
 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

JOURNAL OF ELECTRONIC TESTING: Theory and Applications 11, 197–209 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Testability Properties of Divergent Trees∗

R.D. (SHAWN) BLANTON
Center for Electronic Design Automation, ECE Department, Carnegie Mellon University,

Pittsburgh, PA 15213-3890
blanton@ece.cmu.edu

JOHN P. HAYES
Advanced Computer Architecture Laboratory, EECS Department, University of Michigan,

Ann Arbor, MI 48109-2122
jhayes@eecs.umich.edu

Received March 20, 1996; Revised June 6, 1997

Editor: A. Paschalis

Abstract. The testability of a class of regular circuits called divergent trees is investigated under a functional fault
model. Divergent trees include such practical circuits as decoders and demultiplexers. We prove that uncontrolled
divergent trees are testable with a fixed number of test patterns (C-testable) if and only if the module function is
surjective. Testable controlled trees are also surjective but require sensitizing vectors for error propagation. We
derive the conditions for testing controlled divergent trees with a test set whose size is proportional to the number
of levelsp found in the tree (L-testability). By viewing a tree as overlapping arrays of various types, we also derive
conditions for a controlled divergent tree to be C-testable. Typical decoders/demultiplexers are shown to only
partially satisfy L- and C-testability conditions but a design modification that ensures L-testability is demonstrated.

Keywords: fault detection, fault modeling, regular circuits, interactive logic arrays, structured circuits, test gen-
eration

1. Introduction

It has long been recognized that regular logic cir-
cuits, which are constructed from identical modules
that are interconnected in a uniform fashion, are easier
to test than irregular circuits. For example, the circuit
of Fig. 1(a) is an 8-bit ripple-carry adder composed
of eight identical modules (full adders) connected as a
one-dimensional array. This adder is testable for all sin-
gle stuck-line faults [1] with eight test patterns. These
eight tests also detect any fault that alters the function
of any single module in the circuit. This testing prop-

∗This research was supported by the National Science Foundation
under Grant No. MIP–9503463.

erty is true for ann-bit adder as well, that is, eight tests
are required for a ripple-carry adder regardless of the
number of modules in the array, a property known as
C-testability [2].

The one-dimensional array adder of Fig. 1(a) is a
special case of a type of regular circuit called a tree. In
general,treesare combinational logic circuits that have
at most one path between any two input/output ports.
A path can contain single or multiple lines (buses).
The modules or cells used to construct a tree circuit
can have internal reconvergent fanout, but fanout is not
allowed among the modules. Figure 1(b) illustrates an
8-bit parity tree constructed from 2-bit EXCLUSIVE-
OR modules. For this tree, the size of the buses that
interconnect the modules is one, and between any two

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

198 Blanton and Hayes

(a)

(b)

Fig. 1. Examples of regular tree circuits: (a) an 8-bit
ripple-carry adder and (b) an 8-bit parity circuit.

module ports there is only one path. One can easily see
how the one-dimensional array structure of the adder
results if the parity tree is restricted to a single module
per level.

It is useful to extend the notion of a tree to make
a distinction between data and control inputs. A tree
with both data and control lines is called acontrolled
tree. The 3-to-8 decoder circuit constructed from 1-to-
2 decoder (Dcd) modules and the demultiplexer circuit
constructed from 1-to-2 demultiplexer (Dmx) modules
of Fig. 2 are examples of such a circuit. Tree circuits
can be convergent, divergent, or neither, that is, the

(a) (b)

Fig. 2. Examples of divergent tree circuits: (a) a 1-to-8 demultiplexer and (b) a 1-to-8 decoder.

number of signal lines can increase, decrease or re-
main the same as one moves from the primary inputs
to outputs. The parity tree is an example of a tree that
converges, while the decoder and demultiplexer trees
are examples of divergent trees. The ripple-carry adder
is a tree that neither diverges or converges.

In general, regular circuits are easy to test because
the testing requirements for the circuit’s modules are
identical and the regular interconnections allow tests
for one module to be used on other modules. They also
have other advantages. For example, because regular
circuits are made by connecting identical modules in

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

Testability Properties of Divergent Trees 199

a regular fashion, large circuits are easy to build and
have fewer design errors. The interconnection structure
of regular circuits is also ideal for layout in a VLSI
environment. As a result, they are used a great deal in
large designs. For example, two-dimensional arrays
and trees in the form of storage arrays, decoders, and
multiplexers can be found in all memory designs.

The testing properties of one-dimensional arrays
have been studied extensively [2–4]. In [2], the con-
cept of C-testability was introduced, and conditions
required for arrays without vertical outputs to be C-
testable are presented. In [3], necessary and sufficient
conditions for the C-testability of unilateral and bilat-
eral one-dimensional arrays with vertical outputs are
presented. The authors of [4] present similar testing
conditions to those in [3] along with conditions for lo-
cating faulty modules within the array. The testability
of two-dimensional arrays has been similarly investi-
gated. For example, various sets of sufficient condi-
tions for the C-testability of two-dimensional arrays
are presented in [5–7]. In [8] and [9], C-testable two-
dimensional array designs for multiplier and divider
circuits respectively, are discussed. In [10], an auto-
matic test pattern generator called NCUBE for two-
dimensional arrays is described. The testing character-
istics of systolic arrays have also been investigated in
[11, 12]. Systolic arrays are one- and two-dimensional
arrays and trees with buffer memory added to the cir-
cuit’s modules.

Some research has addressed the testability of con-
vergent trees [13–18], but there appears to be no work
on divergent trees. In this paper, we examine the test-
ing properties of divergent tree circuits like the de-
coder and demultiplexers of Fig. 2. The rest of this
paper is organized as follows. Section 2 presents our
notation for describing the function and structure of
divergent trees. The IP fault model adopted is then

(a)

Zl Xi,l X̂1
i,l X̂2

i,l

0 0 0 0
0 1 1 0
1 0 0 0
1 1 0 1

(b)

Fig. 3. (a) A 1-to-2 demultiplexer moduleMi,l and (b) the truth table forMi,l .

defined and illustrated. The testability of uncontrolled
and controlled divergent trees is analyzed under this
fault model in Section 3. Section 4 presents conditions
for testing divergent trees with very few test patterns,
while Section 5 describes design methods for ensuring
that these conditions are satisfied. Finally, Section 6
summarizes our results.

2. Function and Structure

An n-ary p-level divergent treeD(n, p) is constructed
from a set of identical modules arranged inp levels.
Each moduleMi,l has a single state input busX, an
optional level-control input busZl , andn state output
buses denoted̂X1

i,l , X̂2
i,l , . . . , X̂n

i,l ; see Fig. 3(a). (The
subscriptsi, l will only be used when the correspond-
ing module name is ambiguous.) The word size for
X and eachX̂ j is nx and the word size ofZl is nz.
Thus, the set of values that can be assigned toX is
I X = {0, 1, . . . ,2nx − 1}, where eachnx-bit value is
denoted by a decimal number. Similarly, the set of val-
ues assignable toZl is I Z = {0, 1, . . . ,2nz − 1}. The
set of possible output values that can be produced at
each state output̂X j is alsoI X.

The n state output functionŝX j for 1 ≤ j ≤ n of
the divergent tree module can be described by a com-
posite truth table containingn output columns labeled
X̂1, X̂2, . . . , X̂n. Each rowrk and columnX̂ j entry
specifies an input patternipk = (v0, v1) and an out-
put valuevk. Hereipk denotes a control valuev0 and
a state input valuev1, while vk denotes the state out-
put value produced at̂X j whenipk is applied. Rowk
of the truth table thus defines the fault-free mapping
denotedipk → vk at state output̂X j or, equivalently,
X̂ j (i pk) = vk.

A controlled n-ary p-level divergent treeCD(n, p)
has a control input busZl for eachMi,l in levell , where

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

200 Blanton and Hayes

1 ≤ l ≤ p. A controlled divergent tree isglobally
controlled if all Zl are connected together. A diver-
gent tree isuncontrolledif no Zl is present. If a di-
vergent tree hasnp−l modules on every levell , then
the tree iscomplete, otherwise it isincomplete. Here,
we only consider complete trees, but our results ap-
ply to incomplete trees as well. Figure 3 illustrates our
notation for a module that represents a 1-to-2 demulti-
plexer.

We employ a special case of theinput pattern(IP)
fault model [19]. The IP fault model assumes only a
single module in the circuit can be faulty. All modules
are assumed to be combinational, and the function of a
faulty module is assumed to remain combinational, that
is, no sequential behavior is allowed. No restriction is
placed on the type or size of the module, making it
possible to apply the IP model to circuits described at
different design levels.

A fault fi that affects output̂Xk can change the re-
sponse to an input patternip j from v j to v′j ; we denote
this change byip j → (v j , v

′
j)

k and refer to it as a sin-
gle input patternfault, or simply as an IP fault. The
pair of distinct state values(vk, v

′
k) denoting the good

and faulty output values is theerror corresponding to
the IP fault. The IP fault model allows a single module
to be affected by a single IP fault or a set of such faults
(amultiple IP fault) F = { f1, f2, . . . , fq}. It is impor-
tant to note that a multiple IP fault is not restricted to a
single state output̂Xk.

The IP fault model can be customized for the testing
application of concern. For example, in the special
case where all single and multiple IP faults are assumed
possible, the IP model becomes equivalent to the well-
known cell fault model[20], where all modules are
required to be tested pseudo-exhaustively. This special
case of the IP fault model is advantageous in situations
where the implementation details of the circuit modules
are unknown.

The characteristics of the IP fault model are il-
lustrated by the following example. Figure 4 shows
truth tables for all 16 possible Boolean functions of

Input Output columns(X̂1, X̂2)

X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11
1 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Fig. 4. The 16 possible Boolean functions of a 1-bit uncontrolled divergent tree module.

an uncontrolled divergent tree moduleMi,l with n= 2
and nx = 1. Assume both thêX1 and X̂2 outputs of
Mi,l implement the NOT function, which is defined by
column 12 of Fig. 4. The remaining columns repre-
sent all the possible faulty functions allowed by the IP
fault model. For example, the faulty function of col-
umn 11 is easily described by the multiple IP fault
F ={1→ (0, 1)1, 0→ (1, 0)2, 1→ (0, 1)2}. Notice
that columns 0, 4, 8, 13, 14, and 15 are the only faulty
functions possible under the single stuck-line (SSL)
fault model. (Under the SSL fault model [1], a sin-
gle signal line in the circuit can either become perma-
nently fixed (stuck) at a logical 1 or 0 value.) Thus, the
IP fault model is more general than the widely-used
SSL model because it allows for many more faulty
behaviors.

In this paper, we assume that a tree module can be
affected by any single or multiple IP fault (i.e., the cell
fault model). This means a faulty divergent tree module
can produce an erroneous output value at one or more of
its n state outputs for one or more input patterns. Since
error masking is not possible in a divergent tree (due
to the absence of reconvergence), the set of (single and
multiple) IP faults that affect a single state outputX j

for 1 ≤ j ≤ n are dominated by the set of all possible
IP faults. Thus, we need only to explicitly consider IP
faults that affect a single output̂X j for 1 ≤ j ≤ n.
Moreover, the set of all multiple IP faults that affect a
single state output̂X j dominate the set of all single IP
faults that affect the same outputX̂ j . Thus, adoption
of the cell fault model only requires us to consider the
set of all possible single IP faults that affect each state
output.

The number of possible single IP faults for an
n-output divergent tree module isnK(W − 1), where
K = 2nx+nz and W= 2nx . Note that this number of
faults is much smaller than the 2Knnx − 1 possible
faulty module functions. For example, the demulti-
plexer module of Fig. 3 has 28− 1= 255 different func-
tional faults. The set of eight single IP faults for the
two state outputŝX1 and X̂2 are shown in Fig. 5.

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

Testability Properties of Divergent Trees 201

X̂1 IP faults X̂2 IP faults

Zl X → (vk, v
′
k)

j Zl X → (vk, v
′
k)

j

00→ (0, 1)1 00→ (0, 1)2

01→ (1, 0)1 01→ (0, 1)2

10→ (0, 1)1 10→ (0, 1)2

11→ (0, 1)1 11→ (1, 0)2

Fig. 5. The eight IP faults for thêX1 and
X̂2 state outputs of the 1-to-2 demultiplexer
module of Fig. 3.

3. Tree Testability

We now examine the testing properties of tree circuits.
A tree istestablefor all single IP faults (and, therefore
testable under the cell fault model) if each module in
the tree can have every possible module input pattern
applied to its inputs, and any resulting error can be
propagated to the tree’s output. For uncontrolled trees,
we derive both necessary and sufficient conditions for
testability. We then extend our fault model to controlled
tree circuits and derive the necessary and sufficient con-
ditions for controlled divergent tree testability.

Uncontrolled Trees. We begin by defining the sur-
jective property for a divergent tree module and then
show how this property is both necessary and sufficient
for an uncontrolled divergent tree to be testable.

Definition 1. A divergent tree module issurjectiveif
the set of output values produced at eachX̂ j is I X, for
1≤ j ≤ n. In other words, there is at least one occur-
rence of every possible state output value in each output
column of the module’s truth table.

Figure 6 shows two examples of binary(n= 2) di-
vergent tree modules. The module of Fig. 6(a) is not
surjective because state value 3 is absent from theX̂2

output column. The second module of Fig. 6(b) is sur-
jective because both thêX1 andX̂2 output columns con-
tain all members of the setI X = {0, 1, 2, 3}. Notice
that surjectivity in an uncontrolled divergent module
implies that the state output functions are information
lossless. This means that the output values produced
by a module uniquely determines the input value ap-
plied. This is true for the uncontrolled divergent tree
module since it has the same number of signal lines for
the state inputX and each state outputX̂ j .

Module D1

X X̂1 X̂2

0 3 0
1 1 1
2 2 2
3 0 0

Module D2

X X̂1 X̂2

0 0 2
1 1 0
2 2 3
3 3 1

(a) (b)

Fig. 6. Truth tables for two uncontrolled di-
vergent modules: (a)D1 which is not surjec-
tive and (b)D2 which is surjective.

Theorem 1. An n-ary p-level uncontrolled divergent
tree D(n, p) is testable if and only if Mi,l is surjective.

Proof: First, we show that the surjective property is
necessary. AssumeD(n, p) is testable butMi,l is not
surjective. Then there is a state valuev j ∈ I X that cannot
be generated as an output value at some state outputX̂ j .
As a result,v j cannot be applied to the internal module
M j,1 connected toX̂ j

1,1. Hence,D(n, p) cannot be
fully tested unlessMi,l is surjective.

Now we show that the surjective property is suffi-
cient for testability. Assume the divergent tree module
is surjective. Then every state output function is surjec-
tive, so error propagation from the state inputX to each
state output̂X is guaranteed. We now use induction on
the number of levelsp to show that each module input
patternip j can be applied to all modules inD(n, p)
using 2nx test patterns. Obviously, all 2nx input pat-
terns can be applied to the 1-level treeD(n, 1) with
2nx tests. By the inductive hypothesis, assume 2nx tests
are sufficient for a(p− 1)-level treeD(n, p− 1). A
p-level tree can be viewed as a(p− 1)-level tree with
an additional level of modules connected to the outputs
of D(n, p− 1). D(n, p) is testable with the same 2nx

tests used forD(n, p−1) because the level-1 surjective
modules ofD(n, p− 1) produce all 2nx input patterns
for the new level-1 modules ofD(n, p). Thus by the
principle of induction, all uncontrolled divergent trees
D(n, p)with p ≥ 1 can have all module input patterns
applied to every module with 2nx tests. 2

Example 1. Reconsider the truth tables for the diver-
gent tree modules of Fig. 6. ModuleD1 is not sur-
jective and therefore does not satisfy the conditions
of Theorem 1. Figure 7(a) shows how the state out-
put value 3, which is missing from̂X2 in Fig. 6(a),
prevents testability of a 3-level uncontrolled divergent

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

202 Blanton and Hayes

(a) (b)

Fig. 7. Three-level uncontrolled divergent trees constructed from the modules defined in Fig. 6: (a)D1 and (b)D2.

tree. ModuleD2 is surjective and therefore satisfies
Theorem 1. Figure 7(b) shows the 2nx = 22 = 4 test
patterns that completely test a 3-level uncontrolled di-
vergent tree constructed fromD2 modules. These four
test patterns also test an arbitrarily large tree ofp levels.

Controlled Trees. The testing of a controlled tree is
complicated by faults affecting the control input buses
Z1, Z2, . . . , Zp. We assume that each control input bus
Zl , 1≤ l ≤ p, can be affected by a set of “stuck-bus”
faults, each of which is denotedZl/vz, wherevz ∈ I Z

is some control input value. Acontrol inputfault Zl/vz

causes the control input busZl of all modulesMi,l in
level l to be permanently fixed atvz. Because it af-
fects more than one module, the faultZl/vz is not cov-
ered by our fault model. The inclusion of control input
faults also subsumes SSL faults on the lines making up
Zl . Thus, we define a controlled divergent tree to be
completely testable if each moduleMi,l in the tree can
be tested for all its IP faults, and each levell can be
tested for all its control input faults of the formZl/vz.
A single-fault assumption is still made, in that only a
single functional fault affecting a module or a single
control input fault can occur.

We now turn our attention to the testability of
controlled divergent trees. We define the sensitizing
property for these trees and then present conditions for
testability.

Definition 2. A sensitizingvector for an error(va, vb)

on state inputX of a divergent tree module is a control
input valuev0 ∈ I Z such thatX̂ j (v0, va) 6= X̂k(v0, vb)

for somej 6= k. In other words,v0 is a control value that
causes at least two state outputs to produce different

values when the error(va, vb) is present on the state
input.

Theorem 2. An n-ary p-level controlled divergent
tree C D(n, p) is testable if and only if Mi,l is surjective
and there exists a sensitizing vector for every possible
error (va, vb).

Here, we sketch the proof of Theorem 2. The sur-
jective condition, similar to Theorem 1, is necessary
and sufficient for applying every input pattern to ev-
ery module in an arbitrarily large tree. The sensitizing
vector condition is required for propagating all possible
errors to an output from any module within the tree.

Figure 8 shows a truth table for a 1-to-2 decoder mod-
ule function. A controlled divergent tree constructed
from these modules is indeed testable because the
errors(1, 0) and(0, 1) both have the sensitizing vec-
torsZl = 1 andZl = 0, and eacĥX j is surjective, that
is, the valuesI X = {0, 1} appear in the output columns
X̂1 and X̂2. Also note that any 1-bit, 1-to-n decoder
will always be testable under the functional fault model
since, by definition, each module output will be surjec-
tive and the required sensitizing vectors must exist.

Zl X X̂1 X̂2

0 0 0 1
0 1 1 1
1 0 1 0
1 1 1 1

Fig. 8. Truth table
for the 1-to-2 decoder
module.

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

Testability Properties of Divergent Trees 203

4. Efficient Testing

We next examine two special properties called level-
testability and C-testability that greatly reduce the num-
ber of tests for a controlled divergent tree.

L-testability. Consider the problem of testing a tree
for all IP faults using the smallest possible test set.
The size of the required test set can be exponential in
the number of levels in the tree. For example, consider
the demultiplexer module defined in Fig. 3. Ap-level
demultiplexer constructed from these modules requires
2p−1 different test patterns just for the set of SSL faults
[15].

A tree islevel-testable(L-testable) if alll -level mod-
ulesMi,l can be simultaneously tested for any IP fault
ipk → (vk, v

′
k)

j . Trees that are L-testable have a test
set whose size is bounded byW · p, whereW is a con-
stant typically equal to the number of possible input
patterns.

Theorem 3. An n-ary p-level controlled divergent
tree CD(n, p) is L-testable if and only if(1) there is
a sensitizing vector for every error(va, vb); (2) for
eachvk ∈ I X there is an input pattern ipk that produces
vk at each state output̂X j , for 1 ≤ j ≤ n; and (3)
for each control valuev1 ∈ I Z there is av2 ∈ I Z such
that subfunctionsX̂ j (Zl = v1) 6= X̂k(Zl = v2), for
some1≤ j, k ≤ n.

The proof of Theorem 3 is similar to that of
Theorem 1. The sensitizing condition of Theorem 3
insures error propagation while condition (2) is re-
quired for simultaneously applying any given input
pattern ipk to all modules on any single level. This ca-
pability accompanied by the sensitizing condition (1)
allows all level-l (for any l) modules to tested simul-
taneously for alln(2nx − 1) possible single IP faults.
Condition (3) is both necessary and sufficient for test-
ing control input faults.

Example 2. A truth table for a 1-to-2 decoder func-
tion different from Fig. 8 is shown in Fig. 9. This de-
coder module partially satisfies the conditions of The-
orem 3. Condition(1) is satisfied in that sensitizing
vectors exist for the errors(0, 1) and (1, 0). Condi-
tion (3) is satisfied as well in that the subfunctions
X̂1(Zl = 0) and X̂2(Zl = 1) are not equal, that is,
X̂1(Zl = 0) 6= X̂2(Zl = 1). But condition(2) is only
partially satisfied. This condition states that for each
vk ∈ I X ={0, 1} there must be an input patternipk that

Zl X X̂1 X̂2

0 0 1 0
0 1 1 1
1 0 0 1
1 1 1 1

Fig. 9. Truth table for
a 1-to-2 decoder mod-
ule.

IP faults IP faults Are the faults
affectingX̂1 affectingX̂2 L-testable?

01→ (1, 0)1 01→ (1, 0)2 yes
11→ (1, 0)1 11→ (1, 0)2 yes

00→ (1, 0)1 00→ (0, 1)2 no
10→ (0, 1)1 10→ (1, 0)2 no

Fig. 10. L-testability of the IP faults of the 1-to-2
decoder function defined in Fig. 9.

producesvk at X̂1 and X̂2. This is true forvk = 1
but not forvk = 0, that is, we have two input patterns,
namely(Zl , X) = (0, 0) and(0, 1), that produce 1 at
both state outputs but no input pattern that produces 0
at both state outputs.

Since the testability of control faults only depends
on conditions(1) and(3) of Theorem 3, we can con-
clude that a decoder of any size composed of the 1-to-2
decoder modules is testable for all control faults. We
can also state that all IP faults involving the state input
value 1 are L-testable, but the IP faults requiring the
state input value 0 are not. Figure 10 summarizes the
L-testability of IP faults in this case.

Example 3. RTRAM is a RAM architecture designed
to improve both testability and performance [21]. It
utilizes a complex decoder that has additional modes
of operation beyond the normal decode function.
Figure 11 shows the gate-level implementation of a de-
coder used in RTRAM. In [21], the authors show that
the decoder is stuck-fault testable with a test set whose
size is exponential in the number of levels. Analysis
of the decoder implementation indicates that its func-
tion completely meets the L-testability conditions of
Theorem 3. The decode function provides the sensitiz-
ing vectors and there exist many input patterns that
produce a 0 and a 1 atboth outputs; for example,
000000→ 00 and 110111→ 11. This means that the

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

204 Blanton and Hayes

Fig. 11. Gate-level implementation of the RTRAM decoder module [21].

27 = 128 IP faults of eachl -level decoder module are
testable with 64 patterns.

C-testability. A closer examination of the divergent
tree structure illustrated in Fig. 2 shows that it can be
viewed asnp−1 arrays ofn different types. For each
array type j , the module inputXi,l serves as the ar-
ray’s state input while the control inputZl serves as
the array’s vertical input; the output̂X j

i,l is the array’s
state output. Figure 12 shows a covering of the de-
multiplexer circuit of Fig. 2(a) with four arrays of two
different types. Obviously a binary (n = 2) divergent
tree module has two array types while ann-ary output
module hasn array types. Viewing trees as overlapping
arrays allows the testing properties of array circuits to
be generalized to divergent trees.

Fig. 12. A covering of a 3-level demulti-
plexer tree by four arrays of two different
types.

An IP fault is C-testablein an array of arbitrary
size if it can be tested withk test patterns, wherek
is some constant. Friedman [2] showed that an IP fault
ip1→ (v1, v

′
1) is C-testable in a one-dimensional array

if there is a sequence of module input patterns that re-
generatesip1 at an arbitrarily large number of modules
and can propagate the error(v1, v

′
1) from each of those

modules. The following lemma gives a bound on test
set size when faults are C-testable in the arrays within
the divergent tree.

Lemma 1. An n-ary p-level controlled divergent tree
CD(n, p) can be tested with at most knp−1 test patterns
if each type- j array is C-testable, where1≤ j ≤ n.

Proof: If the conditions of the lemma are satisfied
then the module is surjective. Hence, any module in
CD(n, p) can have any input patternipk applied, and
thereforeCD(n, p) can be tested by testing each ar-
ray within the tree separately. Since each array type is
C-testable, the bound on the number of test patterns
is knp−1, where isk is some constant. Also note that
any control-input fault is covered by testing the arrays
contained in the tree. 2

Because an error at the input of a divergent tree mod-
ule can be propagated to one or more of the module’s
n state outputs, the conditions for C-testability of ar-
rays within a controlled divergent tree are less restric-
tive than the single array case. Thus, determining array
C-testability for divergent trees should consider alln
state outputs. This point is illustrated in the following
example.

Example 4. Reconsider the demultiplexer module.
Its truth table and IP faults are shown again in

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

Testability Properties of Divergent Trees 205

Zl X X̂1 X̂2

0 0 0 0
0 1 1 0
1 0 0 0
1 1 0 1

X̂1 IP faults X̂2 IP faults

Zl X→ (vk, v
′
k)

j Zl X → (vk, v
′
k)

j

00→ (0, 1)1 00→ (0, 1)2

01→ (1, 0)1 01→ (0, 1)2

10→ (0, 1)1 10→ (0, 1)2

11→ (0, 1)1 11→ (1, 0)2

(a) (b)

Fig. 13. (a) Truth table for the 1-to-2 demultiplexer module and (b) IP
faults for the 1-to-2 demultiplexer module.

Figs. 13(a) and (b), respectively. Inspection of the truth
table indicates that any control value applied toZl will
propagate any error to either̂X1 or X̂2. Thus, an IP
fault ipi → (vi , v

′
i)

j is C-testable for a type-j array if
ipi can be repetitively applied along an array of typej .
The truth table reveals that all but two of the eight IP
faults are C-testable in their corresponding array types;
the two exceptions are 11→ (0, 1)1 and 01→ (0, 1)2.
But note that all internal tree modules (all modules not
on the output levelp) are tested for these two faults
when the other six faults are tested. For example,
testing theX̂2-type arrays for 11→ (1, 0)2, also tests
each internal module for the fault 11→ (0, 1)1. The
number ofp-level modules not tested for this fault is
equal to the number of modules not contained in an
array of typeX̂2, that is, 2p−2. Thus, an additional
2p−2 tests are needed to cover these modules. Simi-
larly, any internal module fault 01→ (0, 1)2 is detected
by test patterns for the fault 01→ (1, 0)1. Hence,
an additional 2p−2 separate tests are required for the
p-level modules and the fault 01→ (0, 1)2. Thus,
a test set for ap-level demultiplexer is bounded by
2 · 2p−2+ 6 · 2p−1 = 7 · 2p−1. For the 3-level demulti-
plexer of Fig. 12, the bound is 7· 4= 28 tests.

In Section 3, we found that an uncontrolled diver-
gent tree that is testable is also C-testable. This is in
contrast to a controlled divergent tree which can easily
be testable without being C-testable. But under cer-
tain conditions a controlled divergent tree is C-testable.
First, the arrays within a divergent tree must all be
C-testable if the divergent tree is to be C-testable. Sec-
ond, alll -level modules (for 1≤ l ≤ p) must have the
same control value applied when the divergent tree is
being tested. These conditions are formally stated in
the following theorem.

Theorem 4. An n-ary p-level controlled divergent
tree CD(n, p) is C-testable if and only if each type- j

array is C-testable for1≤ j ≤ n and all input patterns
simultaneously applied to a given level l have identical
control values.

The proof of Theorem 4 is very similar to the con-
vergent tree case proven in [18] and is therefore not
presented here.

Example 5. In Example 4, we found that any pattern
of control values will propagate errors to the demulti-
plexer tree outputs. Thus any set of input patterns that
can be repetitively applied along each of the two ar-
ray types that have identical control values will be
C-testable. Input patterns 10 and 00 are two patterns
that satisfy these conditions. Thus four of the possible
eight IP faults associated with the demultiplexer mod-
ule (also any of the decoder modules) are C-testable.
The two test patterns that test for the faults{00 →
(0, 1)1, 00→ (0, 1)2, 10→ (0, 1)1, 10→ (0, 1)2} are
shown in Fig. 14. The second test pattern shown in
Fig. 14 illustrates error propagation for a faulty mod-
ule (shaded) affected by the IP fault 00→ (0, 1)2.

5. Design for Testability

The conditions of Theorem 3 suggest how to introduce
L-testability into divergent tree circuits. Theorem 3
states that a controlled divergent tree is L-testable if
the required sensitizing vectors exist, and for each state
valuevk ∈ I X there is an input patternipi that produces
vk at each state output̂X j . By adding a single control
line or utilizing an unused control valuevz ∈ I Z , the
conditions of Theorem 3 can be easily satisfied.

Example 6. Consider testing a 1-to-1024 decoder im-
plemented as a 9-level controlled divergent tree of 1-
to-2 decoder modules; large decoders of this sort are
commonly found in memory chips. The decoder has
to be exhaustively tested to detect all SSL faults [15],

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

206 Blanton and Hayes

Fig. 14. Test patterns for the C-testable IP faults of the demultiplexer module.

hence a 1-to-1024 decoder requires 210= 1024 test pat-
terns. The 1-to-2 decoder module does have the re-
quired sensitizing vectors for L-testability, but is not
L-testable because the state value 1 can only be ap-
plied to one module at a time in any level. This implies
that only one module per level can be tested for a fault
that requires the state value 1 for fault sensitization.

Adding a single control lineTestto the 1-to-2 de-
coder module allows its function to be altered so that
a 1 can be simultaneously generated at both theX̂1

and X̂2 state outputs. This modification results in the
state table shown in Fig. 15. Notice that the input pat-
tern (Test, Zl , X) = (1, 1, 1) produces 1 at both state
outputs. A decoder built from these L-testable decoder
modules requiresWp tests, whereW = 8 is the num-
ber of test patterns required by a single module. Hence,
a 1-to-1024 decoder composed of L-testable modules
requires 9· 8 = 72 test patterns, a reduction of nearly
93%. The delay associated with a 9-level decoder may
be unacceptable for some applications. This delay can
be reduced while preserving testability by using larger
decoder modules, which can be made L-testable in the
same way.

A gate-level implementation of the unmodified de-
coder function is shown in Fig. 16(a). A gate-level

Test Zl
00 01 10 11

X 0 00 10 00 01
1 dd dd dd 11

Fig. 15. Truth table of the L-
testable 1-to-2 decoder.

(a)

(b)

Fig. 16. Gate-level implementa-
tions of (a) the unmodified and (b)
L-testable decoder modules.

implementation of the L-testable decoder function is
shown in Fig. 16(b). Notice, that L-testability is
achieved by simply replacing the NOT gate of
Fig. 16(a) with an EXCLUSIVE-NOR gate. The
L-testable decoder design presented here is similar to
the ad hoc design presented in [15]. Here, a gate in the
original decoder implementation is replaced with an
EXCLUSIVE-NOR gate, introducing somewhat less
overhead then the additional EXCLUSIVE-OR gate
used in [15].

We show next how our DFT approach can enhance
the testability of a practical circuit. A set of registers
called a register file is often used in processor datapaths

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

Testability Properties of Divergent Trees 207

Fig. 17. A register file containing eight registers.

for data storage. It is typically implemented by arrays
of D-type latches, with one or more I/O access ports
connected to uni- or bidirectional lines [22]. The ex-
ample in Fig. 17 contains eight registers, and uses mul-
tiplexer and demultiplexer trees to implement separate
input and output ports. The registerRi with addressi =
Areadcan be read out through the multiplexer tree while,
at the same time, the registerRj with addressj = Awrite

can be written into using the demultiplexer tree.
Using a similar DFT technique described in [18, 23],

the multiplexer part of Fig. 17 can be made L-testable.
To address the testability of the registers, we must again
extend our fault model to sequential array circuits. In
general, a sequential module is a finite-state machine
whose memory outputs are all primary or serve as in-
puts to a neighboring module. To extend our functional
fault model, we assume a sequential module can change
its next-state (transition) function to any other, as long
as the number of memory states does not increase. Thus
testing a sequential array requires that the next-state
function of each module be verified.

We will only consider the simplest case where the
sequential modules are D latches [3]. Testing a register

Fig. 18. An N-bit register viewed as a one-dimensional array of D-type latches.

with this fault model is easy since each module only
has two states. Its next-state function can be tested
by verifying that a 0 and 1 can be written into each
latch with present states of either 0 or 1. Since the data
values applied to each latch are independent, the next-
state function of all latches can be tested in parallel.
Thus, registers are C-testable for this extension of our
fault model.

When the multiplexer, demultiplexer, and registers
are combined to form a register file as shown in Fig. 17,
the testability of these circuits under the functional fault
model is preserved, but testing is limited to a single reg-
ister at a time. Suppose we use an L-testable demulti-
plexer and multiplexer circuit in Fig. 17. The demul-
tiplexer cannot be “L-tested” because its data outputs
cannot be simultaneously observed, that is, each data
output must be written into a single register at a time.
Similarly for the multiplexer, applying a single L-test
requires eight separate writes into the register file. The
L-testability characteristics of these modified trees can
be preserved when combined to form a register file if
all registers can be written into simultaneously, that
is, all can be clocked at the same time. Figure 18

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

208 Blanton and Hayes

shows a signal calledBroadcastwhich is used to by-
pass the gated enable (Enable) signal of the register.
If connected to registersR0, R1, . . . , R7, Broadcastal-
lows the simultaneous writing of all registers. With this
feature, the registers simply act as transparent buffers
between the divergent and convergent tree structures,
hence they do not affect fault sensitization or error prop-
agation. Furthermore, since all registers can be written
into simultaneously, they can all be tested in parallel.
If each register has the same test pattern applied, than
any single error resulting from a faulty register module
will be propagated to the multiplexer outputs since the
multiplexer is L-testable. Thus, the modified register
file is L-testable.

6. Conclusion

We have investigated a class of regular circuits called
divergent trees which include such practical circuits as
decoders and demultiplexers. Because of their regular
structure, the testability of divergent tree circuits of ar-
bitrary size can be determined solely from the tree mod-
ule’s function. Uncontrolled divergent trees are testable
with a fixed number of test patterns (C-testable) if and
only if the module function is surjective. Testable con-
trolled trees also have to be surjective but sensitizing
vectors are required for error propagation. Controlled
divergent trees can also be L-testable or C-testable
if other conditions are satisfied. We found that de-
coders/demultiplexers only partially satisfy the re-
quirements for L- and C-testability but can be modified
to enhance their testability. Complete L-testability of
a demultiplexer was achieved using gate replacement
in the original gate-level design. The utility of the
L-testable demultiplexer was further illustrated in the
design of a small register file.

References

1. M. Abramovici, M.A. Breuer, and A.D. Friedman,Digital Sys-
tems Testing and Testable Design, IEEE Press, Piscataway, NJ,
1990.

2. A.D. Friedman, “Easily Testable Iterative Systems,”IEEE
Transactions on Computers, Vol. 22, No. 12, pp. 1061–1064,
Dec. 1973.

3. T. Sridhar and J.P. Hayes, “Design of Easily Testable Bit-sliced
Systems,”IEEE Transactions on Computers, Vol. 30, No. 11,
pp. 842–854, Nov. 1981.

4. R. Parthasarathy and S. Reddy, “A Testable Design of Itera-
tive Logic Arrays,”IEEE Transactions on Circuits and Systems,
Vol. 28, No. 11, pp. 1037–1045, Nov. 1981.

5. W. Cheng and J.H. Patel, “Testing in Two-dimensional Iterative
Logic Arrays,” Proc. of the 16th International Symposium on
Fault-Tolerant Computing, Oct. 1986, pp. 76–81.

6. H. Elhuni, A. Vergis, and L. Kinney, “C-Testability of Two-
dimensional Iterative Arrays,”IEEE Transactions on Computer-
Aided Design, Vol. 5, No. 4, pp. 573–581, Oct. 1986.

7. C. Wu and P. Cappello, “Easily Testable Iterative Logic Arrays,”
IEEE Transactions on Computers, Vol. 39, No. 5, pp. 640–652,
May 1990.

8. A. Takach and N. Jha, “Easily Testable Gate-level and DCVS
Multipliers,” IEEE Transactions on Computer-Aided Design,
Vol. 10, No. 7, pp. 932–942, July 1991.

9. Q. Tong and N. Jha, “Design of C-Testable DCVS Binary Array
Dividers,” IEEE Journal of Solid-State Circuits, Vol. 26, No. 2,
pp. 134–141, Feb. 1991.

10. A. Chatterjee and J. Abraham, “NCUBE: An Automatic Test
Generation Program for Iterative Logic Arrays,”Proc. of In-
ternational Conference on Computer-Aided Design, Nov. 1988,
pp. 428–431.

11. H. Elhuni and L. Kinney, “Techniques for Testing Hex Con-
nected Systolic Arrays,”Proc. 1986 International Test Confer-
ence, Sept. 1986, pp. 1024–1033.

12. J.H. Kim, “On the Design of Easily Testable and Reconfigurable
Systolic Arrays,”Proc. International Conference on Systolic Ar-
rays, 1988, pp. 1024–1033.

13. W.T. Cheng,Testing and Error Detection in Iterative Logic Ar-
rays, Ph.D. thesis, University of Illinois at Urbana-Champaign,
1985.

14. J. Abraham and D. Gajski, “Design of Testable Structures De-
fined by Simple Loops,”IEEE Transactions on Computers,
Vol. 30, No. 11, pp. 875–883, Nov. 1981.

15. D. Bhattacharya and J.P. Hayes, “Designing for High-level Test
Generation,”IEEE Transactions on Computer-Aided Design,
Vol. 9, No. 7, pp. 752–766, July 1990.

16. F. Lombardi and D. Sciuto, “Constant Testability of Combina-
tional Cellular Tree Structures,”Journal of Electronic Testing:
Theory and Applications, Vol. 3, No. 5, pp. 139–148, May 1992.

17. R.D. Blanton and J.P. Hayes, “Efficient Testing of Tree Circuits,”
Proc. of the 23rd International Symposium on Fault-Tolerant
Computing, June 1993, pp. 176–185.

18. R.D. Blanton and J.P. Hayes, “Testability of Convergent Tree
Circuits,” IEEE Transactions on Computers, Vol. 45, No. 8,
pp. 950–963, Aug. 1996.

19. R.D. Blanton and J.P. Hayes, “Properties of the Input Pattern
Fault Model,”Proc. of 1997 International Conference on Com-
puter Design, Oct. 1997.

20. W.H. Kautz, “Testing for Faults in Cellular Logic Arrays,”Proc.
8th Symposium on Switching Automata Theory, 1967, pp. 161–
174.

21. D.K. Pradhan and N.R. Kamath, “RTRAM: Reconfigurable
Testable Multi-bit RAM Design,”Proc. of 1988 International
Test Conference, Sept. 1988, pp. 263–278.

22. Texas Instruments,TTL Data Book, Vol. 2, Dallas, Texas, 1985.
23. R.D. Blanton,Design and Testing of Regular Circuits, Ph.D.

thesis, University of Michigan, 1995.

Shawn Blantonis an assistant professor in the Department of Electri-
cal and Computer Engineering at Carnegie Mellon University where
he is a member of the Center for Electronic Design Automation
and principal investigator of the SEMATECH Design for Testability

 P1: KCU/KLK P2: VTL/KCU

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL516-02-blanton November 11, 1997 9:14

Testability Properties of Divergent Trees 209

Cost Model Project. He received the Bachelor’s degree in engineer-
ing from Calvin College in 1987, a Master’s degree in Electrical
Engineering in 1989 from the University of Arizona, and a Ph.D.
degree in Computer Science and Engineering from the University
of Michigan, Ann Arbor in 1994. His research interests include the
computer-aided design of VLSI circuits and systems; fault-tolerant
computing and diagnosis; verification and testing; and computer ar-
chitecture. He has worked on the design and test of complex digital
systems with General Motors Research Laboratories, AT&T Bell
Laboratories, and Intel. Dr. Blanton is the recipient of National Sci-
ence Foundation Career Award and is a member of IEEE and ACM.

John P. Hayesis Professor of Electrical Engineering and Com-
puter Science at the University of Michigan, Ann Arbor, where
he teaches and does research in the areas of computer architecture;
computer-aided design, verification and testing; VLSI design; and
fault-tolerant embedded systems. He received the B.E. degree from
the National University of Ireland, Dublin, in 1965, and the M.S. and
Ph.D. degrees from the University of Illinois, Urbana-Champaign,
in 1967 and 1970, respectively, all in Electrical Engineering. While

at the University of Illinois, he participated in the design of the
ILLIAC III computer. In 1970 he joined the Operations Research
Group at the Shell Benelux Computing Center in The Hague, where
he worked on mathematical programming. From 1972 to 1982
Dr. Hayes was a faculty member of the Departments of Electrical
Engineering-Systems and Computer Science of the University of
Southern California, Los Angeles. He joined the University of Michi-
gan in 1982. He was the founding director of the University of Michi-
gan’s Advanced Computer Architecture Laboratory. He was Tech-
nical Program Chairman of the 1977 International Conference on
Fault-Tolerant Computing, Los Angeles, and the 1991 International
Computer Architecture Symposium, Toronto. Dr. Hayes is the author
of numerous technical papers and five books, includingHierarchical
Modeling for VLSI Circuit Testing, (Kluwer, 1990; coauthored with
D. Bhattacharya),Introduction to Digital Logic Design, (Addison-
Wesley, 1993), andComputer Architecture and Organization(3rd
ed., McGraw-Hill, 1998). He has served as editor of various techni-
cal journals, including theIEEE Transactions on Parallel and Dis-
tributed Systemsand theJournal of Electronic Testing. Dr. Hayes is
a Fellow of IEEE and a member of ACM and Sigma Xi.

