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Abstract

Rapid analysis of protein structure, interaction, and dynamics requires fast and automated assignments of
3D protein backbone triple-resonance NMR spectra. We introduce a new depth-first ordered tree search
method of automated assignment, CASA, which uses hand-edited peak-pick lists of a flexible number of
triple resonance experiments. The computer program was tested on 13 artificially simulated peak lists for
proteins up to 723 residues, as well as on the experimental data for four proteins. Under reasonable
tolerances, it generated assignments that correspond to the ones reported in the literature within a few
minutes of CPU time. The program was also tested on the proteins analyzed by other methods, with both
simulated and experimental peaklists, and it could generate good assignments in all relevant cases. The
robustness was further tested under various situations.

Introduction

The assignment of the protein backbone reso-
nances 1s necessary and sufficient for protein
structure determination based on residual dipolar
couplings, mapping of protein—protein interaction
sites based on chemical shift mapping, and the
determination of backbone dynamics on the sub-
nanosecond and micro-second time scale. The
backbone assignments form also the root for NOE-
based NMR structure determinations (Wagner and
Wiithrich, 1982; Wiithrich, 1986). Nowadays, main
chain assignments are almost exclusively made
from combinations of 3D (sometimes 4D) triple
resonance experiments on isotopically labeled
proteins introduced a decade ago (Ikura et al.,
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1990; Montelione and Wagner, 1990). Even though
the potential for automation of assignments based
on triple resonance data was immediately realized
(Ikura et al., 1990), most NMR laboratories still
carry out the assignment process essentially by
hand. This is mostly due to the fact that available
automated assignment programs require a certain
set of spectra, cannot deal with noisy, incomplete
spectra, or with spectra of proteins in multiple
slowly interchanging conformations, and run into
convergence problems for the assignment of larger
proteins. (Moseley and Montelione, 1999; Moseley
et al., 2001).

Here we introduce a new depth-first ordered
tree search method of automated assignment,
CASA (Combinatorial Automatic Sequential
Assignment), which uses hand-edited peak-pick
lists of a flexible number of triple resonance
experiments. We show that it is capable of
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assigning the spectra of very large proteins. With
the advent of highly sensitive NMR systems, such
as cryo-probes, and experiments, such as Triple-
resonance-TROSY, high quality triple resonance
spectra, in principle suitable for automated
assignment, can be acquired on even very large
proteins in reasonable time. We anticipate that our
new method will contribute to the rapid assessment
of protein structure, interactions, and dynamics of
known and unknown structures by NMR.

Most implementations for automated assign-
ment have employed optimization algorithms that
minimize a pseudo-energy score function, using
neural networks (Hare and Prestegard, 1994),
simulated annealing (Bernstein et al., 1993;
Kraulis, 1994; Morelle et al., 1995), mean-field
simulated annealing (Buchler et al., 1997), genetic
algorithms (Wehrens et al., 1993; Bartels et al.,
1997) or Monte Carlo optimization (Lukin et al.,
1997; Leutner et al., 1998; Hitchens et al., 2003). A
key characteristic of these global optimization
methods is the tendency to generate a complete
assignment which is globally correct but may be
locally ambiguous in preference to incomplete but
high-quality assignments. Exhaustive and heuristic
search (Atreya et al., 2000; Bailey-Kellogg et al.,
2000a, b; Guntert et al., 2000; Coggins and Zhou,
2003; Jung and Zweckstetter, 2004) reduces the
ambiguity by classifying residues into groups or
mapping connected segments globally. The Auto-
Assign program by Zimmerman et al. (1997) uses,
like CASA, best-first algorithms (Li and Sanctu-
ary, 1997; Zimmerman et al., 1997; Moseley et al.,
2001; Montelione, 2005, personal communica-
tion). However, it has not been tested on very large
proteins with 300 residues or more.

The depth-first ordered tree search method
presented here can use a flexible number of NMR
peak pick lists. The computer program was tested
on four experimental peak-pick data, and also on
13 artificially simulated peak pick lists for proteins
up to 723 residues. In all cases, the program gen-
erated assignments that correspond to the ones
reported in the literature. The program used only a
few minutes of CPU time for even the largest data
sets. We also tested CASA on the proteins ana-
lyzed by other methods using their tolerances. In
almost all cases, we could get comparable or better
assignment scores within minutes.

Many proteins show incomplete NMR spectra
because of exchange broadening of resonances

belonging to areas involved in milli- to microsec-
ond conformational exchange. Also common are
proteins that show multiple assignment pathways
for regions that are in slow conformational ex-
change. While both types of proteins are often
deemed less desirable for study in an NMR
structural proteomics context, they are often very
interesting in a biological context. We thus re-
quired our assignment procedure to be able to
handle such cases. We simulated the spectra of
proteins with intermediate exchange by eliminat-
ing resonances associated with some contiguous
parts of the sequence. We could still get a high
assignment score even when a substantial portion
of chemical shifts were deleted. For proteins in
slow conformational exchange, we simulated the
spectra by duplicating and shifting the resonances
corresponding to contiguous areas. The program
could solve the problem unambiguously.

Methods

CASA uses a sequential approach for the assign-
ment. First, HN roots are constructed from the peak
picked data; second, the HN-roots are sorted into
T-units; third, the T-units are sorted into generic
spin systems (GS; Zimmerman et al., 1993, 1994);
fourth, the GSs are linked into segments; and last,
the segments are placed onto the sequence using an
ordered tree search algorithm (see Figure 1).

Generating HN roots

The program is based on the well-known triple-
resonance assignment scheme, and is currently set
up to accept NMRPipe-format peak-picked data
from HNCA, HN(CO)CA, HNCACB, HN(CO)-
CACB (or CBCA(CO)NH), HN(CA)CO, HNCO,
HN(CA)HA, HN(COCA)HA, or HA(CACO)NH
(see Table 1). The different triple resonance spec-
tra share the same backbone amide HN-N reso-
nances, which are called HN roots (Zimmerman
et al., 1993, 1994). HN roots are used as a filter to
group the resonance spectra from different exper-
iments into “T-units” corresponding to pairs of
residues along the sequence (Van Doren et al.,
1993). HNCO spectra have the best sensitivity, and
provide the information for generating HN roots
(Zimmerman et al., 1997). If HNCO data are not
provided, we can also work with HNCA spectra,
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Figure 1. Overview of the CASA assignment procedure.

Table 1. Types of experiments

Sequential Intra-residue
HNCO HN(CA)CO
HN(CO)CA HNCA
HN(CO)CACB HNCACB
HN(CO)(CA)H HN(CA)H

which have lower but comparable sensitivity.
HNCA spectra, with HN(CO)CA if provided, are
used to obtain the chemical shift correlation be-
tween H™(i), N(i), C*(i) and C*(i — 1) for each
residue (Van Doren et al., 1993) (see Figure 2). We
calculate the distances of HY and N chemical shifts
between any two peaks. If these two distances are
smaller than the tolerance of HN(AH™Y) and the
tolerance of N (AN), respectively (see Table 2),
these two peaks may form a T-unit. Sometimes,
the respective HY and N chemical shifts of four
peaks are very close to each other, due to the
overlap of two T-units. If the information of
HN(CO)CA spectra is also provided, it is some-
times possible to separate the overlapping T-units
when the two peaks of one T-unit are stronger
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Figure 2. Definition of the Generic Spin System (GS; Zimm-
erman et al., 1993).

Table 2. Default tolerances (ppm)

AHY AN AC* ACP AC’ AH®

0.25 0.025
0.15 0.015

Condition I (ppm) 0.01 0.2 0.5 0.5
Condition II (ppm) 0.01 02 02 04

than those of the other T-unit, because the ith
(intra-residue) peak is usually stronger than the
(i — Dth (sequential) peak in the same T-unit. The
HM-N resonance from the separated C* T-units
can then be used as HN roots. Otherwise the
overlapping T-units are set aside from the initial
sorting set and will be treated at a later stage (see
below).

Constructing generic spin systems (GS)

We follow the general strategy as described in
AutoAssign (Zimmerman et al., 1997; Moseley
et al., 2001). Similar to forming C* T-units from
HNCA/HN(CO)CA spectra, we also form T-units
from other triple resonance spectra, such as CP T-
units from HNCACB and HN(CO)CACB (if
available). We group all available C* T-units, CP
T-units, CO T-units and H* T-units according to
their HN roots to construct Generic Spin Systems
(GS) (Zimmerman et al., 1997) (see Figure 2), the
minimal assignable unit in our model. Each GS
has two types of ladders, a C* ladder and a CO
ladder, containing chemical shifts of atoms of
residue 7 in the sequence, and those of the residue
i — 1, respectively. The number of rungs in each
ladder may be different by nature of the residue,
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experimental artifacts, or missing experiments. For
example, the C* ladder of a glycine has a C* rung,
but no CP rung by nature of the residue.

Link score

If the chemical shifts of all atoms in the C* ladder
of GS i match those of the corresponding atoms in
the CO ladder of GS j, the link score L(i, j) is
1; otherwise L(i, j) is 0. Here a match means that
the differences of corresponding chemical shifts are
smaller than the corresponding tolerances (see
Table 2). When the numbers of rungs of the cor-
responding ladders are different, we consider only
the rungs appearing in both ladders. This strategy
takes into account that rungs can be missing
because of lack of signal to noise. If L(i, j))=1, GS
i and GS j can occupy sequentially adjacent sites
along the sequence; if L(i, j)=0, we should not
assign GS j to a site following GS i (see Figure 3).
Note that L(i, j) does not equal L(j, i) in general. It
is possible that one GS may be linked favorably to
several other GSs due to the degeneracy of spectra.
This is one of the sources of ambiguity in assign-
ment. The degeneracy of the spectra can be par-
tially solved by including more rungs in the GSs.
As we can see in the results, 3-rung links deal much
better with degeneracy than 2-rung links.

If additional information on a sequential link is
provided, such as that from NOE crosspeaks
(Wiithrich, 1986), the user of CASA can also
manually fix the link score between the corre-
sponding GSs. By fixing the link between some
specific GSs, the ambiguity of assignment can be

greatly reduced, especially for spectra with severe
degeneracy.

Occupation score

The characteristic distribution of chemical shifts
associated with different residue types can be used
to obtain typing scores for these chemical shifts.
The binary typing score of a rung r in a GS for a
residue of type ¢ is evaluated as

S(r,t) = . P
(r,) {O otherwise

where p, and o, are the mean and standard devi-
ation of this type of chemical shift for residue type
t obtained from the BioMagResBank (Seavey
etal, 1991, http://www.bmrb.wisc.edu), and
R,=>5 for H chemical shifts, while R, =4 for those
from other types of atoms, because the former
have larger dispersion. The typing score equals 1
means that the chemical shift matches the corre-
sponding residue type. Due to the overlap of
chemical shifts of different residues, a chemical
shift may match a few residue types simulta-
neously. This is another source of ambiguity of
assignment. The typing scores of the rungs inside a
GS allow it to be mapped onto some sites in the
sequence while preventing it from being mapped
onto other sites. The binary occupation score of a
GS j to the ith site in the sequence Occu(i, j) is 1 if
all the CA rungs match the residue at the ith site
and all the CO rungs match the residue at the
i — Ist site. Occu(i, j) is also set to be 1 if there is
only one mismatch of all the rungs. This is

link between adjacent GSs

S—

N\

map linked GSs onto sequence

KGLDAVRKRPGMYIGDTDDGTGLHHMVFEVVDNAIDEALAGHCKEII

Figure 3. Linking of GSs into a segment and its placement on the sequence.



important to deal with the cases involving atypical
chemical shifts. If there is more than one mismatch
of the rungs, Occu(i, j) is 0, which means that GS j
should not be mapped to site i. On average, the
typing score of a 3-rung (C*, CP and C’) C* ladder
matches it to eight possible residue types, which is
similar to the result of AutoAssign (Zimmerman
et al., 1997). If the protein under study is perdeu-
terated, the chemical shifts can be adjusted
accordingly (Venters et al., 1996; Moseley et al.,
2004).

Additional constraints derived from a variety
of sources can be utilized to manually fix the
occupation score of some GSs (Coggins and Zhou,
2003; Jung and Zweckstetter, 2004). Residue-type
information can be obtained from selective
labeling experiments (LeMaster and Richards,
1985), side-chain assignment data or from amino-
acid-type-specific  NMR experiments (Tashiro
et al., 1995; Farmer and Venters, 1996; Détsch
et al., 1996a, b, c; Dotsch and Wagner, 1996;
Schubert et al. 1999; Schubert et al., 2001a, b).

Forming Segments

In order to form a unique link between GS i and j,
four criteria must be satisfied:

(M) LG, ) =1
) LG, k) = 0 fork# j
(3) Lk, j) =0 fork# i

(4) at least two rungs are matched when evaluat-
ing the link score L(i, j).

When GS i and GS j are uniquely linked to-
gether, they form a segment S(i, j). S(i, j) can then
be assigned as a unit, always occupying two
sequentially adjacent sites. If GS j is also uniquely
followed by another GS k, S(i, j) can be updated to
a longer segment S(i,j,k). The segments are con-
structed based only on the link score between GSs.
The occupation score of a segment j at the
sequential sites starting from i is 1 only when each
GS in the segment has a favorable occupation
score at the corresponding site. Otherwise, the
segment is forbidden to be mapped to those sites.
Thus there is less ambiguity in mapping a segment
than that in mapping a single GS, and the longer
the segment, the smaller the number of assignable
sites in the sequence. In general, a 5-GS or larger
segment may be mapped uniquely onto the
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sequence, which is similar to the result of MARS
(Jung and Zweckstetter, 2004). Note that the
smallest segment contains only one GS which has
no unique favorable link to any other GS.

Assigning segments with ordered tree search

In this approach, the assignment consists of
mapping segments onto assignable sites in the se-
quence via a depth-first ordered tree search algo-
rithm. For a protein with chain length N, the
maximum number of assignable sites is

No=N-—1=Npo

where the site of the N-terminal residue (no HN root
because of exchange) and sites occupied by prolines
(no HN roots) cannot be assigned to any GS.

Briefly, the procedure is as follows. The root of
the tree corresponds to no segment assigned, and
the various leaves to all segments assigned, all
available sites occupied, or the unoccupied sites
unassignable to any unassigned segments. Each
branching node corresponds to certain segments
assigned to certain sites in the sequence. Each al-
lowed node has no unfavorable occupation score
or link score. Segments are sorted by increasing
order of numbers of assignable sites, and the seg-
ment with the smallest number of available sites is
placed first on the sequence for the best possible
occupation score, followed by placing the segment
with the second smallest number of available sites
on the remaining sites in the sequence, and so on
until one of the leaves is reached (i.e. depth-first).
If all segments are assigned or all available sites are
occupied, this leaf is viewed as an assignment, and
the process will stop unless it is set up to find
alternative assignments (see below). If there are
still some segments and sites unassigned but no
available sites in the sequence for the unassigned
segments, that leaf is viewed as a dead end. The
process backtracks up the tree to explore alterna-
tive placements of the previous segment until these
are exhausted, backtracks up another level in the
tree, and so on, until an assignment is found or the
tree has been explored.

Assigning overlapping T-units

After the segments are assigned, it is possible to
separate and assign the overlapping T-units.
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Consider an empty site in the sequence (assignable
site with missing spectra) adjacent to one or two
assigned GSs. The favorable link score required by
the assigned GSs picks out specific C* and CO
ladder chemical shifts, which helps retrieve correct
T-units and enlarge the assigned segments (Atreya
et al., 2000).

Ambiguity score of an assignment

The reliability of an assignment strongly depends
on the quality of the spectra, such as completeness,
correctness, the number of rungs for connection,
etc. For a specific assignment, the ambiguity score
of a segment is defined to be the number of
assignable sites on the sequence given the assign-
ment of all the other segments. Then, the ambi-
guity score of the assignment is taken to be the
mean segment ambiguity score. The smaller the
ambiguity score, the less likely a segment is map-
ped onto a wrong site. The smallest assignment
ambiguity score is one, corresponding to all the
segments being uniquely assigned. If the spectra
are very incomplete, or the number of rungs for
connection is not big enough, the ambiguity score
could be very large. In this case, there are many
assignments with similar assignment score, and it
is very hard to distinguish the correct assignment
from the alternative assignments unless additional
constraints from occupation score or link score are
available.

Comparison of CASA with other automatic
assignment methods

For the purpose of comparing CASA with other
automatic assignment methods, we downloaded
MARS from the corresponding website (version
1.1.3, http://www.mpibpc.gwdg.de/abteilungen/
030/zweckstetter/_links/software.htm), used the web
servers for Redpoll (http://redpoll.pharmacy. ual-
berta.ca/~shan/cgi-bin/ssass.cgi) and PISTACHIO
(Eghbalnia et al., 2005) (http://bija.nmrfam.wisc.
edu/PISTACHIO), and obtained an authorized
copy of AutoAssign (version 1.1.5, July 2005). For
the web servers of Redpoll and PISTACHIO, we
input data with the required format and used the
default tolerances on these servers. For MARS and
AutoAssign, we tested the example data distributed
with these programs, and all of them generated
correct assignments on their example data.

Results
Overview

It is necessary to test CASA rigorously on proteins
with various sizes, degrees of data completeness,
and degrees of data degeneracy. Here we simulated
the data of proteins that were commonly tested by
other methods (TATAPRO, PACES and MARS)
(see Table 3). Of these proteins, the size ranges

Table 3. CASA assignments of proteins with simulated data and data quality

Protein BMRB code Number of residues Number of pro/gly C*(%)* C*(%)* C’" (%)* H*(%)*
Malate synthase G 5471 723 31/51 96 96 96 NJA®
Dnak-Tth 6229 381 18/35 92 89 91 N/AP
Maltose binding protein 4354 370 21/29 95 95 88 N/A®
GluR2 extracellular ligand-binding domain 5182 263 7/25 97 96 96  NJA®
Rous sarcoma virus capsid 4384 262 23/20 95 90 93  N/A®
Human carbonic anhydrase | 4022 260 17/16 99 98 93 NJ/A®
E-cadherin domains II and III 4457 227 14/12 73 72 NJA® 65
Human prion protein 4402 210 15/43 98 98 NJA® 78
Thiopurine methyltransferase 5820 203 9/18 98 98 93 N/AP
Superoxide dismutase 4341 192 8/14 73 72 57  NJA®
Calmodulin/M13 547 148 2/11 100 N/A® 100 92
Profilin 4082 139 4/16 99 99 NJ/A® N/A®
E. coli EmrE 4136 110 5/12 83 56 72 NJA®

“Percentage of available chemical shifts.
®Data not available.



from E. coli EmrE with 110 residues to malate
synthase G with 723 residues. The degree of
completeness varies from superoxide dismutase,
with data for only 55% of the protein’s residues
spread out intermittently over its sequence, to
nearly 100% of others. We also tested CASA on
the human prion protein, which is a challenge to
automated assignment because of its narrow
chemical shift dispersion and severe degeneracy.
The original chemical shifts of these proteins were
taken from the BMRB database. If HY and N
chemical shifts were available for a certain residue
i, the intra-residue chemical shifts were con-
structed with the chemical shifts of this residue.
The inter-residue chemical shifts were constructed
by the combination of HY and N chemical shifts of
residue 7 and the carbon (or H*) chemical shifts of
residue i — 1, if available.

CASA was tested on these proteins using dif-
ferent numbers of spectra, according to the size of
the proteins. For small proteins (chain length less
than 200), fewer spectra were used so that we con-
structed and assigned the GSs with only 2 rungs (C*
and CP). For large proteins (chain length larger than
200), it is necessary to include C” or H* chemical
shifts to guarantee fast and reliable assignment.
Similar to MARS, we tested each protein under two
tolerance conditions, namely 0.5, 0.5 and 0.25 ppm
(condition I) and 0.2, 0.4 and 0.15 ppm (condition
II) for C*, CP and C’, respectively (see Table 2). For
human prion protein and calmodulin/M13, the
chemical shifts of H* were introduced, and the
corresponding tolerance is 0.025 ppm (condition I)
or 0.015 ppm (condition II).

It is difficult but necessary to simulate the ef-
fects of overlap, line broadening, missing reso-
nances and spectral artifacts with simulated peak
list data. In CASA, only unambiguous paired
rungs are included into a GS. Applying a tight
tolerance for pairing and aligning, the probability
of introducing paired noise or artifacts is very low.
On the other hand, the number of GSs and/or the
number of rungs inside GSs may be smaller than
expected, because some experimental error may
distort some of the HY and N chemical shifts to be
outside the tight pairing tolerance. As a result,
some rungs in the GSs or even entire GSs are
missing. In order to simulate the experimental er-
rors introduced into realistic data sets, CASA was
also tested with random deletion of GSs as well as
random deletion of certain rungs within GSs.
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We also tested the case when the distortion of
certain chemical shifts brought about the loss of
sequential links between GSs.

Furthermore, we tested CASA on the experi-
mental chemical shifts provided by other automatic
assignment methods, such as mt0895 (thioredoxin
like protein) (Bhattacharyya et al., 2002) from
Redpoll; Z domain (Tashiro et al., 1997), RNase A
wildtype (Shimotakahara et al., 1997) and fgf
(basic fibroblast growth factor) (Moy et al., 1995)
distributed with the AutoAssign software (see
Table 5).

We also tested CASA on the experimental
chemical shifts of four proteins collected in Prof.
Zuiderweg’s lab, namely, ubiquitin, calmodulin
(without peptide), GRPE and CTD (see Table 6).
All these experiments were performed on a Bruker
Avance 500 MHz NMR spectrometer, and gener-
ated data of average sensitivity. The spectra were
processed using the NMRPipe program (Delaglio
et al., 1995). Peak-pick lists generated by NMR-
Pipe were then edited by hand to erase obvious
noise and side-chain signals.

The CASA assignment was carried out in MOE
(http://www.chemcomp.com) using the SVL com-
puter language. CASA and AutoAssign ran on a
Sun Ultra 10 workstation with a 333 MHz CPU,
while MARS ran on a SGI O2 workstation with a
180 MHz CPU.

Test on simulated chemical shifts

A. Disordered protein with severe degeneracy

The N-terminal half (residues 1-125) of the human
prion protein (210 residues) is completely disor-
dered, which results in a very narrow chemical
shift dispersion. Furthermore, a large proportion
of the residues are glycines (41 out of 210 residues).
Thus severe degeneracy characterizes the spectra
of this protein and poses a significant challenge to
sequential assignment. Using only data corre-
sponding to the structured C-terminal domain
(residues 126-230) (Coggins and Zhou, 2003), the
assignment was rapid by either using 2-rung GSs
(C* and CP) under condition II or 3-rung GSs (C?,
CP and H*) under condition I with at least 98% of
the residues assigned correctly. When the full-
length protein was tested, the assignment score
decreased greatly, but there were still 132 GSs as-
signed correctly using 3-rung connection under
condition IT (see Table 4).
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Table 4. CASA assignment results for proteins with simulated data

Protein Number of GSs* Rungs in GSs Condition I Condition IT  Simulated
assignment assignment errors
number number
All>  Correct® All® Correct® All®  Correct®

Malate synthase G 653 c*chc 519 451 653 649 556 513

Dnak-Tth® 324 P 295 279 324 317 276 254

Maltose binding protein 328 cchc 328 326 328 326 279 242

GluR?2 extracellular ligand-binding domain 245 c*chc 245 245 245 245 209 207

Rous sarcoma virus capsid 220 c*chc 218 208 218 208 186 164

human carbonic anhydrase I 242 cCche 242 240 242 242 206 196

c*ch N/A® NJAM 242 242 218 214

E-cadherin domains II and II1 133 crchuf 133 88 133 118 N/AT N/A

c*cP 133 57 133 79 N/AT N/A!
Human prion protein 189 P 145 121 149 132 151 91
cCP 96 65 132 119 113 73

Thiopurine methyltransferase 189 c*chc’ 189 189 189 189 161 161

Superoxide dismutase 117 cche 117 107 117 108 N/Al N/A!

c*ch 117 83 117 100 N/AT NJA

calmodulin/M13 144 C*C'H™ 129 89 144 144 130 86

et N/AP N/AD 132 131 123 59

profilin 132 ccP 132 132 132 132 113 113

E. coli EmrE 79 i 79 50 79 70 68 55

cCP 79 30 79 48 68 45

4Counting only those residues with HN root and at least one T-unit.

®The number of GSs mapped onto the sequential sites.
“The number of GSs mapped onto the correct sequential sites.

dSimulated errors were introduced by random deletion of 15% of GSs as well as random deletion of rungs within 15% of the remaining

GSs under condition II.
°Peak list data provided by E.R.P. Zuiderweg.

fC’ chemical shifts are missing in the original BMRB entry,H* chemical shifts were introduced to construct GS.
¢CP chemical shifts are missing in the original BMRB entry,H* chemical shifts were introduced to construct GS.
"No reliable assignment could be generated within a reasonable time scale in this case.

iOriginal spectra are far from complete. It is not necessary to delete additional GSs or rungs.

B. Large proteins

The assignment of six large proteins with more
than 250 residues were tested by CASA, namely
human carbonic anhydrase I (260 residues), Rous
sarcoma virus capsid (262 residues), GluR2
extracellular ligand-binding domain (263 residues),
maltose binding protein (370 residues), Dnak-Tth
(381 residues), and malate synthase G (723 resi-
dues). The peak pick lists were constructed from
the available BMRB databank. Except for human
carbonic anhydrase I, which was assignable using
only 2-rung GSs (C* and CP) under condition II,
all the other large proteins required 3- rung GSs
(C*, CP and C’) for CASA to generate results with
significant assignment scores. For the 723-residue

malate synthase G, the assignment was accom-
plished within 200 s and only four out of 653 GSs
were not assigned to the correct sequential sites.
Three out of these 4 GSs, corresponding to resi-
dues 94, 159, and 537, were surrounded by either
empty sites or sites corresponding to prolines; and
the fourth GS, corresponding to residue 456, had
only a C* rung. Considering the larger number (38)
of empty sites in the sequence, it’s reasonable that
there is flexibility to assign these residues to alter-
native sites due to the insufficient constraints from
link and/or occupation score. This leads to some
alternative assignments which have similar assign-
ment scores (all GSs mapped into the sequence
with no unfavorable occupation or link score) but
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differ in detailed placing of the GSs. The correct
assignment corresponds to one of the alternative
assignments, but it’s not distinguishable from the
others without additional constraints.

C. Proteins with incomplete chemical shift data
EmrE, superoxide dismutase and E-cadherin are
missing HY/N chemical shifts for a substantial
portion of their residues (Coggins and Zhou, 2003;
Jung and Zweckstetter, 2004), resulting in a large
number of empty sites in the sequence. For EmrE,
the residues with missing data were concentrated
into a specific region of the protein sequence
(residue 32-76). Using only 2-rung (C*, CP) GSs
for linking, all the 79 GSs were assigned, but only
a small proportion of the GSs were assigned to the
correct sites (38% for condition I, 61% for con-
dition II). However, if the additional C’ informa-
tion was included into the GSs, the assignment
score was improved dramatically (63% for condi-
tion I, 89% for condition II).

For superoxide dismutase, only 61% of the
expected pseudoresidues were listed in the data
bank entry, and about half of the available GSs
are scattered throughout the length of the protein.
Nevertheless, even using only 2-rung GSs (C*, CP)
in condition I, more than 70% of the GSs were
assigned correctly, but 3-rung GSs performed
much better than 2-rung, resulting in nearly com-
plete assignment (97% in condition II).

For E-cadherin, the available data covers long
segments in domain II, but only isolated residues
and short segments scattered sporadically
throughout the unstructured domain III. Again,
the assignment was much better for the 3-rung GSs
(60% for condition I, 89% for condition II) than
the 2-rung case (42% for condition I, 59% for
condition II).

D. Assignment without CP rungs

The original BMRB entry for calmodulin did not
contain CP chemical shifts, so GSs with C*, C” and/
or H* rungs were constructed. The assignment of
this small protein was possible for 2-rung GSs only
under condition II. Using 3-rung GSs under con-
dition II, the assignment was rapid and complete
(assignment score was 100%). However, deletion of
only 10% of the GSs and rungs caused a great de-
crease in assignment score (66%). At the same time,
a large portion (80%) of the sequential links were
conserved in this assignment. This interesting result
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corresponded to the fact that most of the GSs
linked correctly to each other and formed segments,
but quite a few of the segments were assigned to the
wrong sequential sites due to insufficient con-
straints from the occupation score. Therefore, the
chemical shifts of CP play an important role in
providing sufficient constraints on typing score
(Atreya et al., 2000). Missing CP chemical shifts
may result in uncertainty in the assignment when
the number of empty sites is not negligible.

E. Complexity of assignment

The complexity of the assignment depends on the
size of the proteins, the degeneracy and the com-
pleteness of the spectra data, the sizes of the tol-
erances, and the number of rungs in the GSs. So it
is very hard to compare the complexity among
different proteins. Figure 4 shows the relation of
execution time and the number of segments vs. the
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Figure 4. (a) Completion time of the CASA assignment for
different proteins using 3-rung GSs under condition II. All the
tests were carried out in MOE (http://www.chemcomp.com)
using the SVL computer language on a Sun Ultra 10 worksta-
tion. (b) the number of segments vs. the number of residues
using 3-rung GSs under condition II.
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chain length using 3-rung GSs under condition II.
In this situation, the increase of running time was
monotonic, and the assignment was still rapid for
a protein as large as malate synthase G, and the
assignment was nearly complete. However, when
using fewer rungs or larger tolerances, the sub-
stantial increase of the degeneracy of the chemical
shift data may result in a larger number of shorter
segments, and the constraints of typing and linking
for these segments will be much looser than those
for longer ones. The execution time increases
exponentially, eventually making the assignment
impossible.

F. Assignment score vs. ambiguity score

Figure 5 is a scatter plot of assignment score vs.
ambiguity score, tested on the simulated data of
proteins in Table 3 under different link conditions
(2-rung/3-rung connection, link condition I and II).
Although the test proteins differ greatly in chain
length, data completeness and data degeneracy, and
the test was conducted under different link condi-
tions, there is an obvious correlation between
assignment score and ambiguity score. When the
ambiguity score was small ( < 3), the assignment
scores were always high (>90%); as the ambiguity
score increases, the assignment score drops. We can
also see that the dispersion of assignment scores at
small ambiguity scores was smaller than that at
large ambiguity scores. When the ambiguity score is
small, the constraint from occupation and link score
dominates the ambiguity, and thus a correct
assignment is guaranteed regardless of the differ-
ence in proteins and link conditions. However, there
are insufficient constraints at a large ambiguity
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Figure 5. Assignment score vs. ambiguity score.

score, while the assignment score depends more on
data quality and link conditions.

G. Comparison to other methods

Table 3 covers all the proteins with simulated data
tested by MARS (Jung and Zweckstetter, 2004),
except the N-terminal domain of enzyme I (EIN)
whose N chemical shifts were missing in the ori-
ginal BMRB entry. Using 3-rung GSs under con-
dition II, CASA could get comparable assignment
scores for all the proteins in MARS, but it ran
much faster (200 s compared to 2 h for malate
synthase G). Using 2-rung GSs with large toler-
ances for large proteins, the execution time in-
creases exponentially, and CASA could not get
reliable assignments within a reasonable time
scale. Our conclusion is similar to that of Auto-
Assign (Moseley et al., 2001), namely that using a
2-rung strategy has a great impact on the robust-
ness of the assignment, and introducing more
rungs in GSs increases the speed and reliability of
assignment dramatically.

Part of the proteins in Class I and II, as well as
all of the Class III proteins in PACES (Coggins
and Zhou, 2003) were included in Table 3. We
further tested all the remaining proteins in PACES
with simulated data using their tolerances (same as
condition II). For all these proteins, CASA could
get comparable or better assignment scores with-
out any intervention. For Class II and Class III
proteins, it’s not necessary to introduce reduced
tolerances at the beginning.

The five proteins tested by TATAPRO (Atreya
et al., 2000) with simulated data were also tested by
CASA wusing their tolerances (0.5, 0.2, and
0.25 ppm for C*, CP and C’, respectively). All the
proteins were assignable on the order of seconds
without any intervention or reduced tolerances, and
our assignment scores were comparable to theirs.

Tests on experimental chemical shifts

A. Tests on the data provided by other methods

For the protein mt0895 provided by Redpoll, only
a HNCACB peaklist was available (see Table 5).
Note that there are 560 peaks in the HNCACB
peaklist for this 77-residue protein, considerably
more than the maximum of 308. In this crude form,
it is not assignable for CASA, or PISTACHIO
(Eghbalnia et al., 2005). It is also not assignable for
AutoAssign because that method requires at least



additional HN(CO)CACB information. However,
we can artificially construct GSs from the assign-
ment of Redpoll, by using the peaks of HY and N
of one assigned residue as the HN root of a GS, the
peaks of the C* and CP of this residue as the CA
rungs in the GS, and the peaks of the C* and CP of
the previous residue as the CO rungs in the GS. If
the assignment is correct, all the GSs constructed
should also be correct. Using these GSs, both
CASA and MARS could assigned most of the GSs
(>90%) correctly (compared to the assignment of
Redpoll). PISTACHIO and AutoAssign do not
accept GSs constructed by other programs (or by
hand); hence these programs could not be further
tested for mt0895.

The experimental chemical shifts of Z domain,
RNase A wildtype, and fgf were provided by
AutoAssign. CASA and MARS could assign all
these proteins using 2-rung connection, and we can
see that the assignment scores were much lower
under condition I than those under condition II for
both CASA and MARS. PISTACHIO could assign
Z domain and fgf using 2-rung connection with high
assignment scores. Redpoll used simulated experi-
mental HNCACB datain NMRPipe format, but the
assignment scores were low for all these proteins.

We used simulated data from BMRB results for
the last protein, maltose binding protein. It pro-
vides a test of the assignability of all these methods
for large proteins. Due to the great chain length of
this protein, we tested all the methods, except
Redpoll, with 3-rung connections. CASA, MARS
and PISTACHIO could assign more than 80% of
the GSs correctly. AutoAssign failed on this simu-
lated data. The number of GSs constructed was
smaller than expected, and some of the GSs had
incorrect rungs assembled to their HN roots, espe-
cially incorrect CP. Redpoll can accept up to three
spectra, HNCACB, HNCA, CBCA(CO)NH, so it
can only use 2-rung connection, which made it
difficult for redpoll to assign such a large protein.

B. Tests on our experimental data

Ubiquitin is a small protein with 76 residues and 72
assignable sites (see Table 6). Using a tolerance of
0.01 and 0.1 ppm for HY and N, respectively,
CASA constructed 69 C* T-units from HNCA and
HN(CO)CA spectra; subsequently 61 CP T-units
from HNCACB were aligned to these C* T-units.
Altogether 69 GSs were constructed. Using a link
tolerance of 0.4 ppm for both C* and CP, 22 seg-
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ments were formed, with only one 8-GS, 7-GS, or
6-GS segment, two 4-GSs segments, three 5-GS or
2-GS segments, four 3-GS segments, and seven
1-GS segments. CASA completed the entire
assignment within 4 s. Comparison of this assign-
ment with the published one (http://www.
bmrb.wisc.edu) showed that all 69 GSs were as-
signed to the correct sites, while the chemical shifts
of residues 24(glu), 28(ala) and 53 (gly) were
missing in the original spectra. Using the GSs
constructed by CASA and the same link tolerances,
MARS assigned 68 GSs correctly. Redpoll, PIS-
TACHIO, and AutoAssign could not generate any
assignment with our experimental ubiquitin data.

We then tested CASA on our experimental
data of calmodulin (without peptide) with only
HNCA and HNCACB spectra available. 106 C*
T-units could be picked out unambiguously from
the HNCA spectrum under the tolerance of 0.01
and 0.2 ppm for H™ and N, respectively. Since the
HN(CO)CA spectrum was not available, it was
impossible to extend the list of C* T-units by
separating overlapping C* T-units or matching a
single intra-residue peak in HNCA to the corre-
sponding sequential peak in HN(CO)CA. At the
same time, the quality of the HNCACB data was
much worse. Using the same pairing tolerance,
only 47 unambiguous CP T-units could be picked
out and aligned to the corresponding C* T-units.
As a result, there are 39 empty sites in the sequence
and 59 GSs (more than 50% of all GSs) with only
C?* rungs. Compared to the manual assignment,
only 35 GSs were assigned correctly under condi-
tion II due to the great ambiguity in the data. This
suggests that the quality of picked peaks and
assembled GSs is crucial for successful assignment,
and manual inspection of the original spectra may
be necessary to guarantee such quality (Jung and
Zweckstetter, 2004). The spectra were then man-
ually analyzed using the Xeasy program (Bartels
et al. 1995), and degeneracy could often be re-
solved when the information on peak shapes was
taken into account. In total, 122 C* T-units and 79
CP T-units were picked out to construct 122 GSs.
Under condition II for the link tolerance, CASA
constructed 80 segments from these GSs, with one
5-GS, one 4-GS, nine 3-GS segments, 17 2-GS
segments and 52 1-GS segments. Although there
was still considerable ambiguity, 104 GSs were
assigned, out of which 75 GSs were assigned cor-
rectly (assignment score 61%) within 100 s (as
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shown in Table 6). Compared to the ideal spectra,
our assignment was based on spectra where 15%
of the GSs were missing and 35% of the available
GSs had only C* rungs. This assignment score
(61%) is consistent with the test result on the
simulated data with random deletion of GSs and
rungs (see Discussion). Using the 122 manually
constructed GSs, MARS assigned 94 GSs under
condition II, with 70 GSs assigned correctly.
However, Redpoll, PISTACHIO and AutoAssign
could not generate any assignment in this case.

The third protein we tested was GRPE, with
137 residues and 7 prolines. Due to the limited
quality of the spectra, we had difficulty in con-
structing CP Ts and aligning them to the HN roots.
With the help of manual inspection, 98 GSs were
constructed, but only 47 out of them had CP rungs.
Under condition II, 42 segments were constructed,
with two 9-GS, one 6-GS, three 5-GS and 4-GS,
five 3-GS, four 2-GS, and 24 single GS segments.
With such incomplete data, CASA assigned 71
GSs correctly. Noticing that there were 27 GSs
assigned incorrectly, we further checked the
ambiguity score of each segment. One group of 15
segments, mostly single GSs segments, had ambi-
guity scores no smaller than 25, while the scores of
all the other segments were no larger than 13.
Discarding the assignment of the 15 most ambig-
uous segments, CASA assigned 82 GSs out of
which 69 GSs were assigned correctly; the number
of wrong assignments was greatly reduced. Using
the same GSs and link condition, MARS assigned
65 GSs correctly. PISTACHIO and AutoAssign
assigned 42 and 20 GSs correctly, respectively.
Using three spectra, HNCACB, HNCA, and
HN(CO)CACB, Redpoll assigned 12 GSs cor-
rectly using 2-rung connection.

We finally tested CASA with protein CTD, a
163-residue protein with 12 prolines, for which
currently we do not know the correct assignment.
Using a tolerance of 0.02 and 0.15 ppm for HY
and N, respectively, 116 C* Ts, 72 CP Ts, and 82 C’
Ts were picked out and aligned to construct 116
GSs. Under condition II, 59 segments were
formed, with one 10-GS, 7-GS and 5-GS segments,
two 6-GS, five 3-GS, 12 2-GS, and 35 -GS seg-
ments. Within 100 s, CASA assigned 114 GSs onto
the sequence. We also tested these data on MARS,
PISTACHIO, AutoAssign and Redpoll using the
same tolerances. For MARS, the GSs constructed
by CASA were used as input. For the assignment
results from PISTACHIO, AutoAssign, and red-
poll, we artificially constructed GSs using the
methods as described for mt0895. Since we do not
know the correct answer, we can only make com-
parison of the assembly and assignment of the GSs
from different methods. The numbers of GSs as-
signed by the five methods are quite similar among
each other, ranging from 96 GSs (MARS) to 114
GSs (CASA), and most of the HN roots of those
GSs are common for all the methods. However,
the rungs in the GSs with the same HN roots
might be different for different methods, possibly
because the spectra of different experiments may
shift a little, and different methods have different
criteria and techniques to align them. This is not
surprising since the manually assembled GSs may
also depend on the experience and preference of
the experimentalist, resulting in different results
from person to person. As we have discussed, the
difference in rungs of GSs may change the link
score and occupation score greatly, so the differ-
ence in the assignment of these GSs could be even
larger, as we can see in Table 7. In general, CASA,

Table 7. Comparison of assignments of different methods for protein CTD

CASA MARS Redpoll® PISTACHIO AutoAssign
CASA 114* 96*° 66 69 87
MARS 75 96 66 69 87
Redpoll® 28 26 96 43 70
PISTACHIO 63 66 20 111 76
AutoAssign 72 85 28 74 107

“In the diagonal of the table are the numbers of GSs assigned by the corresponding methods; in the upper-right of the table are the
numbers of GSs constructed in common between the corresponding two methods; in the lower-left of the table are the numbers of GSs

assigned in common by the corresponding two methods.
®Mars used the GSs constructed by CASA.

“Redpoll used only three spectra: HNCA, HNCACB, HN(CO)CACB; while all the others used all six spectra.



MARS, PISTACHIO and AutoAssign had a large
number of GSs assembled and assigned in com-
mon. Since CASA and MARS accept assembled
GSs as input, we fed these two methods with the
GSs from the assignment of PISTACHIO and
AutoAssign to compare the assignment of differ-
ent methods using the same GSs. For the 111 GSs
from PISTACHIO, CASA assigned all of them,
with 105 GSs assigned the same as PISTACHIO;
while MARS assigned 101 GSs, with 97 GSs as-
signed the same as PISTACHIO, and these com-
monly assigned 97 GSs were assigned the same by
CASA. For the 107 GSs from AutoAssign, CASA
assigned all of them, with 104 GSs assigned the
same as AutoAssign; while MARS assigned 106
GSs with 104 GSs assigned the same as AutoAs-
sign. All the 106 GSs assigned by MARS were
assigned in common by CASA.

Discussion
Robustness against missing chemical shifts

As seen in Table 4, the assignment was nearly
100% correct when the spectra were nearly com-
plete and 3-rung GSs under condition II were
introduced. However, in reality there are always
missing GSs, or overlapping GSs which cannot be
separated initially. The number of GSs may be
smaller than the number of assignable sites in the
sequence, so a certain number of empty sites are
introduced into the sequence. These empty sites
break segments into shorter ones which are as-
signed under looser constraints from their typing
and link score. There is uncertainty particularly in
assigning isolated GSs or short segments (Coggins
and Zhou, 2003) such as the case of malate syn-
thase G. Certain errors may be introduced into the
assignment, and as the number of empty sites in-
creases, a reliable assignment could eventually
become impossible.

For the proteins with nearly complete spectra,
we simulated experimental error by randomly
deleting 15% of GSs and randomly deleting certain
rungs in 15% of the remaining GSs under condition
II. As one sees, the assignment score using CASA
was still quite high (>87%) for all of the proteins
except calmodulin, which has no CP chemical shifts
to provide sufficient typing constraints.
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The robustness of CASA against missing data
was further tested by random deletion of up to
30% of the GSs for maltose binding protein using
3-rung GSs under condition II (see Figure 6a). The
more GSs deleted, the smaller was the proportion
of correctly assigned residues. However, even

100 T T T T T T

95 [~ 7
90 [~ 7
85 [~ 7
80 [~ 7
75 - 7
70 [~ 7
65 [~ 7
60 [~ 7
55 [~ 7
50

—_
&
=

assignment score (%)

100
95 - -
90 - -
85 - -
80 - -
75 - -
70 - -
65 - -
60 - -
55 - -

50 L L L L L L
0 5 10 15 20 25 30 35

GSs with missing rungs (%)

Py
=2
=

assignment score (%)

—
)
~
-
o
o

T T T T T

©
o
T
1

©
o
T
1

70 B

60 B

assignment score (%)

50 -

40 I I I I I I

corrupted GSs (%)

Figure 6 Robustness of CASA against (a) missing entire GSs,
(b) missing rungs in GSs (1 rung in the corresponding GSs after
deletion), (c) percentage of chemical shifts outside the link
tolerances. All these tests were performed for maltose binding
protein using 3-rung GSs under condition II.
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when 30% of the GSs were deleted, the assignment
score is still better than 67%. And the robustness
for 3-rung GSs under smaller tolerances (condition
IT) is much better than that for 2-rung GSs under
larger tolerances (condition I).

We also tested the robustness against missing
data by random deletion of certain rungs in GSs
(only C* rungs were kept for those GSs). Deletion
of rungs in GSs introduces ambiguity in occupa-
tion and linking for the corresponding GSs, which
increases the number but decreases the sizes of
segments. As a result, the size of the search tree
increases greatly, and so does the execution time.
It is possible that the assignment could not be
finished within a reasonable time scale, so when
the rungs of more than 15% of GSs were reduced,
we stopped the assignment after 200 s of running
time. As we can see, more than 64% of GSs were
still assigned correctly by CASA within 200 s in
the worst case. (see Figure 6b)

Robustness against chemical shifts outside the link
tolerances

The linking information provided by inter- and
intraresidue chemical shifts is an essential com-
ponent of the assignment process (Jung and
Zweckstetter, 2004). In CASA, we construct seg-
ments for the uniquely linked GSs and assign them
by the increasing order of the number of assign-
able sites. The size of the ordered searching tree is
greatly reduced so that the assignment is com-
pleted quickly. However, it is possible in experi-
ment that some peaks are distorted and the
corresponding chemical shifts fall outside the tol-
erances. Breaking the link between GSs corre-
sponding to sequentially adjacent residues

Table 8. Robustness of CASA tested on extra peaks

prevents those GSs from being assigned to the
correct sites simultanecously, and it is even worse
when these two GSs were originally located in the
middle of a long segment. We tested CASA in this
situation on maltose binding protein using 3-rung
GSs under condition II by randomly breaking the
favorable link between GSs. This may cut off the
path from the root of the search tree to the leaf
corresponding to correct assignment, and the
assignment always stops at some dead end. How-
ever, as we can see from Figure 6 (c), a large
proportion of GSs could still be assigned correctly
even when 30% of the links were broken.

Robustness against extra peaks

The robustness should also be tested when the
number of GSs provided is larger than that of the
assignable sites. The extra GSs may be due to
noise, experimental artifacts, or erroneous peaks
when looser constraints are applied in peak pick-
ing and/or peak aligning, so they may have little
relevancy to the sequence. Here the extra peaks
were introduced by combining the peaks of the test
protein (maltose binding protein) with those from
another protein, namely, ubiqiutin, thiopurine
methyltransferase, and human carbonic anhydrase
I, respectively (see Table 8); while the sequence of
the test protein was unchanged. The robustness of
CASA was then tested under condition II. Since
the extra GSs do not overlap with the original GSs
too much, most of the segments constructed from
the original GSs were conserved and assigned onto
the correct sites, which resulted in high and stable
assignment scores (~85% for all cases) regardless
of the percentage of extra GSs. The extra segments
(constructed from the extra GSs) were not com-

Test protein Maltose binding protein

Number of residues of test protein 370

Number of GSs from test protein 328

Protein providing extra peaks Ubiquitin Thiopurine methyltransferase Human carbonic anhydrase 1
Number of extra GSs 70 189 242

% of extra GSs* 17 36 42

completion time (s)° 60 96 120

Number of GSs assigned correctly 280 280 284

4The percentage of extra GSs in the total number of GSs.

"The completion time of assignment using 3-rung GSs under condition II.



petitive, because it was hard to map the extra
segments onto the sequence of the test protein.

Multiple conformers

Sometimes the resonances for some segment in the
sequence may be duplicated because the protein
has two slowly interconverting conformations. We
tested the robustness of CASA for multiple con-
formers by generating a shifted duplication of the
peaks of a segment of 20 residues starting from
residue 38 of protein thiopurine methyltransferase.
That is, the chemical shifts of the H nuclei in the
duplicated peaks are 0.05 ppm larger than those in
the original peaks, and the chemical shifts of all
the other nuclei are 0.5 ppm larger than those in
the original peaks. As a result these duplicated
peaks still have favorable occupation scores at the
corresponding sites and favorable link scores to
the GSs before and after the segment. CASA could
generate two alternative assignments. For each of
these two assignments, the unduplicated segments
and one of the duplicated segments were assigned
correctly, and the other duplicated segment was
not assigned because the corresponding sites were
already occupied. By checking the assignable sites
of the unassigned segment and comparing this
segment to those assigned at these sites, the mul-
tiple conformers can be easily identified.

Typing of chemical shifts

The complexity of sequence specific assignment is
effectively determined by the constraints from the
typing and linking of GSs. Thus, a tighter constraint
from typing of GSs is very desirable. However, the
value of a chemical shift is determined not only by
the residue type, but also by the secondary structure
the residue is involved in and the types of neigh-
boring residues, which enlarges the dispersion re-
gion of the corresponding chemical shifts and
results in big overlap among different residues.

AutoAssign uses a probability score based on
the statistical mean and standard deviation from
the BMRB database. The Gaussian-like typing
score of assigning a chemical shift p to a residue of
type ¢ is

Occu(p,t) < exp(—(p *ﬁr)z/azz)

where p, and o, are the statistical mean and stan-
dard deviation of the chemical shifts of the residue
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of type t. However, the mean chemical shifts of
most residues are very close to each other, and it is
highly probable that the chemical shift of a certain
residue is far away from the mean chemical shift in
a specific experiment. For example, there are 15
amino acids whose mean chemical shifts of C* are
between 50 and 60 ppm, and the corresponding
standard deviations are typically 2-3 ppm. If the
C? chemical shift of an alanine is 2 ppm (I stan-
dard deviation) larger than its average, it has a
higher score to be assigned to a leucine residue.
The meaning of the size of a Gaussian score is thus
dubious, and we elected to use the binary form
described above.

Based on the distribution of C* and CP chem-
ical shifts, TATAPRO classified the 20 amino
acids into eight groups. Instead of being assigned a
probabilistic typing score, each GS is assigned
deterministically to one of the eight groups, which
reduces the ambiguity of typing. However, new
ambiguity is introduced when mapping segments
into sequence because the original 20-letter se-
quence is converted into an 8-letter sequence. It is
less likely to map a segment uniquely onto the
sequence for larger proteins. Furthermore, the
grouping of residues strongly demands complete
CP chemical shifts (for all the proteins tested by
TATAPRO, CP chemical shifts are nearly 100%
complete), which limits its general application.

It is very attractive that MARS introduced an
improved typing score by considering corrections
due to secondary structure and neighboring resi-
due effects. A tighter constraint with general
application could be achieved using this updated
typing score. It requires a highly accurate predic-
tion of chemical shifts based on the prediction of
secondary structure. However, we have seen no
differences in the assignment scores from CASA
and MARS on the protein sets provided. For now
the programs appear competitive, with an advan-
tage for CASA in computational efficiency.

Link tolerances and number of rungs for linking

Constraints from link scores between GSs also
play an important role in reducing the ambiguity
of assignment, which determines the depth of the
search tree as well as the number of branches in
each level. In general, this constraint is determined
by the size of the tolerances and the number of
rungs in GSs to evaluate the link score. Small
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tolerances plus a large number of rungs for linking
can reduce the ambiguity substantially, resulting in
fast and reliable assignment. However, the toler-
ances should be set slightly larger than the uncer-
tainty in peak positions based on the digital
resolution of the NMR spectra, since using too
narrow tolerances may break some links between
sequentially adjacent GSs. Furthermore, the
number of triple resonance experiments could be
limited due to some practical reason such as the
stability of the protein, so it is necessary for an
automated program to be able to use reduced
numbers of rungs for linking. Thus there is a
tradeoff between the theoretical requirement and
experimental feasibility. In our experience, it is
enough to use 2-rung GSs in condition I for small
proteins with less than 150 residues. However, for
large proteins or proteins with severe degeneracy,
3-rung linking is required and tighter tolerances
(condition II) are desired to guarantee rapid and
reliable assignment. It is mentioned in some
methods (Atreya et al., 2000; Coggins and Zhou,
2003) that they use tighter tolerances at the
beginning of assignment and enlarge the tolerances
when a large proportion of GSs have been as-
signed. However, it is possible that the chemical
shifts of sequentially adjacent GSs are outside the
tight tolerances due to peak distortion, while at the
same time they may be linked favorably to other
GSs due to spectral degeneracy. Thus the incorrect
links are formed while the correct links are ruled
out, and the partially assigned result may be a
dead end with errors already introduced.

Conclusion

We have introduced a new algorithm, CASA, for
the automatic assignment of the NMR spectra of
proteins. It follows the same general paradigm used
in other methods of combining peaks from different
spectra into GSs, linking these together into seg-
ments, and mapping the segments onto the amino
acid sequence. CASA performs at least as reliably as
any method, and much more reliably than some,
both on experimental data and on simulated data
with added errors. CASA runs extremely fast,
taking only minutes of CPU time for even a protein
with 723 residues. For incomplete data, high
chemical shift degeneracy, or very large proteins,
CASA may produce some wrong assignments. We

further introduced a new assignment ambiguity
score by which the confidence in an assignment can
be assessed and the number of wrong assignments
can be reduced. We observed substantial differences
among the assignments produced by different
methods starting with the same data, especially
experimental data. This state of affairs is surprising,
and calls for further improvements in all assignment
algorithms. The greatest source of these disagree-
ments appears to lie in the formation of GSs, rather
than the linking or mapping stages. Our method is
more flexible than most, accepting data from many
different NMR experiments, constructing GSs with
a variety of different rungs under the tolerances
suitable to the quality of the data. Not only can
CASA use peak lists to assemble GSs automatically,
but it can also use GSs that are constructed either
manually or by other methods. CASA is relatively
robust upon deletion or addition of extraneous
data. With the extreme speed of CASA, one can
consider exploring many assignments generated
from the same spectra under different peak-picking
conditions.

The results so far indicate that future
improvements may arise from better assembly of
GSs and their subsequent linking. Closer attention
to the original spectra would enable the use of
peak shape information to reduce ambiguity.
Work in these directions and the construction of a
user-friendly GUI for CASA are in progress. The
software in its current raw form (version 1.0, in
MOE SVL Ilanguage) is available from G.M.
Crippen.
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