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Abstract. Delay testing is used to detect timing errors in a digital circuit. In this paper, we report a tool called
MODET for automatic test generation for path delay faults inmodularcombinational circuits. Our technique
uses precomputed robust delay tests for individual modules to compute robust delay tests for the module-level
circuit. We present alongest path theoremat the module level of abstraction which specifies the requirements for
path selection during delay testing. Based on this theorem, we propose a path selection procedure in module-level
circuits and report efficient algorithms for delay test generation.MODET has been tested against a number of
hierarchical circuits with impressive speedups in relation to gate-level test generation.
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1. Introduction

For today’s high speed integrated circuits, it is as im-
portant to verify the timing behaviour of a circuit as it
is to test the circuit for static faults such as the pop-
ular “stuck-at” faults. The gate-delay and the path-
delay fault models were introduced [1, 2] to test for
the presence of timing faults in the circuit due to which
the circuit may fail to function properly at the design
clock speed. Between these two fault models, the path
delay fault model has prevailed as the more popular

∗Formerly with the Indian Institute of Technology, New Delhi, where
this work was carried out.

model and is used in this paper; a path delay fault is
characterized by a tuple〈p, δ〉, wherep is a path from
a primary input of the circuit to a primary output, andδ

is thetypeof transition that must be propagated along
path p. The transition type can be a falling transition
↓ or a rising transition↑. A path delay is said to have
occurred on pathp if the transition of typeδ fails to
propagate across the path within time equal to the clock
period. A pair of test vectors must be applied to test for
a path delay fault [3]. Many efficient algorithms have
been reported in the literature for generation of delay
tests [3–5]. However, generating delay tests for a cir-
cuit of VLSI complexity can be quite time consuming
due to several reasons (a) The number of paths, and
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hence the number of path delay faults, can be exces-
sively large (b) The test generation for a single delay
fault can be time consuming since most test generators
used PODEM-like [6] backtracking algorithms and (c)
When the circuit description is available at block-level
(or macro-level), an overhead is encountered in the flat-
tening of the netlist to gate-level. The situation can be
improved in the following ways. Efficientpath selec-
tion algorithms [7, 8] can be used to reduce the size of
the fault set. Improved delay test generators (such as
the FAN-based algorithm described in [4] or the algo-
rithm based on binary decision diagrams described in
[9]) can reduce the test generation time by reducing the
number of backtracks or through the use of algebraic
techniques). To alleviate the problem of flattening the
hierarchical netlist, we propose in this paper a scheme
to perform delay test generation at the module level
itself. A modulein this paper is a combinational logic
block consisting of one or more logic gates; examples
of modules are full adders, multiplexers, comparators,
and so on. Our experimental results show that hier-
archical delay testing can provide orders of magnitude
speedup over gate-level test generation. To provide fur-
ther speedups, we also report a path selection algorithm
which works on hierarchical netlists.

Hierarchical test generation has been known for
stuck-at faults. Well known test generation algorithms
such as theD-algorithm and PODEM [10] have been
extended to work for module-level circuits. As part
of the OASIS design automation package, a test gen-
erator for stuck-at faults, called MODEM, is available
[11]. MODEM, or module-oriented decision making,
is an extension of PODEM and is applicable for cir-
cuits which contain small macros such as EXOR gates.
Calhoun and Brglez observed an interesting fact with
respect to hierarchical testing [11]. The authors clas-
sified stuck-at faults into module-internal and module-
external faults, depending on whether a fault appears
on a line which is internal to a module or on a line
which connects two or more modules. It was observed
that tests which were generated with module-external
faults as targets also tend to cover most of the module-
internal faults as well. Patel and Chandra [12] pre-
sented a hierarchical test generator called HIPODEM
which also uses a branch-and-bound algorithm similar
to PODEM [6]. In tune with the observation of [11],
HIPODEM considers only module-external faults dur-
ing test generation. Murray and Hayes proposed a tech-
nique calledPathPlan, in which test data for modules is
described using precomputed stimulus/response pairs.

The stimulus/response files are processed symbolically
using techniques derived from artificial intelligence.
The test generation algorithm using in PathPlan is a
variant of theD-algorithm.

Sarfert et al. [13] present a hierarchical test genera-
tion scheme for stuck-at faults in large combinational
circuits. The authors distinguish between high-level
primitives (HLP) and gate-level representations (GLR)
of the primitives. Thus ak-input multiplexer can be
viewed as an HLP or a black box withk data inputs,
dlog2 ke control inputs, and a single output. An HLP
may be associated with several GLRs. For instance,
a GLR associated with 2-input multiplexer consists of
two two-input AND gates and one two-input OR gate.
Stuck-at faults that are internal to a GLR can betrans-
ferred to the inputs of the corresponding HLP by con-
sidering fault collapsing rules such as fault equivalence
and fault dominance. However, some faults internal to
a GLR cannot be transferred to the inputs of the corre-
sponding HLP; in a hierarchical representation of the
circuit, such faults will remaininternal to the corre-
sponding HLP. Tests can be generated for faults which
are at the boundaries of an HLP without flattening the
HLP to its GLR. On the other hand, the ATG algo-
rithm of [13] expands an HLPX to its GLR if there
are internal faults associated withX only when the in-
ternal faults of X are under consideration. Thus the
speed and memory advantage in [13] comes predomi-
nantly due to thisselective flattening. The strategy in
MODET differs from [13] in a fundamental way in
that, during test generation, flattening of a high-level
primitive to its gate-level representation is unnecessary.
In MODET , we find a sufficient number of path delay
faults at thehierarchical levelbased on alongest path
theoremas will be explained in Section 2.

Recently, Pomeranz and Reddy [14] have reported
a test generator for circuits composed of macro blocks
when the internal gate-level implementation of the
macros are unknown. Thus their technique is useful
in technology-mapped circuits implemented as FPGAs
or PLAs; it is assumed that the truth table of the macro
is known and the number of outputs per macro is re-
stricted to 1. In our work, we assume that gate-level
realization of modules is known through a library, and
do not place any restrictions on the number of inputs
and outputs of a macro. Pomeranz and Reddy do not
use the conventional path delay fault model for macro-
level circuits since the internal details of macros are
unknown; they introduced new fault models analogous
to gate delay and gate-level path delay fault models.
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In comparion, our hierarchical delay tester as well as
the hierarchical path selection algorithms deal with the
conventional gate-level path delay fault model, and it
is therefore easier to interface our tools with existing
delay test software such as delay fault simulators.

This paper is organized as follows. In the next sec-
tion, we describe the notion ofmodule-level pathsin a
modular circuit and discuss a hierarchical path selec-
tion algorithm. In Section 3, we describeMODET ,
our module-level test generator for combinational cir-
cuits. We have implementedMODET on Sun/SPARC
workstations; Section 4 describes experimental results
on a number of common hierarchical circuits. Section 5
provides conclusions.

2. Module-Level Path Selection

2.1. Assumptions

In our present implementation, each gate is assumed
to have one unit delay, and the rise delay of each gate
output is assumed to be equal to its fall delay. However,
the above two assumptions can be easily relaxed by
appropriately modifying the cell library information.
We assume that apart from a hierarchical netlist of the
circuit, we are also given a netlist description of each
module type. Thus our delay test generator assumes the
presence of amodule library; for each module in the
library, we also assume that the following information
is available.

1. Every module-internal path is described in terms of
module-internal names.

2. Test vectors are provided for every module-internal
path.

3. Total delay for each module-internal path is avail-
able.

The above assumptions are realistic, since gate-level
descriptions for standard MSI-level library components
(such as full adders, multiplexers, decoders, compara-
tors, and so on) are available from the vendors. Since
the modules are small in size, it is not expensive to run a
gate-level delay test vector generator to precompute the
test vectors for the module-internal paths. In fact, our
hierarchical delay tester can itself be used to synthesize
the module information by selecting logic gates as the
building blocks. The storage overhead associated with
the cell library is not significant in comparison to the
amount of main memory that would have otherwise
been required had we considered a flattened netlist.

The computational effort in synthesizing the library is
also not significant, since it is a one-time effort.

We employ 5-valued logic (see [3]) in our test gen-
eration algorithm. Such a logic system consists of five
logic values, namely,S0 (static 0),S1 (static 1),U0
(transition from unknown valueU to 0 if the corre-
sponding line is not on the path being tested, or transi-
tion from 1 to 0 if the line is on the path being tested),
U1, andX X (don’t care). We generate robust tests for
each of the selected path delay faults in the module-
level circuit, provided such a test exists for the fault
under consideration.

2.2. Modular Fault Model

Given the gate-level realization of a moduleM , we re-
fer to a path in moduleM as a module-internal path.
Given a modular circuit, a module-level path is viewed
as a concatenation of several module-internal paths.
Consider the example of Fig. 1 which shows a hierar-
chical circuit composed of two modulesM1 andM2.
The pathP highlighted in the figure is

P = (X1, x1, x5, x7, X5, y1, y4, y6, X7).

P can be viewed as a chain of two module-internal
paths, namely,P1 = (X1, x1, x5, x7, X5) throughM1
and (X5, y1, y4, y6, X7) throughM2. We now intro-
duce the notion ofvirtual fanoutsin the module-level
representation of circuit; if there areβ module-internal
paths from an input pina to an output pinbof a module,
we abstract these paths in the form of “virtual fanouts”
at pina. In the above example, there are 3 paths from
pin X5 to pin X7 in moduleM2. Thus, in the abstract
representation of the modular circuit (see Fig. 2) we

Fig. 1. A path in a flattened module-level circuit.

Fig. 2. Modular circuit with virtual fanouts.
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show three fanouts at the pinX5. The module-level
pathP in the abstract representation will be simply de-
noted asP = X1(0), X5(1), X7(0), where the notation
y(i ) denotes thei th virtual fanout of nety. It is easy
to see that a module-level pathQ can be uniquely con-
structed for a gate-level pathP in the flattened version
of the modular circuit. The user of our modular-delay
tester must specify a path delay fault in the form of a
tuple〈 path, fault type〉, wherepath is a module-level
path andfault type∈ {↑, ↓}.

2.3. Path Selection

In a multiple-input, multiple-output combinational cir-
cuit, the total number of paths can be exponential in
the number of signal lines in the circuit (see Section 4).
It is impractical to consider all path delay faults dur-
ing delay testing. Li et al. gave algorithms forpath
selectionin gate-level combinational circuits [8]. As
the cost of generating robust delay tests for a circuit
depends on the number of paths in the fault set, it is
desirable that the selected set of paths SP be as small
as possible. At the same time, it is important that the
selected paths are fairly representative of all the paths
in the circuit, and, if a delay fault exists in the circuit
then we are more likely to detect the fault by testing
for only the selected paths. The most popular way to
perform path selection [8] at gate level is to select a
set of paths SP in the logic circuit such that for each
leadl in the given circuitC there is at least one target
path in SP, whose propagation delay is no less than the
delay of any other path containing the leadl . Besides
reducing the number of paths to manageable propor-
tions, this strategy also generates a wide spectrum of
paths from the point of view of testability and the prop-
agation delays. Based on this criteria for path selection
a longest path theoremhas been derived in [7] which
states.

Theorem 1 (Heragu et al.). In a circuit, the mini-
mum set of paths from inputs to outputs such that each
circuit lead is included in at least one path whose prop-
agation delay is no less than the delay of any path con-
taining the lead comprises the longest path through(a)
all primary inputs and(b) all fanout branches except
the ones having the highest level number(with respect
to a primary output) at their fanout stem.

We have implemented two approaches for per-
forming path selection at ahierarchical level. The
first technique involves flattening of the module-level
description to gate-level, performing path selection at

the gate-level in accordance to Theorem 1, and finally
interpreting the gate-level paths as module-level paths.
The second approach (called Approach 2 hereafter)
works directly on a hierarchical netlist, using precom-
puted information about module-internal paths. Our
path selection algorithms can handle mixed-level cir-
cuits containing modules as well as logic gates.

The flattening procedure required in our first ap-
proach (denoted by Approach 1 hereafter) generates
a gate-level netlist from the given hierarchical netlist,
while retaining the line numbers of the module-level
nets in the corresponding gate-level circuit. Such a
numbering is useful when the selected paths are to
be mapped back to the module-level. The gate-level
path selection procedure has two preprocessing steps,
namelyMark DepthandMark Level. The former pro-
cedure traverses the circuit graph from primary outputs
to the primary inputs, marking depths for each line. The
depth of a linel is defined as the maximum distance ofl
from any primary output. The latter procedure makes a
forward pass through the circuit graph and marks levels
for each linel ; the level of a linel is the maximum dis-
tance from any primary input to linel . These procedures
are described in detail in [15]. After the preprocessing,
we select longest delay paths through every primary in-
put and every fanout branch except the ones having the
highest depth at the fanout stem. The gate-level paths
are then mapped to module-level paths using the line
number information stored during the flattening step. In
our experimentation, we found that the Approach 1 for
path selection is inefficient (see Section 4); we there-
fore developed a path selection algorithm which works
directly on module-level netlists.

2.4. Module-Level Path Selection

Path selection at module-level makes use of the con-
cept of virtual-fanouts introduced earlier (Section 2.2).
Three preprocessing procedures are involved, namely,
Virtual Fanouts, Mark Level and Mark Depth. The
first procedure creates virtual fanouts for every input
line l of every moduleM if the number of module-
internal paths froml to any of the output lines ofM is
more than one. The procedures for marking the level
and the depth for the lines in the module-level circuit
are shown in Figs. 3 and 4.

The procedureMark DepthHierarchical shown in
Fig. 3 uses a breadth-first search algorithm to mark the
depths of all the signal lines in a hierarchical represen-
tation of the circuit. The primary outputs of the circuit
are entered into a queueQ and their depths are marked
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procedure Mark Depth-Hierarchical( )
begin

Let M be the set of all modules in the netlist;
Let L be the set of all lines in the netlist;
Let PObe the set of all primary output lines;
Q := NIL; /* Queue for Breadth-first Search */

for all linesl ∈ POdobegin
l .depth= 1;
enterl into queueQ;

end
while (Q 6= NIL) dobegin

Delete entryl from Q;
Let m be a module inM such thatl is

the output ofm;
Let I be the set of inputs tom;
for each linei in I dobegin

Let F be the set of fanouts of linei ;
Let f be a fanout branch inF which feeds gatem;
Let V be the set of virtual fanouts from fanoutf to outputl ;
for each virtual fanoutv in V dobegin

v.depth:= l .depth+ delay( f v l );
f.mark := f .mark+ 1;
if ( f.mark= # virtual fanouts off ) then
begin

f.depth:= max(v.depth) ∀ v ∈ V ;
i .mark := i .mark+ 1;

end
end
if (i .mark= number of fanout branches ofi ) then
begin

i .depth:= max( f.depth) for all f in F ;
if i is not a primary input then

enteri into queueQ;
end

end
end

end

Fig. 3. ProcedureMark Depthfor a hierarchical netlist. The notationf v l
denotes a module-internal path fromf to l throughv.

as 1. The queueQ is used by the breadth-first search
algorithm to traverse the signal lines in the circuit. An
entryl is deleted from the queueQ and the modulem,
whose outputl is, is identified. The inputs to the mod-
ule m are examined one by one. An inputi to module
m may have a number of physical fanout stems, and
each fanout branch may be associated with a set of
virtual fanouts. The delay of the module-internal path
from a virtual fanout branchv of the physical fanout
branch f to the outputl is computed using the proce-
duredelay. The depth of the virtual fanout branchv
is computed as the sum of the path delay above and
the depth of the primary outputl . The depth of the
physical fanout branchf is computed as the maximum
of the depths of all virtual fanout branches associated
with f . Finally, the depth of the inputi is the maximum
of the depths of all fanout branches associated withi .

The above computation is repeated for all signal lines
of the circuit traversing the circuit from the primary
outputs of the circuit towards the primary inputs of the
circuit in a breadth-first-search manner. The procedure
Mark LevelHierarchicalis similar to the procedure for
marking depths, except that the circuit is traversed from
the primary input side to the primary output side in a
breadth-first search manner.

Now we extend Theorem 1 for path selection in
module-level circuits.

Theorem 2 (Hierarchical longest path theorem).
In a modular circuit, the minimum set of paths from pri-
mary inputs to primary outputs such that each circuit
lead is included in at least one path whose propagation
delay is no less than the delay of any path containing the
lead comprises the longest path through(a)all primary
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procedureMark Level-Hierarchical( )
begin

Let M be the set of all modules in the netlist;
Let L be the set of all lines in the netlist;
Let PI be the set of all primary inputs;
Q := NIL;

for all linesl ∈ PI dobegin
l .level= 1;
enterl into queueQ;

end
while (Q 6= NIL) dobegin

delete entryl from Q;
Let F be set of all fanout branches of linel ;
for each fanoutf in F dobegin

Determinem in M which hasf as an input;
m.mark:= m.mark+1;
Let V be the set of all virtual fanouts from

fanout f of line l at the input of modulem;
for each virtual fanoutv in V do

v.level:= l .level+ delay(v );
if (m.mark= # of inputs tom) then begin

Let O be set of all output lines of modulem;
for each output lineo in O dobegin

Let U be the set of all virtual fanouts
ending at outputo of m
o.level= max(u.depth) ∀ u ∈ U ;
if o is not a primary outputthen

entero into queueQ;
end

end
end

end
end

Fig. 4. ProcedureMark Levelfor a hierarchical netlist.

procedureHierarchical Path SelectPhase1( )
begin

Let M be the set of all module in the netlist;
Let L be the set of all lines in the netlist;
Let PI be the set of all the primary inputs;

for each linel in PI dobegin
path := NULL; /* Initialize a path */
while (l is not a primary output) dobegin

Let F be the set of fanouts of linel ;
fmax= f such thatf.depthis maximum∀ f ∈ F ;
Let m be the module inM such that

fmax is an input tom;
Let V be the set of all virtual fanouts

from fanout f of l at the input of modulem;
vmax= v such thatv.depthis maximum∀ v ∈ V ;
path := concatenate ( path ,l vmax);
Determinel such thatl is the output line ofm

which is fed by vmax;
end
print path;

end
end

Fig. 5. Longest paths from primary inputs in a hierarchical netlist.

inputs(b) all fanout branches except the ones having
the highest depth(with respect to a primary output) at
their fanout stem, and (c) all virtual fanout branches
except the ones having the highest depth at their virtual
fanout stem.

The algorithm for path generation in a modular
circuit based on the hierarchical longest path the-
orem consists of three phases and is described in
Figs. 5, 6, and 7. These subprocedures correspond
to criteria (a), (b) and (c) of the hierarchical longest
path theorem respectively. The procedureHierarchi-
cal Path SelectPhase1 identifies the set of longest
paths from each primary input to a primary output. For
a given primary inputl , thewhile loop in the proce-
dure identifies a longest path froml to a primary out-
put by traversing forward in the circuit froml to sig-
nals that are reachable froml until a primary output is
encountered. During this forward traversal, thedepths
of the signal lines computed using theMark Depth
procedure are utilized. For a linel , we identify a fanout
branch f max such that f max the the highest depth
among all the fanout branches ofl . Similarly, we iden-
tify the virtual fanout branchvmaxsuch that its depth
is highest among the virtual fanout branches associated
with f max. The path froml tovmaxis concatenated to
the longest path identified thus far. Thewhile loop ter-
minates when a primary output is encountered during
the forward traversal.
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procedureHierarchical Path SelectPhase2( )
begin

for each linel in L dobegin
Let E be the set of all fanout branches of

line l except fmax;
for each fanoute in E dobegin

path := NULL;
Let m be the module fed by fanoute of line l ;
Let V be the set of all virtual fanouts from fanoutf

of line l at the input of modulem;
vmax= v such thatv.depthis maximum∀ v ∈ V ;
path := concatenate( path ,l vmax);
Determineo such thato is the output line ofm fed by vmax;
while (o is not a primary output) dobegin

Let F be the set of fanouts of lineo;
fmax= f such thatf.depthis maximum∀ f ∈ F ;
Let m be the module inM such that fmax is an input tom;
Let V be the set of all virtual fanouts
from fanout f of line o at the input of modulem;
vmax= v such thatv.depthis maximum∀ v ∈ V ;
path := concatenate( path ,o vmax);
Determineo such thato is the output line ofm fed by vmax;

end
Let m be a module inM such thatl is the output ofm;
Let I be the set of input lines tom;
imax = i such thati .level is maximum∀ i ∈ I ;
while ( imax is not a primary input ) dobegin

Determinev such thatv is the virtual fanout
with the longest delay
from imax to module output;

path := concatenate(imax v, path );
Let m be a module inM such thatimax is the output ofm;
Let I be the set of input lines tom;
imax= i such thati .level is maximum∀ i ∈ I ;

end
print path;

end
end

end

Fig. 6. Longest paths corresponding to criterion (b) of Theorem 2.

Procedure Hierarchical Path SelectPhase2 of
Fig. 6 applies Rule (b) of the hierarchical longest
path theorem. For every signal linel in the circuit,
the procedure considers all the fanout branches ex-
cept those which correspond tof max, i.e., a branch
whose stem has the highest level with respect to a pri-
mary output. Note thatf maxhave been identified by
the procedureHierarchical Path SelectPhase1. For
each selected fanout branche, a longest path from
a primary inputi to a primary outputo is identified
using the twowhile loops in the procedureHierar-
chical Path SelectPhase2. The first loop traverses
from branche forward towards the primary outputs
and the second loop traverses frome backward to-
wards the primary inputs. In moving forward, the first
while loop maximizes the signaldepthat each stage,

whereas the secondwhile loop maximizes the signal
level at each stage. This ensures that the path identified
for each fanout branche is a longest path. The pro-
cedureHierarchical Path SelectPhase2 of Fig. 7 ap-
plies Rule (c) of the hierarchical longest path theorem.
The procedure is similar in spirit toHierarchical Path
SelectPhase2.

The performance of hierarchical path selection al-
gorithms on several of module-level circuits will be
described in Section 4.

3. Test Generation

MODET (MOdular DElay Tester) is a PODEM-based
[6] test generation procedure. PODEM is a automatic
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procedureHierarchical Path SelectPhase3( )
for each linel in L dobegin

Let F be the set of all fanout branches of linel ;
for each fanoutf in F dobegin

Let V be the set of all virtual fanouts off ;
vmax= v such thatv.depthis maximum∀ v ∈ V ;
Let U ⊂ V such thatU contains allv ∈ V except vmax;
for each virtual fanoutu in U dobegin

path := NULL;
path := concatenate ( path ,u )
Let m be the module fed by fanoutf of line l ;
Determineo such thato is the output line ofm fed byu;
while (o is not a primary output) do
begin

Let F be the set of fanouts of lineo;
fmax= f such thatf.depthis maximum∀ f ∈ F ;
Let m be the module inM such that fmax is an input tom;
Let V be the set of all virtual fanouts from fanoutf of line o

at the input of modulem;
vmax= v such thatv.depthis maximum∀v ∈ V ;
path := concatenate( path ,o vmax);
Determineo such thato is the output line ofm fed by vmax;

end
Let m be a module inM such thatl is the output ofm;
Let I be the set of input lines tom;
imax= i such thati.level is maximum∀ i ∈ I ;
while ( imax is not a primary input ) do
begin

Determinev such thatv is the virtual fanout with the longest delay
from imax to module output;

path := concatenate(imax v , path );
Let m be a module inM such thatimax is the output ofm;
Let I be the set of input lines tom;
imax= i such that i.level is maximum∀ i ∈ I ;

end
print path;

end
end

end

Fig. 7. Longest paths corresponding to criterion (c) of Theorem 2.

test pattern generator for combinational logic circuits
for single stuck-at faults; it is based on the paradigm
of branch-and-bound. PODEM implicitly examines all
possible combinations of primary inputs as possible
test vectors for a given fault. A high level description
of MODET is given as a flowchart in Fig. 8.

3.1. Determine Objectives and Prioritize them

Given a path delay fault〈p, type〉, delay test genera-
tion attempts to propagate the desired transition type
from the primary input in which the pathp is rooted to
the primary output wherep terminates. Such a prop-
agation requires that proper logic values be assigned

to the off-path lines of the modules on pathp. This is
calledoff-path sensitization, and is determined by the
precomputed test vectors for the module types stored in
module library. Off-path sensitization results in a list
of objectivesto be achieved, where an objective(l , v)

is the assignment of a logic valuev to an off-path line
l in the circuit. Consider generating a test for the fault
〈a(1) f (2) i (0),U1〉 in the 2-bit ripple carry adder of
Fig. 9. The primary objective is to propagate a rising
transition (U1) from primary inputa(1)1 to line f and
from line f (2) to primary outputi (0).

The gate-level implementation of the full adder in
our library is shown in Fig. 10. The precomputed li-
brary information for the full adder is summarized in
Table 1. The gate-level path〈174〉 corresponds to the
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Fig. 8. MODET algorithm.

Fig. 9. Determining objectives for test generation.

Fig. 10. Gate level diagram of a full adder.

Table 1. Library information for full adder.

Gate level Hierarchical Parity Test vectors Test vectors
path path of path (↓) (↑)

1 7 4 10 4 0 even U0 S1 U0 U1 U1 S0
1 8 12 4 11 4 0 even U0 U0 S1 U1 S0 U1
1 6 9 10 5 12 5 0 even U0 S0 S0 U1 S0 S0
1 7 9 11 5 13 5 0 even U0 S1 S1 U1 S1 S1
0 1 6 9 11 5 14 5 0 odd U0 S0 S1 U1 S0 S1
1 7 9 10 5 15 5 0 odd U0 S1 S0 U1 S1 S0
2 7 4 20 4 0 even S1 U0 U0 U1 U1 S0
2 8 12 4 21 4 0 even U0 U0 S1 S0 U1 U1
2 6 9 10 5 22 5 0 even S0 U0 S0 S0 U1 S0
2 7 9 11 5 23 5 0 even S1 U0 S1 S1 U1 S1
2 6 9 11 5 24 5 0 odd S0 U0 S1 S0 U1 S1
2 7 9 10 5 25 5 0 odd S1 U0 S0 S1 U1 S0
3 12 4 30 4 0 even S1 U0 U0 S0 U1 U1

U0 S1 U0 U1 S0 U1
3 10 5 31 5 0 even S0 S0 U0 S0 S0 U1

S1 S1 U0 S1 S1 U1
3 11 5 32 5 0 odd S0 S1 U0 S0 S1 U1

S1 S0 U0 S1 S0 U1

hierarchical path〈1 04 0〉; the notationa j in a hierar-
chical path denotes thej th fanout of linea. The parity
of a path denotes the number of inversions along the
path. The test vector〈U0 U0 S1〉 is a robust test for
the falling transition delay fault on the path〈1 1 4 0〉.
Similarly, 〈U1 S0 U1〉 is a robust delay test for the
rising transition delay fault on the path〈1 1 4 0〉.

The hierarchical path〈a(1) f 〉 in the circuit of Fig. 9
corresponds to the hierarchical path〈1 1 4 0〉 in the full
adder module. Since the path delay fault on〈a(1) f 〉
is a rising path delay fault, we look up the robust test
for a rising path delay fault on〈1 1 4 0〉 from Table 1.
This test vector happens to be〈U1 S0 U1〉. Further
noting that the parity of the path 11 4 0〉 is even, we
must setb to S0 andc to U1 to propagate the rising
transition to f . This leads us to the objective(b, S0)
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and(c,U1). Similarly, the reader may verify that the
objectives(d, S0) and(e, S1) are generated by the path
delay fault〈 f (2) i 〉〈U1〉.

Thus the precomputed tests for the path delay fault
〈a(1) f,U1〉 and〈 f (2) i,U1〉, stored as part of the li-
brary information for a full adder leads to the following
objectives—(b, S0), (c,U1), (d, S0), (e, S1).

From this list of objectives, one which is not already
satisfied is chosen based on the following heuristics
aimed at reducing the number of backtracks [5].

1. Order the objective list such that the entries of the
form (l , S1) or (l , S0) come before entries of the
form (l ,U1) or (l ,U0).

2. Further order the objective list in the descending
order of the degree of difficulty in satisfying an ob-
jective. A suitable measure for the degree of diffi-
culty of an objective(l , v) is the minimum distance
of line l from one of the primary inputs, signifying
that closer a line is to the primary inputs, the easier
it is to satisfy the objective.

An unsatisfied objective(l , v) is selected from the
prioritized objective list, and, to satisfy the objective, an
assignment of a valueV is attempted to aprimary input
line I . We now explain howI andV are selected using
the procedureBack trace(Fig. 11). A backward search
is made from linel towards the primary inputs of the cir-
cuit; when we backtrace from an output line of a module
M , we may have more than one input ofM which is yet

procedureBackTrace( )
begin

Let M be the set of all module in the netlist;
Let L be the set of all lines in the netlist;
Let PI be the set of all primary inputs;
Let O be the list of objectives;
Let o ∈ O be the initial objective;
Let l ∈ L be the objective net andv be the

objective value ofo;
while ( l is not a primary input ) dobegin

Let m be a module inM such thatl is the output ofm;
Let I be the set of input lines tom;

if (any inputi ∈ I has valueXX) then
begin
l = i such thati .level is minimum∀ i ∈ I that are unassigned;

if (internal path ofm corresponding to
minimum level has odd parity)then

begin
v = not(v);

end
end

end
end

Fig. 11. ProcedureBackTrace.

unassigned. We choose the input line ofM which is
closest to the primary inputs, i.e., whose distance from
the primary inputs is minimum, with the belief that it
will be easier to satisfy the objective due to its proxim-
ity to primary inputs. The valueV to be assigned toI
is determined from the parity of the path froml to I ; if
the parity is odd, we setV = v, else we setV = v.

After valueV is assigned to a primary inputI , the im-
plications of the assignment are determined. If there is
a contradiction between any of the objectives in the ob-
jective list and the implications of assignmentI = V ,
the procedureBackTrackof Fig. 12 is invoked. When
backtracking,I is set to an alternate value, sayV ′, ac-
cording to the following procedure. IfV ∈ S1, S0,
thenV ′ ∈ S1, S0, and, similarly, ifV ∈ U1,U0, then
V ′ ∈ U1,U0. If both these assignments have been
tried previously, thenV ′ = X X. Thus we need not try
all four values from the setS1, S0,U1,U0 at each pri-
mary input during BackTrack. This reduces the search
space from 4n to 2n, wheren is the number of primary
inputs (see [16]). If the number of back tracks made
during test generation for a faultf exceeds a predefined
limit, we conclude thatf is hard-to-test and terminate
test generation.

4. Experimental Results

MODET was implemented on a Sun-SPARC work-
station (16MB memory, 80 MHz speed) using about
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procedureBackTrack( )
begin

Let L be the set of all lines in the netlist;
Let PI be the set of all primary inputs;
Let Sbe the stack of allp ∈ PI that have been
assigned during procedure backtrace;
while (S 6= NULL) dobegin
pop entryp from S;

if (all alternatives have not been tried atp) then begin
make an alternative assignment top;
pushp back intoS;
break;

end
AssignXX to p;
Carry out the implications of assignment done above;

end
end

Fig. 12 ProcedureBackTrackused inMODET .

4000 lines of C code. In this section, we report exper-
imental results obtained usingMODET to bring out
the performance of our tool. Although a number of
benchmark circuits are available for delay test gener-
ation at gate-level, none are available at module level.
We therefore used test circuits of our own, such as
ripple carry adders, parity checker trees, comparators,
N-to-1 multiplexers, etc.

To study the performance of hierarchical path selec-
tion, we experimented with a large number of gate-level

Table 2. Path selection results forn-bit ripple carry adders.

Modules Nets Sel. paths Time (s)

n HL GL HL GL HL GL Mapped Tot. paths HL GL Mapped

2 10 26 9 23 21 21 21 37 0.017 0.021 0.054

4 18 50 17 45 41 41 41 105 0.022 0.035 0.068

8 34 98 33 89 81 81 81 337 0.034 0.066 0.129

16 66 194 65 177 161 161 161 1185 0.062 0.166 0.302

32 130 386 129 353 321 321 321 4417 0.170 0.579 0.983

64 258 770 257 705 641 641 641 17025 0.632 2.501 3.807

Table 3. Path selection results forn-bit parity checkers.

Modules Nets Sel. paths Time (s)

n HL GL HL GL HL GL Mapped Tot. paths HL GL Mapped

2 4 6 3 5 4 4 4 4 0.012 0.014 0.034

4 8 14 7 13 10 10 10 16 0.013 0.018 0.041

8 16 30 15 29 22 22 22 64 0.021 0.022 0.060

16 32 62 31 61 46 46 46 256 0.027 0.036 0.102

32 64 126 63 125 94 94 94 1024 0.042 0.080

and module-level circuits. Tables 2 and 3 in Section 4
confirm that the size of the selected set of paths grows
more or less linearly with circuit size as compared to
the exponential increase of the total number of paths
in a circuit. The hierarchical path selection algorithm
requires lesser CPU-time for modular circuits than for
gate-level circuits. The savings become more signifi-
cant with increase in circuit size and level of abstrac-
tion. On the other hand, the approach of flattening the
circuit and performing the path selection at gate-level
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requires more CPU-time due to the flattening and map-
ping overheads.

Table 2 shows the results of running our path selec-
tion algorithms on ann-bit Ripple Carry Adder (RCA),
2 ≤ n ≤ 64. For both gate-level (GL) and high-level
(HL) circuits, we show the number of modules in the
netlist, the number of nets, the number of paths se-
lected, and the execution time for running the path se-
lection algorithms. In the table, the number of selected
paths are reported for both the selection approaches
discussed in Section 2. Results for Approach 1 are
given under columnMappedand for Approach 2 un-
der column HL. We observe that the number of selected
paths grows more or less linearly withn, although the
total number of paths increases sharply withn. The
path selection algorithm (Approach 2) requires more
CPU-time on gate-level circuits. Path selection using
Approach 1 was found to be slower than gate-level path
selection; this can be attributed to the overheads of flat-
tening the circuit and mapping the gate-level path to a
modular path. We can conclude that Approach 2 is su-
perior to Approach 1 in terms of execution time, and
the improvement becomes more and more visible with
increase in circuit size. In fact, Approach 1 has larger
memory requirements during the flattening phase; for a
32-bit parity checker circuit (see Table 3), Approach 1
failed due to the large memory requirement. The num-
ber of paths selected in the modular circuit was almost
identical to that in the gate-level circuit. The savings
in execution time become significant for larger values
of n.

We conducted similar experiments for three other
classes of circuits, namely, comparators, multiplexers,
and parity checkers. To implement ann-bit compara-
tor, we used a half adder,n − 1 copies of full adders,
inverters, 2-input OR and NOR gates. Ann-input
multiplexer can be constructed usingn − 1 2-input
multiplexers using a multiplexer tree construction. An
n-bit parity checker can be made from 2-bit EXOR
gates. The results obtained for all these classes of cir-
cuits were similar to those for RCA circuits.

Experiments on test generation were performed to
compare the time taken and the number of back tracks
required for test generation for a module level descrip-
tion as against gate-level. Table 4 shows the results of
MODET on ann-bit ripple-carry adder, 2≤ n ≤ 64.
For each value ofn, we show the number of delay
path faults, the number of test vectors, the number of
faults detected, the number of backtracks, and the test
generation time. The fault set for each circuit was

Table 4. Test generation results forn-bit ripple carry adders.

# vectors # detected # backtracks Time (s)

n # faults HL GL HL GL HL GL HL GL

2 42 36 38 42 42 0 4 0.044 0.058

4 82 72 74 82 82 0 12 0.059 0.104

8 162 144 150 162 162 0 56 0.120 0.262

16 322 288 302 322 322 0 240 0.425 0.902

32 642 576 606 642 642 0 992 1.497 4.067

64 1282 1152 1282 0 7.734

obtained by running the hierarchical path selection al-
gorithm of Section 2 (Approach 2), and associating
each type of transition,↑ and↓, with every selected
path p. The backtrack limit in our experiments was
set to 30. With this limit, we did not encounter any
case of fault dropping. The number of backtracks in a
gate-level delay test generation increases sharply with
increase in circuit size. On the other hand, there were
no backtracks in runningMODET for an RCA com-
posed of full adders as modules. This can be explained
by observing that in a module-level RCA, the objec-
tives involve either the primary inputs or the ripple
carry lines. When primary inputs are involved as part
of an objective, no backtrack or backtrace will be neces-
sary. Even when objectives included ripple carry lines,
we found that no backtracks were necessary to satisfy
the objectives. We obtained 100% fault coverage for all
the circuits. We can conclude from Table 4 that the test
generation time is lower whenMODET is used on hi-
erarchical netlists. Using the UNIX program profiler,
we analyzed that this saving in time was mainly due to
faster logic simulation at hierarchical level. There is
no entry in Table 5 for a 64-bit gate-level RCA since
the test generator fails due to lack of memory.

Tables 4 and 6 show the results ofMODET for n-bit
parity checkers and multiplexer trees respectively. The

Table 5. Test generation results forn-bit parity checkers.

# vectors # detected # backtracks Time (s)

n # faults HL GL HL GL HL GL HL GL

2 8 8 8 8 8 0 0 0.032 0.037

4 20 20 20 20 20 4 3 0.038 0.044

8 44 44 44 44 44 12 12 0.054 0.075

16 92 92 92 92 92 28 33 0.119 0.213

32 188 188 188 188 188 60 78 0.401 0.801
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Table 6. Test generation results forn-bit multiplexers.

# vectors # detected # backtracks Time (s)

n # faults HL GL HL GL HL GL HL GL

2 8 6 6 8 8 0 0 0.031 0.33

4 20 16 16 20 20 0 0 0.036 0.043

16 92 76 76 92 92 36 0 0.114 0.143

32 188 156 156 188 188 116 0 0.355 0.391

results are similar to those obtained for a ripple carry
adder. In our experimentation onMODET using mux-
trees, we observed that there were no backtracks in a
gate-level multiplexer; whereas backtracks were neces-
sary for test generation at a hierarchical level. Despite
this fact, speedup in test generation was observed since
5-valued logic simulation is much faster for a hierar-
chical circuit.

5. Conclusion

We have presented a scheme for the generation of
delay tests in circuits described at the module level.
This scheme, calledMODET , includes software tools
for Path Selection and Automatic Test Generation.
MODET is also applicable to mixed-level circuits;
it considers a path delay fault model at module-level
circuits. We have described novel techniques for
module-level path selection and test generation. A ma-
jor feature ofMODET which contributes to its impres-
sive performance is the extensive use it makes of library
information of the modules handled by it. We have
tested our tools on several circuits at various levels of
abstraction and found that in each case there were large
gains in terms of CPU time and memory requirements
for hierarchical circuits as compared to their gate-level
implementations.
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Note

1. a(1) refers to the second virtual fanout of linea.
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