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A paper by Thoulesset al. [1] reported an analysis and
experimental results for the wedge-peel test. In this test,
two bonded metal strips are fractured by means of a
wedge inserted along the interface. The strips are suffi-
ciently thin to ensure that plastic bending of the metal
accompanies fracture. By measuring the radius of cur-
vature of this plastic deformation, the critical bending
moment for fracture can be deduced. A steady-state
energy-balance that relates the toughness of the joint to
the radius of curvature was reported [1]. This analysis
permits an estimate of the joint toughness to be cal-
culated from a measurement of the radii. Kinloch and
Williams argued that a correction should be made to this
approach [2]. Unfortunately, the proposed correction is
incorrect and contains inherent logical flaws.

At the heart of the proposal by Kinloch and Williams
[2] is the concept of what is sometimes known as
“root rotation”. This concept is demonstrated in Fig. 1a
which shows a beam of modulusE bonded to a sub-
strate and loaded by a forceP applied to one end. The
length of the crack isa. When calculating the energy-
release rate for this geometry, it is convenient to as-
sume that the adherend acts like a beam with a built-in
end at the crack-tip. This gives a result for the energy-
release rate ofG= 6P2a2/Eh3, which is an excellent
approximation when the crack is very long. However,
in practice, deformation occurs in a “process zone” im-
mediately ahead of the crack. This deformation may
result from the adhesive being stretched before failure,
or it may be associated with the effect of the bonding
stresses acting on the substrate or adherend. The simpli-
fying assumption that the arm is “built-in” at the crack
tip over-constrains the system, and under-estimates the
energy-release rate. This effect can be corrected for
by incorporating an elastic-foundation model proposed
by Kanninen [3] into the analysis [4, 5]. The arm is
modeled as a beam supported on an elastic foundation,
as shown in Fig. 1b. The displacement of the beam
ahead of the crack-tip can be derived from simple-beam
theory, and the energy-release rate can be shown to
be [5]

G = 6P2a2

Eh3

[
1+ 1

a

]2

(1)

1can be taken as an estimate of the length of the process
zone, and is approximately equal to 2h/3 for a homoge-
neous system. In other words, the effective crack length

can be considered to be increased by the presence of a
process zone.

It is very important to appreciate that the presence
of a process zone causes complications only when the
crack length needs to be measured to determine the
energy-release rate. There are a whole class of impor-
tant steady-state problems in which the process zone
translates in a self-similar fashion with the crack tip, and
the energy-release rate is independent of crack length.
For these geometries, the energy-release rate can be cal-
culated by an energy-balance approach, and the result is
not affected by the existence of a process zone. An illus-
tration of the notion that root-rotation only influences
solutions to non-steady state problems is provided by
a numerical analysis of the elastic 90◦-peel test. This
analysis is performed using an embedded-process-zone
(EPZ) model [6–8]. The normalized peel forces,P/00,
for two simulations corresponding to root-rotation an-
gles of 56◦ and 23◦ are plotted in Fig. 2 as a function
of the normalized displacement along the peel direc-
tion (normalized by the adherend thickness). It is ev-
ident that the steady-state value of the peel force is
independent of the root-rotation angle, and is given by
P/00= 1.0, as predicted by an energy-balance analy-
sis [9]. However, the peel force is influenced by root

Figure 1 Elastic-foundation model for an adhesively-bonded cantilever
beam.
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Figure 2 Numerical results of the normalized peel force plotted as a
function of the normalized displacement in the peel direction. The ma-
terial and interface properties were chosen so that the root rotations are
56◦ and 23◦ in the two simulations.

rotation under non-steady-state conditions where the
geometry is evolving. An energy-balance argument for
elasto-plastic peel tests can be used to a similar effect
[8]. Details of the geometry near the crack-tip can affect
neither the work done by the steady-state peel force nor
the energy dissipated by bending within the adherend.∗

The analysis of the wedge-peel test by Thoulesset al.
[1] was based on the assumption that the wedge im-
poses a bending moment on the sample, and that failure
occurs in response to this bending moment. Since the
analysis was based on a steady-state energy balance, no
assumptions were made about the location at which the
force applied by the wedge acts. As discussed above,
this means that root-rotation effects are of no concern.
In their correction, Kinloch and Williams [2] used the
measured radii to back out the critical moment, as was
done in the original paper [1]. They then used the geom-
etry of the problem to deducel , the distance from the
point-of-action of the wedge to the point-of-adhesion.
They calculated this asl =√Rpd, whereRp is the ra-
dius of curvature andd is the diameter of the wedge-tip
(Fig. 3). It can be seen from Fig. 3 that this calculation
of l assumes that the point-of-adhesion is the point-
of-zero-rotation of the adherends. Therefore,l already
includes the length of the process zone. However, in
Kinloch and Williams [2], the length of the process
zone (assumed to be equal to 2h/3) was added again
to l , and a new effective crack length was obtained.
This new effective crack length was used to adjust the
value of the critical bending moment that had been cal-
culated from the experimental measurement ofRp. An
increased interface toughness was then calculated from
this new moment. In summary, the proposed correc-

∗ The analysis of the peel test by Kinlochet al.[10] implicitly assumes that only the energy associated with bending beyond the crack tip is dissipated.
Any energy that may be dissipated by bending of the peel arm within the process zone is incorporated into the quantity denoted as the adhesive
fracture energy. This approach of distinguishing between bending in the two regions naturally leads to a root-rotation effect.
† This equation has been corrected to account for plane-strain deformation which is appropriate when the arms of the wedge-peel test are wide.

Figure 3 Illustration of the steady-state wedge-peel configuration.d is
the diameter of the wedge tip,Rp is the radius of curvature after defor-
mation of the arms,1 is the process zone length, andl is crack length
calculated by Kinloch and Williams [2] to be given byl 2= Rpd.

tion to the toughness is associated with two physical
inconsistencies. In the first place, the equation used to
calculatel implicitly assumes thatl includes any pos-
sible process zone. It is incorrect to add the length of
the process zone a second time. In the second place, the
“corrected” moment is inconsistent with the measured
radii of curvature from which the original calculation
of the moment had been deduced in the first place.

The results of some recent embedded-process-zone
model calculations for the wedge-peel test shed some
additional interesting light on this problem [7]. These
numerical analyses show that the energy-balance cal-
culation presented in Ref. [1] are correct provided that
fracture is dominated by bending and that the peak
stress supported by the adhesive is negligible. Under
these conditions, the toughness is given by
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(2)

whereRp is the measured radius of curvature after de-
formation, andh is the thickness of the adherends which
are assumed to deform according to a power-law rela-
tionship of the formσ = Aεn, A andn are material con-
stants, andσ andε are stress and strain.†As described in
Ref. [7], there are two competing effects that affect the
use of this equation. If the adhesive exerts a substantial
stress on the adherends, the resulting hydrostatic con-
straint hinders yielding of the metal. Equation 2 then
gives an over-estimate of the toughness. On the other
hand, if the wedge is relatively thin, then the assumption
that bending dominates the fracture process becomes
invalid. Equation 2 then gives an under-estimate of the
toughness.
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The results of Ref. [7] suggest that the wedge-peel
test is perhaps best performed using a sequence of
increasing wedge sizes until a constant radius of curva-
ture is obtained. Equation 2 can then be used to obtain
an upper-bound for the toughness. (The numerical
calculations also suggest that this upper-bound esti-
mate becomes closer to the toughness as the adherend
thickness decreases. In practice, this may mean that the
experiment should be set up to obtain the smallest pos-
sible radius of curvature.) Re-analyzing the data of Ref.
[1] using the embedded-process-zone technique has
shown that the values of toughness originally quoted in
the paper were approximately correct for the aluminum
joints. Apparently, the geometry and deformation were
such that the two competing effects described in the
previous paragraph effectively canceled each other out.
However, it has also been shown that the assumption of
bending-dominated fracture was not met for the results
pertaining to steel joints. A numerical analysis of the
experimental results has shown that the toughness of
the aluminum and steel joints (which failed cohesively)
were comparable [11]. Finally, it should be noted that
the values of toughness calculated using the proposed
correction of Ref. [2] are not consistent with the values
calculated by the numerical analysis.
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