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A Note on Multiple Flow Equilibria 

S. J. JACOBS l 

Abstract--A set of ordinary differential equations describing a mechanical system subject to forcing 
and dissipation is considered. A topological argument is employed to show that if all time-dependent 
solutions of the governing equations are bounded, the equations admit N steady solutions, where N is 
a positive odd integer and where at least (N - 1)/2 of the steady solutions are unstable. The results are 
discussed in the context of atmospheric flows, and it is shown that truncated forms of the quasi- 
geostrophic equations of dynamic meteorology and of Budyko-Sellers climate models satisfy the 
hypotheses of the theorem. 
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1. Introduction 

Several years ago CHARNEY and DEVORE (1979), VICKROY and DUTTON 

(1979), and WIIN-NIELSEN (1979) found that the equations governing a low order 
barotropic system with forcing and dissipation admit multiple steady solutions. For  

this system the governing equations admit N steady solutions, where N is a positive 

odd integer and where at least (N - 1)/2 of  the steady solutions are unstable. The 

same pattern is found in treatments of  Budyko-Sellers climate models (e.g., NORTH 

et al., 1979), in the study of  open channel flow over a corrugated bot tom (ZHU, 

1988), and in other problems of  interest in atmospheric science and fluid mechanics. 

Although in many cases steady solutions of  the governing equations can be 
found analytically, in general the search for equilibrium solutions must be carried 

out numerically. Path following methods have been developed to treat the depen- 
dence of equilibrium points on a parameter  (KELLER, 1979), and techniques have 

been proposed to find all the solutions of  a system of polynomial equations 
(WRIGHT, 1985). Carrying out these procedures is often tedious and time-consum- 
ing, and therefore qualitative information about  the number of  solutions can be 
extremely useful. 

The purpose of  this note is to show that the results discussed above for steady 
solutions hold for all truncated models for which transient solutions of  the 
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governing equations are bounded. We also provide information concerning the 
stability of equilibrium solutions when the solution curve exhibits limit points. Our 
main result is given by a theorem in Section 2. This is followed by a proof that 
truncated forms of the quasi-geostrophic equations of dynamic meteorology and of 
Budyko-Sellers climate models satisfy the hypotheses of the theorem, and by a 
discussion of the results. 

2. Analysis 

To avoid the advanced topological analysis needed for treating partial differen- 
tial equations (e.g., BENJAMIN, 1976), we reduce the governing equations of a 
dynamical system to a set of ordinary differential equations by use of a truncated 
spectral expansion. Hence, letting the components of x(t) denote the time-dependent 
amplitudes in a spectral expansion, we consider the system of ordinary differential 
equations 

dx 
~ -  + f(x, 2) = 0, (1) 

where the constant vector 2 represents the parameters and x and f are n-dimen- 
sional vectors. For future reference we define the Jacobian matrix Jik and the 
corresponding Jacobian determinant J by Jik = t3f/dxk and J = det(Jek). 

In the present study we assume that f is a differentiable function of its arguments 
with a convergent power series expansion in ( x -  xm) near all points Xm for which 
f vanishes, that the equations 

f = 0 ,  J = 0 ,  (2) 

are satisfied only when 2 lies on a discrete number of bifurcation surfaces, that a 
finite positive number r exists for which 

x" f > 0  (3) 

on  Ixl/> r, a n d  that f # 0 for Ixl = r. Since 

d 
(x" x) = - 2 ( x "  f), (4) 

it follows that all solutions of (1) are bounded. 
The main result of the present paper is as follows: 
Theorem. Let the above hypotheses be satisfied. Then 

1) Eq. (1) has at least one equilibrium solution; 
2) i f  J # 0 at the equilibrium solutions, the number N of  such solutions is odd, i.e. 

N = (2M + 1), where M is zero or a positive integer; 
3) i f  J # 0 at the equilibrium solutions, at least M of  the equilibrium solutions are 

unstable; 
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4) if  N = 3 and i f  a graph of  the equilibrium solution for Ixl as a function o f  one of  
the components of  2 has an S shape, the solution on the middle branch of  the S 
shaped curve is unstable. 
The proof of the theorem is topological and requires some facts about the 

Brouwer degree of a mapping (BERGER, 1977; LLOYD 1978). Let f(x) be a 
continuous function, fl a bounded open set in R", and r the boundary of ft. Then, 
letting e denote set membership, there exists an integer valued function d(f, fl), the 
Brouwer degree, which is defined if f # 0  for x~Ofl, and which has the following 
properties: 
1) d(f, fl) ~ 0 implies that f = 0 has at least one solution xsf l ;  
2) if the solutions xm of f = 0 are isolated, the index im is defined as d(f, tim), where 

tim is a neighborhood of Xm containing no other solutions, and 

d(f, n)  = ]~im; 

3) if f is differentiable at x,~ and J(xm) # O, the index im= ( - l) v, where v is the 
number, counting multiplicity, of the real negative eigenvalues of Jik(xm); 

4) if s is a scalar parameter lying in a closed interval S of the real axis and h(x, s) 
is a continuous function of its arguments, then d(h(x, s),fl) is independent of s 
if h # 0  for s ~ S  and x~0fl.  
To prove the theoren, we let fl denote the open sphere Ix[ < r and note that the 

function 

h ( x , s ) - - s x + ( 1 - - s ) f ,  st[O, 1], (5) 

satisfies 

x" h =sr  2 +(1  -- s)(x �9 f) < 0  (6) 

for xE0~,  s t [0 ,  1] and so h ~ 0 for x~0~,  s t [0 ,  1]. According to Properties 2) and 
3) of the Brouwer degree d(x, ~) =- 1, and hence, by Property 4), 

d(f, n)  : d(h(x, 0), n)  = d(h(x, 1), n)  = d(x, •), (7) 

which in turn yields 

d(f, n)  = 1. (8) 

The first conclusion of the theorem follows from (8) and Property l) of the 
Brouwer degree. The second follows from (8) and Properties 2) and 3); the sum of 
the indices is unity, each index takes on the values 1 or - 1 ,  and this implies that 
the number N of solutions of f = 0 is odd, N = (2M + 1), where M of the solutions 
have index - 1 and (M + 1) have index 1. The third conclusion follows from the 
proof of the second and Property 3), since an index i m --- - 1 implies that Jik(Xm) has 
at least one real negative eigenvalue, which in turn implies, by the principle of 
stability in the first approximation (HAHN, 1967, Th. 28.1, p. 122) that xm is 
unstable. 
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Figure 1 
Schematic diagram of a component x I of the state vector as a function of a parameter 2. The branch AB 

is unstable. 

The fourth conclusion of the theorem follows from the fact that if solutions of  
f = 0 appear as 2 passes through a critical value, they must occur in pairs and have 

indices of  opposite signs. Consequently, if a graph of  the equilibrium solution for 
[x[ as a function of  one of the parameters has an S shape, as shown in Figure 1, the 

indices of  solutions on two different branches of  the curve have opposite signs. 

Since the sum of the indices of  solutions on the lower, middle, and upper branches 

of  the S shaped curve must be unity, by (8), the index of a solution on the middle 

branch is - 1 ,  and so this solution is unstable. 

3. Applications 

In a study of quasi-geostrophic flow on the sphere, DUTTON (1976) showed that 

with certain simplifying assumptions concerning dissipation, the boundary condi- 
tion at the ground, and the boundary condition at the top of the atmosphere, the 
governing equations for a spectral model describing either baroclinic or barotropic 

flow can be expressed in the form 

d x  i 
d-T + A~kxjxk + Box j -- Ci = 0, (9) 

where the summation convention is applied and all indices run from 1 to n, in which 
n is finite but arbitrary. Here the components of  x are the expansion coefficients in 
an eigenfunction expansion for which the energy of the system is proportional to 
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E = x ' x ,  (10) 

and Aok, Ba and C,- are constants. 
It is easily shown from Dutton's equations that 

AijkXgXS~ = 0, (11) 

for all x if the energy of the system is represented by (10), and that the matrix 

Ro = B 0 + Bji (12) 

is positive definite. The equations studied by Charney and deVore, Vickroy and 
Dutton, and Wiin-Nielsen are also of the form (9), and, by a change of variable, can 
be shown to satisfy (11) and (12). 

The set of equations (9) is a forced dissipative system according to Lorenz's 
definition (LORENZ, 1963), and therefore, defining the vector e as the solution of 

Roe j = C;, (13) 

it follows from a calculation given by Lorenz that 

dE 
dt - R~ - R~ - ei)(xj - ej), (14) 

which in turn shows that all solutions of (9) eventually lie on or within an ellipsoid 
in phase space. Accordingly, the hypotheses of Section 2 are verified for this model, 
and all equilibrium solutions of Dutton's truncated equations and of truncated 
barotropic systems satisfy our main theorem. Consequently, the solution pattern 
found in the papers by Charney and deVore, Vickroy and Dutton, and Wiin- 
Nielsen is independent of the order of the truncation. This conclusion holds also for 
quasi-geostrophic two-layer models with linear viscous forces and for the convec- 
tion equations treated in Dutton's text (DUTTON, 1986, Sections 15.2.2-15.2.5). 

As a second example, we consider Budyko-Sellers climate models using the 
variational formulation given in the paper by NORTH et al. cited earlier. Let t 
denote time, # the sine of the latitude, C a heat capacity, T(#, t) the temperature, 
and F[T] a functional of the temperature defined by NORTH et al. Then, as shown 
by NORTH et al., if T is expanded in the form 

T = xo(t)Po(#) + x2(t)e2(#) - t - ' " ,  (15) 

where Pn(#) is a Legendre polynomial, the amplitudes xn(t) satisfy 

dx. OF 
~ u x , d  - -7-+~-~-=0 '  n = 0 , 1  . . . . .  (16) 

Here F can be approximated by 

F[xoPo + xzP2 + " "  ] = ~ a,(x,) 2 (17) 
n e v e n  
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for large xn, where the constants an are positive, and substituting (17) into (16) 
shows that the hypotheses introduced in Section 2 are also satisfied for this model. 
Hence, as before, the solution pattern is given by the theorem of Section 2. This 
result also holds in the analytically intractable model for which the step function 
behavior of the albedo on temperature usually assumed in climate models is 
replaced by a more realistic smooth dependence (GRIFFEL and DRAZIN, 1981), and 
is consistent with Griffel and Drazin's numerical calculations. 

4. Discussion 

The aim of the work reported here is to prove that the results on multiple flow 
equilibria obtained in previous studies of forced atmospheric flows and of Budyko- 
Sellers climate models are generic, and that the solution pattern for the equilibrium 
points discovered in these studies holds for any system for which the transient 
solutions are intrinsically bounded. This aim is accomplished by the theorem of 
Section 2 and by the proof in Section 3 that the equations describing quasi- 
geostrophic flow and Budyko-Sellers climate models satisfy the hypotheses of the 
theorem. The information provided by the theorem can be used in a variety of ways 
as a guide in carrying out numerical calculations of the equilibrium points. For 
example, a numerical treatment of a system satisfying the hypotheses of the theorem 
which yields an even number of equilibrium solutions is necessarily incorrect or 
incomplete. 

As regards mathematical originality, the last conclusion of the theorem of 
Section 2 was proved by SATTINGER (1972) on the hypothesis that the lower and 
upper branches of the S shaped curve are stable for some values of the parameters. 
The present theorem is proved under the less restrictive hypothesis that the indices 
of these solutions are + 1. The first three conclusions of the theorem are the same 
as those of Theorem 1.7.2 in a book by GAVALAS (1968) on chemically reacting 
systems. In his proof Gavalas imposes restrictions on the components of his state 
vector which insure that all chemical concentrations remain nonnegative. We have 
replaced this assumption by the hypothesis that the solutions of (1) remain 
bounded, which is more natural for a mechanical system and which is verified in the 
applications treated in" Section 3. 
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