, i.e., whose distance from
the primary inputs is minimum, with the belief that it
will be easier to satisfy the objective due to its proxim-
ity to primary inputs. The valu¥ to be assigned tb
is determined from the parity of the path froro | ; if
the parity is odd, we s&f = v, else we se¥ = v.
AftervalueV is assignedto a primary inpltthe im-
plications of the assignment are determined. If there is
a contradiction between any of the objectives in the ob-
jective list and the implications of assignmédnt V,
the procedur8ack Trackof Fig. 12 is invoked. When
backtracking/ is set to an alternate value, sy, ac-
cording to the following procedure. ¥ € Sl, SO,
thenV’ € S1, 0, and, similarly, ifV € U1, UOQ, then
V' € U1,U0. If both these assignments have been
tried previously, thetv’ = X X. Thus we need not try
all four values from the se31, SO, U1, U0 at each pri-
mary input during Backirack. Thisreduces the search
space from 2to 2", wheren is the number of primary
inputs (see [16]). If the number of back tracks made
during test generation for a faultexceeds a predefined
limit, we conclude thaff is hard-to-test and terminate
test generation.

4. Experimental Results

MODET was implemented on a Sun-SPARC work-
station (16MB memory, 80 MHz speed) using about

Let M be the set of all module in the netlist;
Let L be the set of all lines in the netlist;
Let Pl be the set of all primary inputs;

Let O be the list of objectives;

Leto € O be the initial objective;

Letl € L be the objective net andbe the

objective value ob;

while (| is not a primary input) ddegin
Let m be a module ifM such that is the output ofn;

Let | be the set of input lines tm;

if (any inputi € | has valueXX) then

begin

| =i such thai.levelis minimumVi e | that are unassigned,;
if (internal path ofm corresponding to

begin

end
end
end
end

minimum level has odd paritythen

v = not();

Fig. 11. ProcedurédackTrace

Hierarchical Delay Test Generation 241

procedure Back Track()
begin
Let L be the set of all lines in the netlist;
Let Pl be the set of all primary inputs;
Let Sbe the stack of alp € PI that have been
assigned during procedure batrhce;
while (S # NULL) dobegin
pop entryp from S;
if (all alternatives have not been tried@tthen begin
make an alternative assignmentgp
pushp back intoS;
break;
end
AssignXXto p;

Carry out the implications of assignment done above;
end
end

Fig. 12 ProcedureBack Trackused inMODET .

4000 lines of C code. In this section, we report exper- and module-level circuits. Tables 2 and 3 in Section 4
imental results obtained usifndODET to bring out confirm that the size of the selected set of paths grows
the performance of our tool. Although a number of more or less linearly with circuit size as compared to
benchmark circuits are available for delay test gener- the exponential increase of the total number of paths
ation at gate-level, none are available at module level. in a circuit. The hierarchical path selection algorithm
We therefore used test circuits of our own, such as requires lesser CPU-time for modular circuits than for
ripple carry adders, parity checker trees, comparators, gate-level circuits. The savings become more signifi-
N-to-1 multiplexers, etc. cant with increase in circuit size and level of abstrac-
To study the performance of hierarchical path selec- tion. On the other hand, the approach of flattening the
tion, we experimented with alarge number of gate-level circuit and performing the path selection at gate-level

Table 2 Path selection results forbit ripple carry adders.

Modules Nets Sel. paths Time (s)
n HL GL HL GL HL GL Mapped Tot. paths HL GL Mapped
2 10 26 9 23 21 21 21 37 0.017 0.021 0.054
18 50 17 45 41 41 41 105 0.022 0.035 0.068
8 34 98 33 89 81 81 81 337 0.034 0.066 0.129
16 66 194 65 177 161 161 161 1185 0.062 0.166 0.302
32 130 38 129 353 321 321 321 4417 0.170 0.579 0.983
64 258 770 257 705 641 641 641 17025 0.632 2.501 3.807

Table 3 Path selection results forbit parity checkers.

Modules Nets Sel. paths Time (s)
n HL GL HL GL HL GL Mapped Tot. paths HL GL Mapped
2 4 6 3 5 4 4 4 4 0.012 0.014 0.034
8 14 7 13 10 10 10 16 0.013 0.018 0.041
8 16 30 15 29 22 22 22 64 0.021 0.022 0.060
16 32 62 31 61 46 46 46 256 0.027 0.036 0.102

32 64 126 63 125 94 94 94 1024 0.042 0.080

242 Ravikumar, Agrawal and Agarwal

requires more CPU-time due to the flattening and map- Table 4 Test generation results farbit ripple carry adders.
ping overheads.

Table 2 shows the results of running our path selec-
tion algorithms on an-bit Ripple Carry Adder (RCA),
2 < n < 64. For both gate-level (GL) and high-level 2 42 36 38 42 42 0 4 0.044 0.058
(HL) circuits, we show the number of modules in the 4 82 72 74 82 82 0 12 0.059 0.104
netlist, the number of nets, the number of paths se- g 15 144 150
lected, and the execution time for running the path se-
lection algorithms. In the table, the number of selected
paths are reported for both the selection approaches
discussed in Section 2. Results for Approach 1 are
given under colummMappedand for Approach 2 un-

der column HL. We observe that the number of selected btained b ina the hi hical path selecti |
paths grows more or less linearly with although the ~ © tained by running the hierarchical path selection al-

total number of paths increases sharply withThe ~ 9°rithm of Section 2 (Approach 2), and associating
path selection algorithm (Approach 2) requires more €2ch type of transitiont and |, with every selected
CPU-time on gate-level circuits. Path selection using Path P-_The backtrack limit in our experiments was
Approach 1 was found to be slower than gate-level path set to 30. With th|.s limit, we did not encounter any
selection; this can be attributed to the overheads of flat- €@5¢ of fault dropping. The n_um_ber of backtracks in a
tening the circuit and mapping the gate-level path to a gate-level delay test generation increases sharply with
modular path. We can conclude that Approach 2 is su- increase in circuit size. On the other hand, there were
perior to Approach 1 in terms of execution time, and "° Packtracks in runnin§lODET for an RCA com-
the improvement becomes more and more visible with P0S€d Of full adders as modules. This can be explained
increase in circuit size. In fact, Approach 1 has larger t,)y ob;ervmg that In a module-leyel RCA, the quec—
memory requirements during the flattening phase; for a tives mvolve either the primary inputs or the ripple
32-bit parity checker circuit (see Table 3), Approach 1 carry I|n'es..When primary inputs are mvolyed as part
failed due to the large memory requirement. The num- ofan objective, no ba_lckt_rack_or backtrqce willbe neces-
ber of paths selected in the modular circuit was almost S&¥- Even when objectives included ripple carry lines,

identical to that in the gate-level circuit. The savings & found that no backtracks were necessary to satisfy
in execution time become significant for larger values the objectives. We obtained 100% fault coverage for all

of n. the circuits. We can conclude from Table 4 that the test

We conducted similar experiments for three other geneLe_ltloln tm}_e IS Iowgrwh:MODET is used on ?’II-
classes of circuits, namely, comparators, multiplexers, €rarchical netlists. Using the UNIX program profiler,
and parity checkers. To implement asbit compara- we analyzed that this saving in time was mainly due to
tor, we used a half adden,— 1 copies of full adders faster logic simulation at hierarchical level. There is
inverters 2-input OR and NOR gates. Awinput " no entry in Table 5 for a 64-bit gate-level RCA since
multiplexer can be constructed usimg— 1 2-input the test generator fails due to lack of memory. '
multiplexers using a multiplexer tree construction. An 1aples4and 6 show the result?ODET for n-bit
n-bit parity checker can be made from 2-bit EXOR parity checkers and multiplexer trees respectively. The
gates. The results obtained for all these classes of cir-
cuits were similar to those for RCA circuits. Table 5 Test generation results farbit parity checkers.

Experiments on test generation were performed to
compare the time taken and the number of back tracks N
required for test generation for a module level descrip-
tion as against gate-level. Table 4 shows the results of 2 8 8 8 8 8 0 0 0.032 0.037
MODET on ann-bit ripple-carry adder, Z n < 64. 4 20 20 20 20 20 4 3 0.038 0.044
For each value ofi, we show the number of delay g 44 44 44 44 44 12 12 0.054 0.075
path faults, the number of test vectors, the number of ;¢
faults detected, the number of backtracks, and the test,,
generation time. The fault set for each circuit was

#vectors #detected # backtracks Time (s)
n #faults HL GL HL GL HL GL HL GL

162 162 O 56 0.120 0.262
322 288 302 322 322 O 240 0.425 0.902
642 576 606 642 642 O 992 1.497 4.067
64 1282 1152 1282 0 7.734

#vectors # detected # backtracks Time (s)
#faults HL GL HL GL HL GL HL GL

92 92 92 92 92 28 33 0.119 0.213
188 188 188 188 188 60 78 0.401 0.801

Table 6 Test generation results farbit multiplexers.

vectors # detected # backtracks Time (s)

n #faults HL GL HL GL HL GL HL GL

2 8 6 6 8 8 0 0 0.031 0.33
20 16 16 20 20 0 0 0.036 0.043
16 92 76 76 92 92 36 0 0.114 0.143
32 188 156 156 188 188 116 0 0.355 0.391

results are similar to those obtained for a ripple carry

adder. In our experimentation MODET using mux-

trees, we observed that there were no backtracks in a 4
gate-level multiplexer; whereas backtracks were neces-
sary for test generation at a hierarchical level. Despite
this fact, speedup in test generation was observed since s,
5-valued logic simulation is much faster for a hierar-

chical circuit.

5. Conclusion

We have presented a scheme for the generation of
delay tests in circuits described at the module level.

This scheme, callelODET , includes software tools

for Path Selection and Automatic Test Generation.
MODET is also applicable to mixed-level circuits;

it considers a path delay fault model at module-level
We have described novel techniques for
module-level path selection and test generation. A ma- 10-

circuits.

jorfeature o0MODET which contributes to itsimpres-

sive performance is the extensive use it makes of library
information of the modules handled by it. We have
tested our tools on several circuits at various levels of 12.
abstraction and found that in each case there were large
gains in terms of CPU time and memory requirements
for hierarchical circuits as compared to their gate-level

implementations.

Acknowledgments

We express our gratitude to Prof. S.M. Reddy of Uni-
versity of lowa for his constant encouragement and
helpful suggestions during this work. Discussions with 16.
Ajay Mittal and Gurjeet Saund were very useful. We

are also thankful to the anonymous referees and the

Hierarchical Delay Test Generation 243

Note

1. a(l) refers to the second virtual fanout of liae

References

. G.L. Smith, “Model for Delay Faults Based on Patti&bceed-
ings of IEEE International Test Conferend®85, pp. 342—-349.

2. K.D. Wagner, “The Error Latency of Delay Faults in Combina-

tional and Sequential CircuitsProceedings of IEEE Interna-
tional Test Conference 985, pp. 334-341.

. C.J. Lin and S.M. Reddy, “On Delay Fault Testing in Logic

Circuits,” IEEE Transactions on CADVol. CAD-6, No. 5,

pp. 694-703, Sept. 1987.

A.K. Majhi, J. Jacob, L.M. Patnaik, and V.D. Agrawal, “An

Efficient Automatic Test Generation System for Path Delay

Faults in Combinational CircuitsProceedings of the 8th In-

ternational Conference on VLSI Desidi995, pp. 161-165.

S. Patil and S.M. Reddy, “A Test Generation System for Path

Delay Faults,” Proceedings of International Conference on

Computer-Aided Desigri989, pp. 40—43.

. P. Goel, “An Implicit Enumeration Algorithm to Generate Tests
for Combinational Logic Circuits,JEEE Transactions on Com-
puters Vol. C-30, No. 3, pp. 215-222, March 1981.

. K.Heragu, V. D. Agrawal, and M.L. Bushnell, “Statistical Meth-
ods for Delay Fault Coverage Analysi®foceedings of the 8th
International Conference on VLSI Desidi995, pp. 166-170.

. W.N. Li, S.M. Reddy, and S. Sahini, “On Path Selection in Com-
binational Logic Circuits,’Proceedings of the 25th ACM/IEEE
Design Automation Conferenck988, pp. 142-147.

9. D. Bhattacharya, P. Agrawal, and V.D. Agrawal, “Test Gener-

ation for Path Delay Faults Using Binary Decision Diagrams,”
IEEE Transactions on Computeigl. 44, No. 3, pp. 434-447,
March 1995.

M. Abromovici, M.A. Breuer, and A.D. FriedmaBjgital Sys-
tems Testing and Testable DesigH. Freeman, 1990.

11. J.D. Calhoun and F. Brglez, “A Framework and Method for

Hierarchical Test GeneratiodEEE Transactions on Computer-
Aided DesignVol. 11, No. 1, pp. 45-67, Jan. 1992.

S.J. Chandra and J.H. Patel, “A Hierarchical Approach to Test
Vector Generation,Proceedings of the 24th IEEE/ACM Design
Automation Conferencd 987, pp. 495-501.

13. T.M. Sarfert, R.G. Markgraf, M.H. Schulz, and E. Trischler,

“A Hierarchical Test Pattern Generation System Based on
High-level Primitives,”IEEE Transactions on Computer-Aided
Design Vol. 11, No. 1, pp. 34-44, Jan. 1992.

. I. Pomeranz and S.M. Reddy, “On Testing Delay Faults in
Macro-based Combinational Circuit®toceedings of the 30th
ACM/IEEE Design Automation Conferend®94, pp. 332-339.

15. G.S. Saund, N. Agrawal, and P. Agarwal, Hierarchical Testing

and Testability Analysis, Master's Thesis, Electrical Engineer-
ing, IIT Delhi, India, May 1995.

S. Patil, An Automatic Test Pattern Generator for Delay Faults
in Logic Circuits, Master’s Thesis, Electrical and Computer En-

gineering, University of lowa, May 1987.

editor of JETTA for their comments which helped us ¢ p. Ravikumar obtained his Ph.D. in Computer Engineering from

in improving the original draft of this paper.

the Department of Electrical Engineering Systems, University of

244 Ravikumar, Agrawal and Agarwal

Southern California (1991). He received a Master of Engineering de- currently a member of the technical staff at S3 India, where he works
gree in Computer Science from the Department of Computer Science as a computer architect and a VLSI design engineer. His research
and Automation, Indian Institute of Science (1987). He obtained a interests are in the areas of hierarchical testing and fault analysis,
Bachelor of Engineering degree in Electronics from Bangalore Uni- and high-performance computer architecture.

versity (1983). During 1991-1995, he served the Department of
Electrical Engineering, Indian Institute of Technology, Delhi as an
Assistant Professor. Since 1995, he is an Associate Professor in the
Department of Electrical Engineering, IIT Delhi. He is the author
of the book Parallel Algorithms for VLSI Layout Design published

by Ablex Publishers, New Jersey (1996). He is the Indian editor of
the International Journal of VLSI Design published by Gordon and
Breach. He serves on the editorial committee of the journal “Com-
puters and Informatics” published by the Computer Society of India.
His research interests are in the areas of high-level synthesis and
testing of VLSI circuits and high-performance computing.

Parul Agarwal was born in Delhi, India, on December 9, 1973. She
received a Bachelor of Technology degree in Electrical Engineering
from the Indian Institute of Technology, Delhi in 1995. She is cur-
rently doing her M.S. in computer science in University of Michigan,
Ann Arbor, Michigan. Her research interests include VLSI design
and testing, VLSI CAD, distributed systems and hardware/software
codesign. She is a recipient of the Rackham fellowship for graduate
studies at University of Michigan. She was awarded merit prizes at
the Indian Institute of Technology for standing in the top 2 percent
of the class. She also got selected for an exchange program to Uni-
versity of Masachussetts, Amherst in 1993 and is a recipient of the
Nitin Agrawal obtained a Bachelor of Technology degree from prestigious National Talent Search scholarship which is awarded to
the Department of Electrical Engineering, IIT Delhi in 1995. He is less than 0.25% of 3,00,000 applicants nationwide.

