
KIT FINE 

NATURAL DEDUCTION AND ARBITRARY OBJECTS 

This paper is an abridged and simplified version of my monograph 
Reasoning with Arbitrary Objects [4]. It may be read by the diligent as 
a preparation for the longer work or by the indolent as a substitute for 
it. But the reader, in either case, may find it helpful to consult the paper, A 
Defence of Arbitrary Objects [3], for general philosophical orientation. 

This paper deals with certain problems in understanding natural deduc- 
tion and ordinary reasoning. As is well known, there exist in ordinary 
reasoning certain procedures for arguing to a universal conclusion and 
from an existential premiss. We may establish that all objects have a given 
property by showing that an arbitrary object has the property; and having 
shown that there exists an object with a given property, we feel entitled to 
give it a name and infer that it has the property. For example: we may 
establish that all triangles have interior angles summing to 180” by showing 
of an arbitrary triangle that its interior angles sum to 180’; and having estab- 
lished that there exists a bisector to an angle, we feel entitled to give it a 
name and infer that it is a bisector to the angle. 

These informal procedures correspond to certain of the quantificational 
rules in systems of natural deduction. Corresponding to the first is the rule 
of universal generalisation, which allows us to infer VXI&) from p(a) under 
suitable restrictions. Corresponding to the second is the rule of existential 
instantiation, which allows us to infer cp(a) from 3x&), again under suit- 
able restrictions. 

In these inferences, certain terms play a crucial role; and it is natural to 
ask how it should be understood. What role should be attributed to the term 
a in inferences from natural deduction? What is to be made of our talk of 
arbitrary triangles or indefinite bisectors in ordinary reasoning? 

We here take seriously the idea that the critical terms in these inferences 
refer to arbitrary or representative objects. The term a in the inferences 
from natural deduction functions as a name of a suitable arbitrary object. 
And our talk of arbitrary triangles or indefinite triangles is to be taken at its 
face value as evincing reference to arbitrary objects. 

Our principle concern will be to apply this hypothesis to two main 
systems of natural deduction: the one of Quine’s Methods of Logic [ 141; the 
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other of Copi’s Symbolic Logic [2], as reformed by Kalish [7]. We shall also 
have an incidental interest in Gentzen’s original system of natural deduc- 
tion. In the case of each of these systems, we shall put forward a rigorously 
formulated semantics in terms of arbitrary objects and then prove soundness 
with respect to that semantics. 

However, the significance of the semantics does not merely rest with 
these particular results but lies as much with the general light it is able to 
shed on the methods of quantificational reasoning. The semantics provides 
a powerful heuristic for discovering new systems of natural deduction or 
rediscovering old ones. It serves to motivate, to make ‘semantic sense’ of 
restrictions on the rules, restrictions that would otherwise appear arbitrary; 
and it provides a semantic basis for the comparison and evaluation of the 
different systems that have been proposed. It yields a general method for 
constructing proofs of soundness, one that derives from very general con- 
siderations concerning arbitrary objects. And it provides an account of 
natural deduction that accords well with our ordinary understanding of 
quantificational practice. Indeed, it seems fair to say that once one is 
accustomed to thinking of these systems in terms of a theory of arbitrary 
objects, it is hard to think of them in any other way. 

The present work is part of a larger project, one in which the theory 
of arbitrary objects is to be applied to the expression of generality in 
various different spheres of discourse. These further applications have 
been altogether ignored. But even some closely related topics have not 
been considered. These include the application of the semantics to: the 
general study of systems of natural deduction with a rule of existential 
instantiation; systems, such as Kalish’s and Montague’s [8], that do not 
permit unrestricted conditionalization; free logic systems; intuitionistic 
systems; the e-calculus of Hilbert and the q-calculus of Hailperin [5]; 
systems without quantifiers but with ‘definitions’ of arbitrary objects in 
their place, However, all but the last two of these applications are treated 
in the monograph. 

The paper divides into two parts. The first presents the general theory of 
arbitrary objects; the second gives its application to natural deduction. The 
first part presents the models (Section l), defines the notions of truth and 
validity (Section 2), and embarks on a study of definitions (Section 3). 
The second part gives the application to Gentzen’s system (Section 4), 
Quine’s system (Section 5), and Copi’s (Section 6). We conclude with a 
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more detailed numeration of the advantages to be gamed from the adoption 
of the generic semantics (Section 7). 

1. THE MODELS 

Let L be an arbitrary first-order language. To f= our ideas, we might sup- 
pose that L contains, for each nonnegative n, countably infinite predicate 
letters of degree n. But nothing turns on how exactly we stipulate L to be. 

Let M be a classical model for L. So M is the form (I, . . .), where I is 
a non-empty set representing the domain of individuals and . . . is used to 
indicate the interpretation of the non-logical constants of L. So if they 
comprise a countable infinity of predicates in each degree, then . . . may 
well consist of a function that assigns to each predicate of degree n a set 
of n-tples from I. 

We use the prefix ‘I’ to indicate that an item is individual as opposed to 
variable, or classical as opposed to generic. So M itself is called an I-model, 
while I is called an I-domain, with individuals or I-objects as members. 

A classical model M may be expanded to one that contains arbitrary 
objects. Any such model M’ is of the form (I, . . . , A,<, V), where: 

(9 

(ii) 

(iii) 

(iv) 

(I, . . . ) is the model M; 

A is a finite set of objects disjoint from I; 

i is a relation on A; 

V is a non-empty set of partial functions from A into I, i.e., 
functions v whose domain Dm(v) is a subset of A and whose 
range Rg(v) is a subset of I. 

Intuitively, the significance of the extra components is this. A is the set 
of arbitrary objects or variables. It is assumed that these are distinct from 
the individuals; it is merely from convenience that A is taken to be 
finite. < is the relation of dependence between arbitrary objects. ‘a < b’ 
indicates that the value of a (what is is) depends upon the value of b 
(what b is). V is the family of value assignments. Suppose that v belongs to 
V, with domain {a,, az, . . .., G,), and that v(ar) = ii, v(az) = i2, . . . , 
v(ad = in. This may be pictured as follows: 
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a1a2.. . a, 
v:.. . . 

1112...ln 

Then the presence of such a v in V indicates that ir , i2, . . . , in can simul- 
taneously be assigned to al, a2, . . . , h. The members of V will be called 
the admissuble value-assignments. The arbitrary partial functions from A 
into I might, by contrast, be called the possible value-assignments. 

We use the prefa ‘if’ for items that are arbitrary or generic as opposed 
to individual or classical. So M+ itself is called a possible A-model, while A 
is called an A-domain, with A-objects as members. We use ‘i’, ‘j’, ‘k’, . . . 
as variables for l-objects, and ‘a’, ‘b’, ‘c’, . . . as variables for A-objects. 

I would prefer to follow traditional usage by calling the members of I 
constants and the members of A variables. But the modern practice of using 
these terms for symbols rather than objects is so well entrenched that a 
return to traditional usage could only invite confusion. 

As an example of an A-model M+ = (I, . . . , A,<, V), we might take: 

(9 0, . . . ) = N, the standard model for Peano arithmetic; 

(ii) A = (al, a2, . . . , a,>, for al, . . . , a6 distinct objects not in I; 

(iii) -c= {h, aA (a4, a2L b5, a2), h, a3), (a6, a4A (a6, ad>; 

(iv) v= {v:vc{(a1,ii),(a2,i2)9 . . . . &,i6)}, 
where i, , i2, . . .,i6 EI,ir andi areeven,& +i2 =i4, 
i2 + i3 = is, and i4 x is = L,}. 

The diagram for i is given below 

al a2 a3 

v 

a4 a5 

a6 

The reader may find it helpful to think of a4, a5 and a6 as the respective 
A-objects al + a2, a, + a3 and a4 x a s , although the result of applying the 
arithmetic operations to A-objects has not been officially defined. 

We shall adopt the following terminology in connection with A-models. 
With M and M' as above, we say that M+ is bused upon M or that M 
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underlies M’. We follow the convention that ‘M+’ is always used to denote 
an A-model (I, . . . , A,<, V) based upon the classical model M = (I, . . . ). 

For a E A, the value-range VR(a) of a is {v(a): v E V}. Thus the value- 
range of an A-object consists of all the values it can assume. If VR(a) # I, 
then a is said to be value-restricted and otherwise to be value-unrestricted 
or universal. In the special case in which VR(a) = A, we say a is null. An 
A-object a E A is dependent if a < b for some b, and otherwise it is 
independent. An A-object is restricted if it is either value-restricted or 
dependent and otherwise it is unrestricted. In our previous example: 
VR(a,) = VR(as) = (i E I: i is even] and VR(as) = I; al and a3 are value- 
restricted and a2 is value unrestricted; a~, as and ae are dependent and al, 
a2 and a3 are independent; a2 is unrestricted and the other A-objects are 
restricted. 

A subset B of A is said to be closed if b E B whenever a E B and a < b. 
We use [B] for the closure of B, i.e., the smallest closed set to contain B;and 
we use 1Bl for [B] - B. In case B = (a], we write ‘[B]’ and ‘lB1’ as ‘[a]’ and 
‘la/’ respectively. In our previous example: the closed sets are tar}, (as}, 
(aa>, (a.+, al, ad, (as, az, as> and (al, az, a3, a4, as, a6); [aal is h al, ad 
and Ia41 is 6 al, a2 1. 

In order for the possible A-model hi+ = (I, . . . , A,<, V) to be an actual 
A-model, it must be subject to some further conditions. These go as follows: 

(9 (a) (Transitivity) a< b & b < c implies a a c; 
(b) (Irreflexivity) There is no A-object a for which a <a. 

64 (Restriction) V is closed under restriction, i.e., v E V and 
B C_ A implies that v 1 B E V (where v 1 B is the result of 
restricting the domain of v to the elements in B). 

w (Partial Extendibility) Any v E V can be extended to the 
closure of its domain, i.e., there exists a v+ E V for which 
v+ 2 v and Dm(v’) 1 [Dm(v)]; 

(viii) (Piecing) Let v1 and v2 be two assignments in V. Suppose 
that (a) their domains are closed and (b) they do not differ 
on common arguments, i.e., for no a in both Dm(vi) and 
Dm(vs) does vr(a) # vs(a). Then v = v1 U v2 E V. 
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Transitivity, Irreflexivity and Restriction are very plausible under the 
proposed construal of < and V. For first, if the value of a depends upon 
that of b and the value of b upon that of c, then the value of a depends, 
(indirectly) upon that of c. Second, thevalue of an A-object can never depend 
upon its own value, but only the value of another A-object. Finally. Suppose 
,that v E V assigns the individuals ir , ir , . . . , i, to the A-objects al, a2 , . . . , 
a,, in its domain. This is represented by the diagram: 

a1a2...a, 
v: 

iii? . . .i, ’ 

Then we may allow that a selection iii, i, , . . . , ijk of the individuals can be 
assigned to the corresponding selection ai1 , ajz , . . . , ajk of the A-objects, i.e., 
that there is a v’ E V whose diagram is: 

vt. ajl, aj2, . . . , ajk 
*. . . * 

ljl, lj2, * * * 3 ljk 

Given (v), each A-object a E A can be assigned a degree or level Z(a) of 
dependence. If a is independent, then l(a) = 0. If a is dependent upon the 
A-objects br, b2, . . . , b,, then the level I(a) of a is 1 plus the maximum 
level of bi, b2, . . . , b,. So in our previous example, l(a,) = I(a2) = 
Z(aa) = 0, l(a,) = l(a,) = 1, and I(a6) = 2. 

The condition of Partial Extendibility can be seen as articulating an 
aspect of the sense of dependency. We so understand the relation of depen- 
dency that if a depends upon b then a cannot take a value without the sup- 
port of a value for b. But this then has the consequence that an assignment 
of values cannot be made to B C A except on the basis of an assignment 
that at least extends to the closure [B] of B. 

It is the condition of Piecing that is the most significant. Suppose that 
we have two value assignments vl, v2 in V whose diagrams are: 

al, a2, . . . , ak . ak+l, ak+Z, . . . 9al 
v1: . . , 

il~l2~...~lk 
v2: 

ik+l, ik+2, . . . , i l 

Then Piecing tells us when we can put the two assignments vr and v2 
together to form the single admissable assignment v = vl U v2, with diagram: 

al, a2,. . . , ak, ak+l, ak+Z,. . . , al 
v: 

il, i2, . ..,ik,ik+l,ik+2,...ril . 
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The one proviso tells us that the two assignment should not assign 
distinct individuals to the same argument, i.e., there should not be aP, with 
lGp<k,anda,,withk+l<q<l,forwhicha,=a,andi,fi,.This 
is what one might call a manifest obstacle to piecing. The second proviso 
says, in effect, that there must be no hidden obstacle to piecing. This con- 
cept may be illustrated by means of our previous example. We may assign 
0 to a4 (i.e., the assignment r+ = {(ah, O>} E V), and we may assign 1 to a5 
(i.e., the assignment v2 = {(as, 1)) E V). However, we cannot simultaneously 
assign 0 to a4 and 1 to as (i.e., v = v1 U v2 4 V); for the assignment of 0 to 
a4 requires that a2 take the value 0, while the assignment of 1 to a5 requires 
that a2 take the value 1. This kind of hidden obstacle to piecing is excluded 
by requiring that the domains of the assignments to be pieced be closed. 

2. TRUTH AND VALIDITY 

The language L so far contains no means of referring to A-objects. We shall 
therefore suppose that it is endowed with a new stock of symbols - the 
A-letters 0, b, c, . . . - that syntactically will behave just like individual 
names. The resulting language will be designated L*. 

It is important to appreciate that the language L* may contain three 
kinds of symbol in subject position: the variables x,y, z, . . . ; the constant 
symbols m, n,p, . . . (if they exist); and the A-letters u, b, c, . . . . (3rd~ the 
constant symbols and A-letters will be thought to play a properly desig- 
natory role; the variables will merely serve as part of the apparatus of 
quantification. 

Formulas from either L or L* will now be allowed to contain free 
variables. Expressions with free variables that would normally be called 
formulas wiIl instead be called pseudo-fomulas. So Fa is a formula, but 
Fx is a pseudo-formula. 

An A-model M = (I,. . . , A,<, V) for L may be extended to L* by 
adding a designation function. The resulting model I@ is then of the form 
(I, . . . , A,<, V, d), where d is a function taking each A-letter of L* into an 
A-object of A. Often we shah simply use ‘a’ for the designation d(u) of a. 

Two concepts of truth for generic statements may be distinguished, one 
relative and the other absolute. Let cp = cp(aI, . . . , a,) be a formula whose 
A-letters are as displayed. Then cp is true in the A-model M* relative to 
vEV-insymbols,M*bvV--ifar ,..., a,EDm(v)andMP[v(ar) ,..., 
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v(a,)]. On the other hand, cp is (absolutely) true in M* - in symbols, M* l= cp 
- if M* l=v cp for any v E V for which al, . . . , a, E Dm(v). In other words, a 
statement concerning A-objects is true just in case it is true for all of their 
values. This stipulation is what we have previously called the principle of 
generic attribution [ 31. 

It will be helpful to introduce some notation. Let M* be an A-model for 
L*. Set Av, = {a: a is an A-letter of cp}. (This notation may be extended to 
sets of formulas or to items, like proofs, that are associated with sets of 
formulas.) Say that v is defined on B or on cp, with Av, = B, if Dm(v) = B; 
and say that z, is defined over B or over cp, with ,Q = B, if Dm(v) 2 B. Let 
us suppose that the language L contains each individual i of M as a name of 
itself and that v is defined over cp. Then we use v(q) for the result of substi- 
tuting v(a) for each occurrence of an A-letter a in cp. The principle of generic 
attribution now takes the following simple form: 

M* l= cp iff M k v(p) for each v E V defined over cp. 

The principle may be extended to a set A of formulas in the obvious 
way. Say that v E V is defined over A if Dm(v) 1 A4 ; and let v(A) = {v(p): 
cp E A}. Then we stipulate that: 

M* l= A iff M I= v(A) for each v E V defined over A. 

IfA=(cp,,... , cpn}, then the truth of A (in M*) is equivalent to the truth 
oflpr A.. .I%&. 

We turn now to the concept of validity. By a sequent or inference we 
mean an ordered pair (A, cp), where cp is a formula and A is a finite set of 
formulas’(from L*). Where A = {pi, . . . , qn}, the sequent may be written 
more perspicuously in the form: 

or 

The classical validity of a sequent may be defined in the usual way. (The 
A-letters are treated as if they are the names of individuals.) 

There are essentially two different ways of defining generic validity, one 
corresponding to the concept of absolute truth and the other to the concept 
of relative truth. 
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Let X be a set of A-models for L*. Then the inference (A, (p) is truth-to- 
truth valid relative to X if, for any model M* of X, M* k cp whenever M* k 
A. In other words, an inference is valid if the conclusion is true whenever 
the premisses are true. The Inference (A, cp) is case-to-case valid relative to X 
if, for any model M* of X and any v E V defined over A and cp, M kv cp 
whenever M l=v A. In other words, an inference is valid if the conclusion is 
true in any case in which the premisses are true. We say that an inference is 
truth-to-truth or case-to-case valid simpliciter if it is truth-to-truth or case- 
to-case valid relative to the class of all A-models for L*. 

The difference in the two concepts may be appreciated by considering 
the inference Fa/VxFx. If a denotes a value-unrestricted A-object (in each 
of the A-models of X), then the inference is truth-to-truth valid. But the 
inference will not be case-to-case valid if F is true of some individuals yet 
not of others (in one of the models M* of X). For we may then choose a 
v E V for which v(Fa) is true and v(VxFx) = VxFx is false in M. 

More informally, we may think of inferences evaluated under the 
concept of case-to-case validity as schematic inferences, representing a 
different specific inference for each choice of values for the A-objects. On 
the other hand, we may think of inferences evaluated under the concept 
of truth-to-truth validity as specific inferences concerning the A-objects 
themselves. 

We are interested in the cases in which the concepts of classical and 
generic validity coincide. It is not true that each classically valid inference 
is truth-to-truth valid (relative to any X). For consider the following 
classically valid inference: 

FahGb 
Fa * 

Is it truth-to-truth valid? Suppose, for reduction, that Fa is not true in the 
A-model M* . Then for some v E V, MFI+(a). We now wish to define a 
v E V defined over both a and b: for then MyFv+(a) A Gv’(b) and so 
M* # Fa A Gb. But we have, in general, no guarantee that such a v can be 
found. For example there could not be such a v if b were a null A-object. 

It turns out that this is essentially the only obstacle to the coincidence 
and that we have the following general result: 
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THEOREM 1, Suppose that the inference (A, (p) is classically valid; and let 
X be a class of models M* with the property that any v E V defined on A,+, 
is extendible to v+ E V defmed over AA. Then (A, (p) is truth-to-truth valid 
relative to X. 

Proof: pick a M* in X and suppose that not M* b cp. Then for some 
v E V defined over cp, not M k v(p). By Restriction, we may suppose that 
v is defined on the A-letters of cp. Given the extendibility property, there 
is a v+ > v in V that is defined over A. Since (A, (p) is classically valid, not 
M I= v’(A). But then not M* k A - and we are done. 

Say that an A-model M* is extendible over the set B of A-objects if 
every v E V defined on a subset of B can be extended to a v+ E V defined 
over B. Then as an immediate consequence of the above theorem, we have: 

COROLLARY 2. Let X be a class of A-models that is extendible over the 
setB={br,... , b,}; and let (A, (p> be a classically valid inference whose 
A-letters are drawn from B = (bI, . . . , b,}. Then the inference (A, cp) is 
truth-to-truth valid in X. 

Another consequence of the theorem concerns the validity of a single 
formula. Say that the formula cp is valid if the inference (A, cp) is valid. This 
definition applies whether the validity is classical, truth-to-truth, or case-to- 
case; but for the generic case, the two concepts of validity coincide. We now 
have: 

COROLLARY 3. Suppose the formula cp is classically valid. Then it is 
generically valid. 

Proof. From Theorem 1, since the extendibility condition is trivially 
satisfied. 

For case-to-case validity there is no impediment to classical reasoning. 

THEOREM 4. Suppose the inference (A, (p) is classically valid. Then it is 
case-to-case valid. 

I?-oaf. Suppose otherwise. Then for some A-model M* and v E V, 
M +v A and MK cp. But by letting the A-letters denote individuals in accord 
with v, it is then clear that there is a classical model in which cp is true and is 
false. 
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However, for the concept of case-to-case validity, the transitivity of 
implication may fail. For suppose that cp implies $ and that $ implies X 
(i.e., that the inferences q/$ and J//x are valid relative to X). We wish to 
show that cp implies X. So let v be an assignment defined on both cp and X. 
If we could show that v was extendible to the A-objects denoted by the 
A-letters in $, we would be done. But we have in general no guarantee that 
v can be so extended. 

As in the previous case, the difficulty can be overcome by making the 
appropriate stipulation concerning extendibility: 

THEOREM 5. (Cut for Case-to-case Validity.) Suppose that the inferences 
A/q and cp, I’/$ are case-to-case valid in X; and suppose that X is a class of 
models M* with the property that any v E V defined on AA U Ar U AJ/ is 
extendible to a v+ E V defined over A,. Then A, r/J/ is case-to-case valid 
in x. 

Proof: Straightforward. 

3. DEFINITIONS 

Any set A of pseudo-formulas in a single variable x can be regarded as a 
definition of an A-letter. Accordingly, we take a definition to be an ordered 
pair (a, A) where u is an A-letter and A is a set of pseudo-formulas in a single 
variable x. Given a definition (a, A), we take a to be the defined term and 
the A-letters in A to be the given terms; we call A itself the defining con- 
dition. We say that (a, A) defines the defined term II from the given terms. 
We allow that A may be empty or even contain an occurrence of a. In case 
A = {cp>, we may write the definition (a, A) as (a, cp). 

It is our view that definitions correspond to let-clauses in ordinary 
mathematical discourse. If, for example, we declare: 

Let y = x2, 

then we may be taken to be fixing the A-object denoted byy in terms of 
the A-object denoted by x. Such a clause would be represented in our 
notation by the ordered pair (a, x = b*) (where ‘r’ has now been written 
as ‘a’ and ‘x’ as ‘b’). 

Given a definition (a, A) and a term t, let A(t) be the result of substi- 
tuting t for the free variable x of A. Then we say that the A-model 
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M* .reuZizes the definition (a, A) if the following two conditions are 
satisfied. 

(9 Ial = [A&], i.e., la] = {c E A: c is and-letter of A or b < c 
for b an A-letter of A; 

for any u E V with domain la] and any v = u U {(a, D}, 
v E V iff M != v(A(a)). 

Thus the import of the definition is twofold. First, the object a denoted 
by the defined term a is to depend upon the objects br, b2, . . . denoted by 
the given terms and whatever else they depend upon. Second, the values 
of a, for given values of br, b2, . . . and their dependents, are to comprise 
all those individuals that then satisfy A(u). 

Let us go back to our example of Section 1 and suppose that M’ is 
expanded to a model M* in which al, u2, . . . , a6 denote al, a2, . . . , a6 
respectively. Then we see that M* realizes the definition (a,+, x = a1 + u2); 
for Ia41 = [(al, a2}] = {ar , a2} and, whenever u = ((al, 3, (a2, j)> E V, then 
v=uU ((a4,k)}EViffMkk=i+j,i.e.,iffk=i+j. 

Note that if the defining condition A = A, then a model M* will realize 
the definition (a, A) just in case a is unrestricted. 

Our main interest will be in systems of definitions. A definitional sysrem 
is simply a finite set of definitions. Its defined terms are the defined terms 
of the member definitions and itsgiven terms are the given terms of the 
member definitions that are not also defined terms. We say that S defines a 
from b if some member definition defines u from b. 

For a system of definitions S, we say that the model M* realizes S if: 

(9 a # b for distinct defined terms u and b of S; 

(ii) M* realizes each member defmition of S. 

In reference to our previous example, let S be the system whose members 
are(@,x=ur +u2),(u5,x=a2 +u3),and(u6,x=a4 xas).Then 
it should be clear that M* realizes this system. 

The question now arises: when is a system of definitions realizable? This 
question may be answered by invoking two conditions on definitional 
systems. Say that a system S is unequivocal if no A-letter a is the defined 
term of two distinct definitions (a, A) and (a, r) of S. In an unequivocal 
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system, no term gets defined twice; its meaning, if determined at all, is 
unequivocally determined. Now say that the system S is non-circular if 
there is no sequence of A-letters al, a2, . . . , a, such that al = a,, and for 
eachi=1,2,..., n - 1, ai is defined from ai+r. In a noncircular 
system that are no definitional circles, with one term ultimately being 
defined in terms of itself. 

These two conditions may quite naturally be regarded as conditions of 
propriety on let-clauses. It is improper to say: 

Let y = x2. 
Let y = x3. 

And it is improper to say: 

Let y = x2. 
Let z = y3. 
Let x = z2. 

The first infringes unequivocality and the second infringes non-circularity. 
We now have the following result: 

THEOREM 6. Suppose that the system S of definitions is unequivocal and 
non-circular. Let M be any classical model. Then there is an A-model M* 
that realizes S. 

Proof Suppose M = (I, . . . ). To define M* = (I, . . . , A,<, V, d), it 
suffices to define A,<, V and d. We let A be the set of A-letters appearing 
in S and d the identity function. Thus each A-letter will be taken to denote 
itself. We shall use ‘a’ or ‘a’ depending upon whether we are thinking of the 
item as a symbol or an object. For a, b EA, we say that a< b if there is a 
sequence of A-letters al, a2, . . . , a, such that al = a, a, = b and, for 
i=l,2,..., n - 1, ai is defined from ai+l in S. 

It remains to define V. First, we define a subset V- of V. V- = (v: the 
domain B of v is closed and, for any definition (a, A) whose A-letters all 
occur in B, M b v(A(a))). We then let V consist of all the restrictions of 
assignments in V-. 

We must now show that M* is an A-model. The verification of (i)-(vi) is 
trivial. Condition (v) (a) (Transitivity) follows from the definition of <; and 
(v) (b) (Irreflexivity) follows from the non-circularity of S. Conditions (vi) 
(Restriction) and (vii) (Partial Extendibility) are straightforward given the 
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definition of V from V-. This leaves (viii) (Piecing). First note that if 
v+ E V- and v is the restriction of v+ to a closed domain then v E V-. Now 
take vl, v2 E V that have closed domains and agree on common arguments. 
Then v1 and v2 are the restriction of assignments vf and v: in V- and, 
since their domains are closed, they also belong to V-. Since v1 and v2 agree 
on common arguments, v = v1 U v2 is a function. Take any definition 
(a, A) of S whose A-letters all occur in the domain of v. Since a E v1 or 
a E v2, either all of theAletters of the definition occur either in the 
domain of v1 or in the domain of v2. So M I= v (A(a)). But then v E V-C V. 

Finally let us show that M* realizes S. Since d is the identity function, it 
is clear that a f b whenever a # b. Now take any deAnition (a, A) of S, any 
u E V with domain la], and any v = u U {(a, 9). We wish to show that v E V 
iff M b v(A(a)). First suppose that v E V. Since each A-letter of (a, A) 
appears in the domain of v, M k v(A(a)). Now suppose that M k v(A(a)). 
We wish to show that v E V; and, since the domain of v is closed, it suffices 
to show that v E V-. So take any definition (b, I’) of S all of whose A-letters 
appear in the domain of v. There are two cases. (1) b = a. Since S is un- 
equivocal, I’ = A and M p v(r(b)) by hypothesis. (2) b #a. Then all the 
A-letters of (b, I’) belong to (al and, since u E V, M i= v(r(b)). 

In view of the connection with classical validity, we shall be interested in 
those cases in which a system of definitions defines an extendible set of 
A-objects. Say that a definition (a, A) is totd in the classical model M if, 
for any function u from the set B of given terms of (a, A) into I, there is 
an i E I for which M b u(A(i)). In a total definition, the object designated 
by the defined term takes a value whenever the objects designated by the 
given terms take a value. Now say that a system S of definitions is complete 
if each A-letter of S is a defined term of S. In a complete system, each given 
term of one definition is a defined term of another definition. 

THEOREM 7. Let S be a complete set of total definitions in the model M. 
Then any model M* that realizes S is extendible over the set B of objects 
designated by the A-letters in S. 

ProoR Let v be any assignment in V defined on a subset B’ of B. We wish 
to show thai v can be extended to an assignment in V that is defined on the 
whole of B. By Partial Extendibility, v can be extended to an assignment in 
V with closed domain; so we might as well suppose that v already has a 
closed domain. 
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Let C = B - B’. Each A-object c in C may be assigned a level and so we 
may order the members cl, c2, . . . , c, of C in such a way that the level of 
Ci,fOri=1,2,... , n - 1, is never greater than the level of ci + r . Let Ck L 
(Cl, * * * , ck} (so that C, = C). We then show by induction on k that v can 
be extended to a vk in V with domain B’ U Ck . Note that each of the 
domains B’ U Ck is closed. 

k = 0. Then B’ U Co = B’; and we may let vk = v. 
k > 0. Since S is complete, there is a definition of the form (ck, A) in S. 

Since M* realizes S, we have, for each given term b of (ck, A), that ck < b 
and hence that b E B’ U Ck _ r . By the Inductive Hypothesis (IH), there is a 
vk - r in V with domain B’ U Ck _ r . By S total in M, there is an i E I for 
which M k vk - r(A(i)). Let vk = vk _ r U ((ck, fi}. Then by the definition 
of realizability, vk E V - as required. 

4. THE HILBERT AND GENTZEN SYSTEMS 

We here apply our generic semantics to an axiomatic system in the style of 
Hilbert and to a natural deduction system in the style of Gentzen. The 
application in either of these cases is rather trivial and, if this were the only 
use of the generic semantics, it would be rather uninteresting. However, 
consideration of these cases serves to Illustrate the more interesting appli- 
cations that are to follow. 

In formulating the various systems, we shall use the language L* in the 
case in which it is endowed with a countable infinity of A-letters. In such a 
language, the A-letters take the role normally played by free variables. Our 
formulation is therefore very close to those in which a typographic distinc- 
tion is made between free and bound variables (as in [6] or [9], for 
example). 

It is well-known that the formulation of the restrictions on the axioms 
and rules becomes simpler once such a typographic distinction is drawn. 
For example, in the Axiom of Specification Vxdx) 3 cp(t), it must normally 
be required that t be free for x in p(x), but no such restriction is required 
with a typographic distinction between free and bound variables. 

However, for us, the distinction is not merely one of syntactic con- 
venience but is, at bottom, semantic. The letters CI, b, c, . . . are not 
variables, but are names, albeit of a strange sort of object. On the other 
hand, the lettersx,y, z, . . . have no designatory role but merely serve, in 
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Frege’s phrase, as ‘signs of generality’. To use an A-letter as a variable of 
quantification would be as bad, for us, as using an individua2 name as a 
variable of quantification. 

Indeed, it is instructive in this regard to try to formulate a system in 
which individuals names can double up as variables. So ifs is used for 
‘Socrates’ and W for ‘is wise’, then a formula such as Ws A 3s - Ws could 
be used to say that Socrates is wise but some man (or thing) is not wise. 
One will then find oneself in the very same difficulties as arise when no 
typographic distinction is made between so-called free and bound variables. 

Let us now deal with each of the systems in turn. 

7he Hilbert System H. This has the following axioms and rules: 

(1) All tautologous formulas 

(2) we) = tit) 

(3) Vx(q 3 $) 3 vxq 3 VXJ, 

(4) CP’W 

MP cp,cp’ J//J/ 

Gen. cp(a)/Vxq(x), for a not in cp(x). 

In (2), it is assumed that t is a term (containing no variables) and that 
y(t) comes from q(x) by replacing all free occurrences of x with t. In Gen., it 
is assumed that a is an A-letter and that p(a) comes from cp(x) upon replac- 
ing all free occurrences of x with a. 

The notions of proof and theorem for such a system are defined in the 
usual way. 

We now wish to conceive of the A-letters as denoting suitable A-objects. 
What is required of these A-objects is given by the following definition. An 
A-model M* for L* is suitable for the proof P of H if: 

(9 a # b for distinct A-letters a and b of P; 

(ii) each a, for a an A-letter of P, is unrestricted. 

It will be recalled that an A-object is unrestricted if it is both independent 
and value-unrestricted. 
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The requirement of suitability may be reformulated in terms of the 
realizability of a system of definitions. Given a proof P within H, let the 
associared system S consist of all definitions (a, A) for a an A-letter of P. 
Then it is readily seen that an A-model M* is suitable for P iff it realizes 
the system of definitions S. 

Although we have formulated the concept of suitability relative to a 
proof, it should be clear that the concept also applies relative to any infer- 
ence Alp. 

We wish to show that the proofs within the system H are correct when 
suitably interpreted by means of A-objects. There are two criteria of correct- 
ness that may be used. The first, which I call Line Soundness, requires that 
each line of the proof be correct. The second, which I call Rule or Line-to- 
Line Soundness, requires that each application of a rule of inference be 
correct. Under the first, it is the lines of proof that are to be correct: under 
the second, it is the methods by which the lines are obtained. 

It is clear that, in principle, a system may have one kind of soundness 
and not the other. The axioms may not be true, even though the rules of 
inference preserve truth. On the other hand, the theorems may be true, 
even though the rules of inference do not in general preserve truth. This is 
the case, for example, with modal systems that contain a rule of necessi- 
tation. 

First, we need: 

LEMMA 8. Let M* be a suitable model for the proof P of H. Then M* is 
extendible over the set of A-objects designated by the A-letters in P. 

Proof: Since M* is suitable for P, M* realizes the system S of definitions 
associated with P. Since each definition of S is of the form (a, A), it is 
trivial that S is a complete system of definitions that are total over M. 
Therefore, by Theorem 7, M* is extendible over As = (a: a in P). 

Clearly, a similar result holds with an inference in place of P. We now 
obtain: 

THEOREM 9. (Line-to-Line Soundness for H) The inferences: 
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@I & (a not in q(x)) 

are truth-to-truth valid relative to the class X of A-models suitable for each 
of the respective inferences. 

Proofi (a) The inference under (a) is classically valid. By Lemma 8, each 
A-model in X is extendible over the set of A-objects designated in the infer- 
ence. So by Theorem 1, the inference is truth-to-truth-valid relative to X. 

(b) Let the distinct A-letters in cp(x) be (I~, . . . , a,, so that q(x) may be 
written in the form cp(x, al, . . . , a,). Suppose, for reduction that 
Vxlp(X,al,. . . , a,) is not true in M*. Then for some assignment v E V 
defined over {ar, . . . , a,}, v(Vxq(x)) is false in M. By Restriction, we may 
suppose that v is defined on (ar, . . . , a,}. Given that v has the diagram: 

V: 
ala2.. . a, 
iliz . . . i, 

we then have that Vxq(x, ir, . . . , i,) is false in M. 
By the classical truth-condition for ‘d, there is an iO E I for which 

di0, il, . . . , i,) is false in M. We wish to show that the assignment v+ with 
diagram: 

aoal . . . a, 
v+: . . 

ioil . . . i, 

belongs to V. 
Let u be the assignment represented by: 

u:;. 
lo 

We show that v* E V by showing that the assignments v and u can be pieced 
together. 

First note that u E V. For by a value-unrestricted, i. E VR(a), i.e., 
u’(a) = i. for some u+ E V; and so by Restriction, u = u* 1 (a) E V. 

Now note that the conditions for Piecing are satisfied. Since a, al, . . . , 
ak are all independent, the domains of u and v are closed. Also, u and v 
agree on common arguments, indeed have no common arguments: for by 
the syntactic restriction on the rule, a is distinct from each of a,, . . . , a, ; 
and so by clause (i) in the definition of suitability, the A-object a is distinct 
fromeachofa, ,..., a,. 
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We therefore have, by Piecing, that v+ = u U v E V. But v’&(u)) = 
di0,il,. . . , in) is false in M; and so Ip(a) is not true in M* - as required. 

The proof for part (b) has been stated with some care in order to illus- 
trate the rigorous use of the conditions on an A-model, the definition of 
suitability, and the restrictions on the rules. Note, in particular, how clauses 
(i) and (ii) in the definition of suitability are used and how it is significant 
both that a not occur in q(x) and that distinct A-letters designate distinct 
A-objects. In future, we shall not bother to formulate our proofs with such 
care. 

From Theorem 9 may be derived: 

THEOREM 10. (Line Soundness.) Let P be a proof of the theorem cp in H. 
Then cp is valid in the class X of suitable A-models for P. 

PLooJ: Given the previous theorem, it suffices to show that each axiom 
of H is valid relative to X. But each axiom is classically valid and so, by 
Corollary 3, is valid relative to X. 

These results on soundness lack interest unless it can be shown that each 
classical model M underlies a suitable A-model M*. We want to know, what- 
ever the state of the real world (the model M), that suitable denotations for 
the A-letters can be found. This possibility is given by: 

LEMMA 11. For any classical model M and proof P of H, there is a suitable 
A-model M* for P. 

ProoJ: Let S be the system of definitions associated with P. It should be 
clear that S is unequivocal and non-circular. Therefore, by Theorem 6, there 
exists an A-model M* that realizes S and hence is suitable for Z? 

Call the system H classically sound if each theorem of H that is lacking in 
A-letters is classically valid. Note that nothing is said about theorems that 
contain A-letters. It is as if these play a purely instrumental role in proofs 
and all that matters is what theorems without A-letters can be proved. 

THEOREM 12. The system H is classically sound. 
&oofi Suppose that cp is a theorem of H, with proof P, but that cp is not 

classically valid. Then for some classical model M, M,+ cp. By Theorem 11, 
there is a suitable model M* for P. By condition (iv) in the definition of 
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A-model, there is a v E V. But then M .$ V&Y) = cp; and so M* pC: cp - in 
contradistinction to Theorem 11. 

Note the essential use in the proof of V’s being non-empty. Of course, 
a proof along classical lines can be given and, indeed, it may be shown that 
any theorem of H is classically valid. But for later purposes, it will be help- 
ful to have a proof of the weaker results using generic methods. 

The Gentzen System G. We are interested in a system of natural deduction 
of the sort proposed by Gentzen. Any reasonable formulation of the prop- 
ositional rules will do: but it is important that the quantificational rules 
contain a principle of existential elimination rather than existential instan- 
tiation. To fm our ideas, we will suppose that we are working within the 
system of Lemmon’s [9]. 

The quantificational rules, in schematic form, are as follows: 

3E [$a)1 

44 
lfz tlxtp(x) 

31 s(t) 
3x&) 

In VE and 31, it is supposed that t is a term (without free variables) and 
that q(t) comes from cp(x) upon substituting the term t for the free 
occurrences of x. In VZ, a must not occur in cp(x) or in the assumptions 
upon which cp(a) depends; and in 3E, a must not occur in cp(x) or IJ or any 
assumptions, other than S(Q), upon which JI depends. In the presentation 
of 3 E, we have followed the convention of Prawitz’s [ 121, p. 20, for indi- 
cating the discharge of assumptions. 

The distinctive feature of the present system, as opposed to the ones we 
shall later consider, is that there is no rule for inferring an instance of an 
existential statement from the existential statement itself. Instead, we have 
the rule 3 E, which licenses an inference from the existential when we have 
the inference from an instance. 

We wish to extend the generic treatment of H to G. This may be done 
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most simply by treating each line of a derivation as equivalent to a con- 
ditional. Recall that a sequent (A, cp) is derivable in G if there is a derivation 
whose last line has the formula cp as a conclusion and has only formulas of 
A as assumptions. If cpl, . . . , (P” are the distinct members of A, let A > cp 
be the formula (cpr A’. . . A cp,) > cp. (The order in which we take the 
members of A will be immaterial.) We then have: 

THEOREM 13. (Line-to-Line Soundness.) Let (A,, cpr), . . . , (A,, cp,)/ 
(A, (p> be an argument pattern corresponding to one of the rules of inference 
of G. Then the inference A, 3 cpl, . . . , A, 1 &A 1 cp is truth-to-truth valid 
in its class of suitable models M*. 

Proof: All of the rules, other than VI and 3 E, correspond to classically 
valid inferences. Therefore their validation follows from the extendibility 
of M*. The treatment of Vf and 3E follows that of the rule of generalisation 
in the proof of Theorem 9, but with some slight adjustment to take care of 
the presence of suppositions. 

We may now prove the other results - line soundness and classical 
soundness - in the same way as before. 

Although this gives us the simplest way of unifying our treatment of the 
systems of Gentzen and Hilbert, it is not based upon a very plausible view 
of the role of suppositions in natural deduction reasoning. Suppositions are 
treated, in effect, as the implicit antecedents to conditionals. So the sup- 
position of cp itself is taken as tantamount to the assertion of cp > cp, while 
the inference of cp U $ from the supposition cp is taken as tantamount to 
the inference of cp > ((p v $) from (q 1 cp). Intuitively, though, we are 
inclined to think of the supposition of cp as not assertoric at all and the 
inference of cp v J, from the supposition cp as like the inference of cp v $ 
from the assertion cp, but without the commitment to the truth of cp. 

The question of giving a satisfactory account of suppositional reasoning 
is much more difficult than has commonly been thought and is especially 
difficult on the generic view. For from the truth of Fu, with a unrestricted, 
follows the truth of VxFx. So why cannot VxFx be derived from the sup- 
position of Fa? 

We can overcome this difficulty by operating with the concept of case- 
to-case rather than truth-to-truth validity. Let us follow Prawitz ([12], 
p. 23) in distinguishing between proper and improper inference rules. The 
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proper rules are A I, A E, v Z, > E, -E, VE and 31; the improper rules are 
vE, > I, ---I, VI and 3E. The proper rules will correspond to inferences 
that are straightforwardly valid; the improper rules wiI1 correspond to meta- 
logical principles of reasoning. To be more exact: 

THEOREM 14. Let (A,, cpr), . . . , (A,, (p,)/(A, (p) be an argument pattern 
corresponding to one of the rules of inference of G and let X be the associ- 
ated class of A-models. Then: 

(4 if the rule is proper, the inference cpl, . . . , CP,/+J is case-to- 
case valid relative to X; and 

(b) if the rule is improper, then (A/p) is case-to-case valid rela- 
tive to X wherever Ar/cpr, . . . , A,/(p, are. 

Proof: (a) If the rule is proper, the inference cpl, . . . , C~,/IJI is classically 
valid and so, by Theorem 4, it is case-to-case valid. 

(b) Along the lines of the relevant parts of the proof for Theorem 13. 

If Line Soundness is now to be derived, it must be shown that the 
proper rules never lead us from valid to invalid sequents. It must be 
shown, for example, that from the fact that the sequents A/p and P/V v J/ 
are valid it follows that the sequent A/q v rl, is valid. But this is essentially 
a matter of applying the Cut Rule for the concept of case-to-case validity 
(Theorem 5). Note that the proof of the rule is not completely straight- 
forward in this case and calls for the satisfaction of an extendibility require- 
ment. 

We see then that there are two very different ways of providing a 
semantics for the system G. One treat VZ as a proper rule of inference but 
does not assign a plausible role to suppositions. The other treats VZ as an 
improper rule but assigns a more plausible role to suppositions. I am inclined 
to think that there is a compromise account that both treats VZ as more like 
a proper rule and assigns a plausible role to suppositions. But this is not a 
possibility I shall pursue here. 

5. QUINE’S SYSTEM Q 

We now embark on a study of systems that contain a rule of existential 
instantiation. In this section, we deal with the system proposed by Qume in 
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Methods of Logic [ 141; and in the next section, we deal with the system 
that Copi tried to formulate in Symbolic Logic [2]. In both cases, our plan 
is more or less the same. We shall give a standard formulation of the system 
and then one in terms of what I call dependency diagrams; we shall present 
generic semantics for the system and prove soundness with respect to the 
semantics; we shall finally make some critical remarks on the system in the 
light of its semantics and proof theory. 

First Formulation. We may suppose that the system Q has the standard 
propositional rules for a system of natural deduction, although this is not in 
keeping with Quine’s own presentation. The quantification rules may be 
schematically represented as follows: 

m EG - 
3x&) 

Here, as before, p(a) is the result of substituting a for all free occurrences of 
x in q(x). 

The rules come in pairs for each quantifier; one is a rule of instantiation 
(I), and the other a ru!e of generalisation (G). Note that UI is the same as 
VE and EG the same as 31. The difference in notation is used merely to 
indicate the difference in the kind of system from which the rule originates. 

Without further restriction, the application of these rules quickly leads to 
the derivation of invalid sequents. For example, from 3x4~) we may 
obtain q(a) by EZ; and from cp(a) we may then obtain Vxcp(x) by UG. The 
system is therefore equipped with various restrictions that are designed to 
block the formation of these derivations. One is the same as for the Gentzen 
system G: 

(LR) Local Restriction. The A-letter a does not occur in p(x) in any 
application of the rules UG or EI. 

The other restrictions are peculiar to Quine’s system. In contrast to LR, 
they are of a global rather than a local character; they concern not merely 
the immediate context in which the rule is applied but also its relation to 
the rest of the derivation. 

To state the further restrictions, we shall need some terminology. Let 
cp(a)/Vxcp(x) or 3xq$x)/qfa) be an application of one of the rules UG or EZ 
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respectively. If a does not actually occur in cp(a), then the given application 
of the rule is said to be UCICUOUS. In case the application is non-vacuous, a is 
said to be its instantial term and the A-letters of 4.x) its given terms. For 
example, in the application 3xFxbc/Fabc of EI, a is the instantial term and 
b, c are the given terms. 

Let D be a potential derivation, i.e., one in accordance with the pro- 
positional rules and the unrestricted version of the quantificational rules. 
Relative to such a derivation, we say that the A-letter a immediately 
depends upon b - in symbols, a < b - if, in some non-vacuous application 
of UC or EI in D, a is the instantial term and b is a given term. Under the 
proposed semantics, a will actually denote an A-object that immediately 
depends upon the A-object denoted by b. But it should be noted that the 
present notion is purely syntactic. 

The global restrictions on a potential derivation now take the following 
form: 

(F) Flagging. No A-letter shall be an instantial term twice, i.e., to two 
applications of the same rule or of different rules. 

(0) Ordering. It should be possible to order the distinct instantial terms 
insuchawaya1,a2,... ,a, that,foreachifrom 1 ton,noneofai+r ,..., 
a, immediately depend upon ai. 

The derivations of Q are then those potential derivations that conform to 
the restrictions LR, Flagging and Ordering. It should be noted that, in 
contrast to G, no restriction is placed on the assumptions in any application 
of UG. 

A Reformulation. Small differences aside, the above restrictions are the 
same as those in Qume’s [ 141, p. 164. However the ordering condition is not 
especially perspicuous and it is in fact possible to give it a much more 
perspicuous formulation. 

Say that the A-letter a (syntactically) depends upon b - in symbols, 
u < b - if there is a sequence of A-letters ar , . . . , a,, n > 1, such that 
a=al,b=a,and,foreachi=1,...,n-l,aiimmediatelydepends 
upon ai + r . So we see that the relation < of dependence is the ancestral of 
the relation of immediate dependence. Under the generic semantics, the 
A-object denoted by a will depend upon the A-object denoted by b. We 
have called both the syntactic and semantic relations dependence, but no 
confusion should arise as to which is intended in any context. 

It may now be shown that Ordering is equivalent to: 
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(AS) Anti-symmetry. The relation < of dependence is anti-symmetric, 
i.e., never a < b and b <a for distinct A-letters (I and b. 

The proof of equivalence is straightfoward, but will not be given here. 
Further simplification may be obtained by lumping LR and Ordering 

together. The combined condition is then equivalent to: 
(I) Irreflexiuity. The relation < of syntactic dependence is irreflexive, 

i.e., never a <a for any A-letter a. 
The advantage of the formulation (AS) over (0) or of (I) over (LR) & 

(0) is not merely one of perspicuity. The satisfaction of (0) is rather hard 
to determine, since it requires the discovery of an ordering and a verification 
that it conforms to the desired condition. The satisfaction of (AS) or of (I), 
on the other hand, is relatively easy to determine, since it requires only that 
we observe no cycles in the chains of immediate syntactic dependence. 
Indeed, once the restrictions are formulated in the form (F) & (I) or (IS) & 
(F) & (AS), it is rather easy to keep a running check on their satisfaction in 
terms of what I call dependency diagrams. The use of such diagrams is illus- 
trated by the following examples. 

First, we have a derivation of Vu 3v Fuv from Vx 3y Fxy: 

(1) 
(2) 
(3) 
(4) 
(5) 

Vx 3y Fxy Assumption 
3~ Fay 1, UI 
Fab 2,EI 

a 

3v Fav 3,EG 
Vu 3v Fuv 4, UG. 

b P 

The diagram to the right of the derivation is constructed in stages. At line 
(3), the diagram: 

a 

b I 

is drawn. This indicates that b has been used as an instantial term that 
depends upon a. 

At line (5), the diagram is expanded to: 

a 
P 

b 1 
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The circular node indicates that a has been used as an instantial term that 
depends upon nothing else. 

Second, we have an attempted derivation of 3y Vx Fxy from Vx 3y Fxy : 

(1) 
(2) 
(3) Fab 

(4) Vx Fxb 

At line (3), the diagram 

Ass b 
l,UI a 
2,EI 
3,UG b I 

a 

b T 

is drawn, since b has been used as an instantial term depending upon a. At 
line (4), we are obliged to expand the diagram to: 

b 

a 

b I 

since a has been used as an instantial term depending upon b. The fact that 
we have been forced to label two nodes with the letter b then shows that 
the derivation is incorrect. 

Next, we have an attempted derivation of Vx(Fx 1 VxFx) 

(1) I+ 
(2) VxFx 

(3) Fa 1 XFX 

(4) Vx(Fx 1 VxFx) 

The two successive diagrams: 

Ass 
1, UG a0 a0 
1,2, >I 
3, UG. 

a0 a0 a0 

are completed at lines (2) and (4). The fact that a node has been labelled 
twice with a then indicates that the derivation is incorrect. 

Finally, we have the more complicated example of a derivation of 
3y Vv 3~ 3.x Fxyuv from 3x 3y Vu Vv Fsyuv. 
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(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

3x 3y Vu WJ Fxyuv 
3 y WI Vu Fayuv 
Vu Vv Fabuv 
Vu Fabdv 
Fabdc 
3x Fxbdc 
Vu 3x Fxbuc 
WV Vu 3x Fxbuv 
3 y Vu Vu 3x Fxyuv 

ASS 
1,EI 
2,M 
3,111 
4, III 
5,EG 
6, UG 
7, UG 
8,EG 

In this example, the four successive diagrams: 

a0 a a 

b b 

C 

are completed at lines (2), (3), (7) and (8). Note that the nodes need to be 
realigned at line (8). 

By drawing a dependency diagram as we proceed with a derivation, it 
is possible to keep a running check on its correctness. The procedure by 
which the diagrams are constructed has not been stated with formal pre- 
cision; but it should be reasonably clear from the examples how it is to go. 

The implementation of the procedure can sometimes be rather clumsy. 
Lines can criss-cross; and when nodes are repositioned, whole parts of the 
diagram may need to be erased and duplicated elsewhere. But these diffi- 
culties are nothing to the problems that arise when there is no diagram for 
checking correctness. Conformity to Flagging may be checked by Quine’s 
device of flagging variables or by a fairly simple inspection of the derivation. 
But when it comes to Irreflexivity or Ordering, there would seem to be 
nothing better but to go through the whole derivation, isolate the appli- 
cations of UG and El, work out what the relationships of immediate 
dependence are, and then see whether its ancestral is irreflexive. Quine 
has suggested as a ‘rule of thumb’ ([14], p. 164) that you ‘pick your letters 
so that each flagged variable is alphabetically later than all other free vari- 
ables of the line it flags’. Conformity to Ordering is then assured. But the 
difficulty now takes another form. Variables (or A-letters) may be 
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introduced into a derivation prior to their use as an instantial term. So one 
must choose them that subsequent conformity to the alphabetic require- 
ment can be maintained. For example, in the previous derivation, it is 
necessary that the A-letter introduced at line (4) be alphabetically later 
than the A-letter introduced at line (5). If one blunders, then the whole 
derivation must be re-written when it comes to the point at which con- 
formity to the alphabetic condition is required. If, for example, one had 
(quite naturally) in the previous derivation introduced c at line (4) and d 
at line (5) then, when it came to line (7), the derivation would have to be 
rewritten, with c interchanged with d. 

It seems, then, that dependency diagrams constitute one of the most 
effective ways of checking the correctness of derivations. Indeed, one may 
think of the diagram as embodying just that information from the rest of 
the derivation as is required to check the correctness of the current line. 
So a complete survey of the whole derivation may, in this way, be replaced 
by a simple check on its diagram. 

In the light of these advantages, the dependency diagrams would appear 
to hold out great promise as a way of presenting derivations of Q within the 
class room. They provide a simple, natural, and unified method for checking 
correctness, one that is readily mastered and relatively easily implemented. 
When combined with the semantics that is about to be given, they impose 
upon a derivation a structure that motivates its development and gives it 
sense. 

Semantics. We now wish to provide a generic interpretation for the 
system Q, one that will render each line of a derivation valid and each appli- 
cation of a rule correct. 

Let us first provide an informal motivation for the semantics. The prob- 
lematic rules are EI and UG; and so let us deal with each in turn. With EI, 
we pass from 3xq(x) to q(a). Consider first the case in which we argue from 
the supposition 3xcp(x) to g(a), with no A-letters other than a occurring in 
q(a). Since we want later to be able to conditionalize, we want so to inter- 
pret a that 3xcp(x) 3 q(a) is true. So suppose that 3xcp(x) is true. Then this 
means that the value of _a must be confined to the individuals that satisfy 
cp(x). So, in general, awill be a restricted A-object. Now, in principle, _a 
could take any set of individual cp-ers as its values. But there is no good 
reason to countenance one Individual cp-er as a value rather than any other. 
Moreover, amust take some individuals as values; for otherwise2 will be a 
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null A-object and the Extendibility requirement will not be satisfied. There- 
fore the only natural choice for a is the A-object whose values are all of the 
individual cp-ers’, what one might call the arbitrary cp-er. 

Suppose now that 3xdx) is false. Then it does not matter what a is, 
since there is no danger of the conditional failing to be true. There is no 
good reason for a to take one value rather than another; and, for the same 
reasons as before, a should take some value. So the only natural choice for 
a is an A-object which takes all individuals as values, what we have termed 
a universal or value-unrestricted A-object. 

It is important to note that it is only in the case that 3xcp(x) is true that 
a turns out to be the arbitrary cp-er. If we wanted to give a compendious 
description of a, one that covers both cases, we might call it the putative 
arbitrary cp-er. It is the Aobject that cp s if anything does. 

Consider now the case in which 3xdx) contains other A-letters, say the 
A-letters b and c. Ip(x) may then be written in the form cp(x, b, c). Since 
again we want to be able to conditionalize, we must so interpret the A-letter 
a that 3xlp(x, b, c) > cp(a, b, c) is true. In this case it is natural to treat a as 
an object dependent upon b and c; for what values a can take will be con- 
strained by what values b and c take. It is also clear that, for given values of 
b and c, the values of a should be constrained in the same way as before. So 
we see that, in this case, a is most naturally taken to be an A-object depen- 
dent upon b and c (and whatever b and c depend upon) and such that, for 
given values j, k of b, c, a will take all values i for which 3x&x, j, k) > 
(i, j, k) is true, i.e., all values i for which cp(i, j, k) is true should 3x(x, j, k) 
be true and all values whatever should 3xcp(x, j, k) be false. 

Of course in general, cp(a) will be derived, not from the supposition 
3xdx), but from a conclusion 3xdx) that itself depends upon other sup- 
positions. But it seems natural to suppose that the interpretation of a 
should not depend upon the status of the premiss 3xcp(x) as supposition or 
conclusion. And so, in this case, the interpretation of a may be determined 
in the same way as before. 

This brings us to applications of the rule UC. As before, first consider a 
case in which we argue from the supposition P(Q) to Vxq(x), with no A- 
letter other than II occurring in V(Q). One might suppose that one is here 
arguing from the truth of da), for a and unrestricted A-object, to the truth 
of Vxdx), in partial analogy to the Gentzen system G. But the principles 
of the present system give the lie to this interpretation. For in Q there is no 
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requirement that, in generalizing, the instantial term not occur in the sup- 
positions upon which the premisses depend. So we may pass to VX~X) from 
the supposition of 4~); and so, by conditionallzing, we may then obtain 
cp(a) 3 Vxp(x). But this last formula is not in general true for a a value- 
unrestricted A-object. 

So let us ask: what must a be for p(u) 3 Vxcp(x) to be true? If Vx~(x) is 
false (in the underlying model), then cp(i) must be false for any value i of a; 
while if VX~(X) is true, the value of a can be anything. It follows, by the 
same considerations as before, that the only natural choice for a is an A- 
object that has all non+ers as its values ln case Vxdx) is false and that has 
all individuals whatever as its values in case Vxp(x) is true. So we see that 
far from being a universal A-object, a is best thought of as an arbitrary 
(putative) counterexample to the formula Vxcp(x). The intuitive justification 
for the rule UC in Quine’s system is not that everything must cp if the 
arbitrary individual (p’s, but that everything must cp if even the putative 
arbitrary counterexample to the generalization Vxcp(x)#s. 

The extension of the interpretation to the other cases proceeds in the 
same way as before. If q(u) contains other A-letters, then a is still a putative 
counterexample to vxdx), but dependent upon the other A-objects men- 
tioned in vxcp(x); and if cp(a) is not a supposition, then a must be treated in 
the same way as it would be if &) were a supposition. 

After these informal remarks, let us now give a more rigorous formu- 
lation of the semantics for the system. An A-model M* is said to be suitable 
for a derivation D if: 

(9 a # b for a and b distinct A-letters of D; 

(ii) 

(iii) 

(a) 

(b) 

(9 

a is unrestricted for each non-instantial letter a in D; 

if the inference 3xq(x, bl , . . . , b&p@, bI , . . . , b,) occurs 
in D, then a is an A-object for which: 

lal = [h,. . . , b,], i.e., a< c iff br = c or bi d c for i = 
1,2,...,n;and 

for any v with domain lal, w = v U {(a, D} E V 
iff M l= w (3xp(x, bl, . . . , b,) 3 cp(u, bl , . . . , b,)); 

if the inference C&Z, bl, . . . , b,)/Vxcp(x, bI , . . . , b,) occurs 
in D, then a is an A-object for which: 
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(4 la/ = [br, . . . , b,], and 

(b) for any v with domain lal, w = v U ((a, U} E V iff M l= 
ww, bl , . . * 3 &I) ’ ~w(x, bl>. . . 3 b”)). 

As before, the notation of suitability may also be explained in terms of 
definitional realizability. With each derivation D we may associate a system 
of definitions S. Its members are: 

(9 all pairs (a, 3xrp(x) 3 q(x)), where 3xq(x)/q@) is an appli- 
cation of EI in D; 

all pairs (a, q(x) 3 Vxq(x)), where cp(a)/Vxq(x) is an appli- 
cation of UG in D; 

(iii) all pairs (a, A), where a is an A-letter of D that is not an 
instantial term. 

The derivation provides us, in effect, with a definition of each of the A- 
letters that it uses. It is then a trivial matter to show that an A-model M* 
is suitable for D iff it realizes the system of definitions S associated with D. 

It should also be noted that there is a close connection between the 
dependency relation for a suitable model M* and the dependency relation 
for its derivation D. The A-letter a will syntactically depend upon b in D 
just in case the A-object a objectually depends upon b in M* . Thus the 
dependency diagram for a derivation will actually have semantic signifi- 
cance as a graph for the objectual dependency relation. 

Soundness. We wish to establish results on both the line and the line-to- 
line soundness of Q. 

But first we need a result on the extendibility of suitable models. 

LEMMA 15. Let M* be a suitable model for the derivation D. Then M* is 
extendible over the class of A-objects designated by the A-letters in D. 

ProoJ: By Theorem 7, it suffices to show that each definition in the 
system S of definitions associated with D is total in M. For definitions of 
the form (a, A), this is obvious; and for definitions of the form (a, 3xq(x) > 
cp(x)) and (a, q(x) 3 Vxcp(x)), it follows from the logical truth of 
3x(3xq(x) 3 q(x)) and 3x@(x) 3 Vxq(x)). 

We may now show: 
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THEOREM 16. (Line-to-Line Souddness for Q.) Let D be a derivation in 

Q, and (Al, CPA . . . , (A,, ad/(4 cp) an argument pattern corresponding to 
an application of one of the rules in D. Then the inference A, > cpl, . . . , 
A,, 1 &A 1 cp is truth-to-truth validated relative to the class X of suitable 
models M* for D. 

Proof: There are three cases: 
(1) The inference rule is classical,,i.e., not UC or EI. Then the inference 

&,cpd, . . . , (A,,, cp,)/(A, cp) is classically valid. By Lemma 15, each suit- 
able model M* is extendible over the set of A-objects mentioned in the 
inference. So by Corollary 2, the inference is truth-to-truth validated in X. 

(2) The inference rule is UC. So it must be shown that A > t&)/A 1 
Vxdx) is truth-to-truth valid relative to X. Now the inference A > cp(a), 
cp(a) 3 Vx&)/A 1 Vx@) is classically valid. So by Lemma 15 and 
Corollery 2, the inference A 1 p(a), cp(a) 1 Vxcp(x)/A 1 Vxcp(x) is truth- 
to-truth valid relative to X. But by clause (iv) in the definition of ‘suitable’, 
cp(a) 1 Vxdx) is truth-to-truth valid relative to X. It therefore follows that 
A 1 &)/A 1 Vxdx) is truth-to-truth valid in X. 

(3) The inference is EI. Similar to case (2). 

Just as in the case of G, we may give a proof of line-to-line soundness 
that revolves around the concept of case-to-case validity. The verbal formu- 
lation of the result is exactly the same as for Theorem 14. But in striking 
contrast to the case of G, we may now classify UG (and EI) as proper rules 
of inference: for it is immediate from the definition of ‘suitable’ that each 
application cp(u)/Vx~(x) of UG (or application Bx~(x)/lp(u) of EI) is case- 
to-case valid in the class of suitable models. So we may secure the propriety 
of the inference cp(a)/Vxdx), not by insisting upon a truth-to-truth concept 
of validity, but by appropriately modifying the interpretation of the 
instantial terms. 

From Theorem 16, we may obtain: 

THEOREM 17. (Line Soundness for Q.) Let D be a derivation of the 
sequent (A, cp) in Q. Then A 1 cp is generically valid in the class X of suit- 
able models. 

Proofi For each uninferred sequent (I’, $) of D, r 1 $ is truth-to-truth 
valid relative to X since $ E r. The property of being truth-to-truth valid 
relative to X is preserved by the inferences of Theorem 16 that correspond 
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to the applications of the rules in D. Therefore (A, ‘p) is truth-to-truth valid 
in x. 

As before, the interest of our soundness results depends upon the exist- 
ence of suitable models. But this may be established on the basis of our 
theory of definition. 

LEMMA 18. For any classical model M and derivation D from Q, there is 
an A-model M* that is based upon M and suitable for D. 

Proof. Let S be the system of definitions associated with the derivation 
D, and recall that a model M* is suitable for D just in case it realizes the 
system S. So, given a classical model M, there will be an A-model M* suit- 
able for D just in case there is an A-model M* that realizes the system S. 
Now, by Theorem 6, there will be an A-model M* that realizes the system 
as long as the system satisfies the joint requirements of univocality and non- 
circularity. But it may immediately be checked that S conforms to uni- 
vocality just in case D conforms to Flagging and that S conforms to non- 
circularity just in case D conforms to Irreflexivity. So since any derivation 
D of Q conforms to Flagging and Irreflexivity, there will be a suitable A- 
model M* for D. 

Given this existence result, classical soundness may then be proved in 
exactly the same way as for Theorem 12. 

The above proof enables us to see the restrictions on the rules in a new 
light. For suppose we think of a derivation as implicitly defining the A- 
letters that it uses. Then we may see Flagging as merely the requirement 
that the same term shall not be defined twice and Ordering (or Irreflexivity) 
as merely the requirement that there be no definitional circles. Thus the 
restrictions turn out to be the counterparts to general desiderata upon a 
system of definitions. 

Critical Remarks. Quine’s system has some features that are peculiar and 
do not tie in well with ordinary reasoning. The main source of these 
pecularities is the rule UG. As we have already noted, this rule allows us to 
infer VxFx from the supposition Fa and then discharge the supposition to 
obtain Fa 3 VxFx. This corresponds to nothing in ordinary reasoning. We 
may say: let n be an arbitrary number and suppose that it is even. We can- 
not then go on to conclude that every number is even, let alone assert, 
unconditionally, that if n is even then every number is even. 
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This defect would not be so bad if every ordinary piece of reasoning 
could be represented within Quine’s system; for then the extra inferences 
could be regarded as a ‘rounding out’ of ordinary practise. But there are, 
in fact, many ordinary cases of quantificational reasoning that cannot be 
represented within Quine’s system. An example is the argument from 
Vx(Fx A Gx) to K&x A VxGx. This could ordinarily be represented as 
follows: 

(1) Vx(Fx A Gx) Ass. 

(2) Fa A Ga 1, UI 

(3) Fa 2,1\E 

(4) Ga ~,AI!? 

(5) VxFx 3, UG 

(6) VxGx 4, UG 

(7) VxFx A XGX 5,6, A 1 

However, such a derivation cannot go through in Quine’s system since the 
Flagging restriction is violated: a is an instantial term to two applications of 
UG. Instead, the derivation is forced to take the following devious route: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

‘~‘x(Fx A Gx) 
Fa A Ga 
Fa 
Fb A Gb 
Gb 
VxFx 
VxGx 
VxFx A XGX 

Ass. 
1, lx 
&A/? 

1, UI 
4,/\.!? 

3, UG 
6, UC 
6,7, A I 

So we see that Quine’s system cannot be regarded as a rounding out of 
ordinary practice. Indeed, the two are strictly incomparable, with each 
containing inferences that correspond to nothing in the other. 

This lack of deductive fit has an underlying semantical explanation. In 
ordinary reasoning, when we go from q(a) to Vxq(x), a is meant to be an 
unrestricted A-object. We cannot therefore assert p(a) 3 Vxcp(x), since that 
would have the force of the general claim Vx(q(x) 3 Vxcp(x)). We can, on 
the other hand, generalise upon a as many times as we like. In Quine’s 
system, when we go from q(a) to Vxcp(x), a is meant to be a putative 
counterexample to Vxdx). We can therefore assert p(a) > Vxq(x), for if 
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even the putative counterexample to Vxcp(x) cp’s then everything must cp. 
On the other hand, it is not permissable to generalise upon a more than 
once, since the interpretation of a is tied to the particular application of UC. 

This unorthodox interpretation of the A-letters leads to peculiarities of 
its own. It is a natural requirement on a derivation containing A-names, or 
any other names, that we know what those names denote as soon as they 
are introduced; their interpretation should not depend upon what subse- 
quently happens in the derivation. Now our ordinary practice, when con- 
strued in generic terms, seems to conform to this ban on retrospective 
interpretation. It is always clear, upon the introduction of an A-name, what 
A-object we are talking about. However, Quine’s system, when construed 
generically, goes against the ban. Suppose that, at a given state of a deri- 
vation, we have reached the conclusion cp(a), with a unflagged. We might 
then go on to infer Vxcp(x); or we might go on to infer cp(a) v G(u) and, 
from that, Vx(p(x) v $(x)). In the first case, a is interpreted as a putative 
counterexample to Vxq(x) and, in the second case, as a putative counter- 
example to Vx((p(x) U G(x)). So what a means at a given stage of the 
derivation depends upon how the derivation is continued. 

This semantical peculiarity is related to the difficulty in constructing 
dependency diagrams for derivations within Quine’s system; and this, in its 
turn, is related to the more general difficulty in checking that derivations 
are correct. We have noted that the subsequent course of a derivation may 
require one not merely to extend the dependency diagram but to make 
bodily adjustments to it; new nodes are not merely added and suitably 
related to old nodes, but the old nodes may themselves be re-aligned. This 
is because the construction of a dependency diagram forces one to be 
explicit about the links among the different nodes and therefore about 
the dependency relations among the A-objects associated with them. Since 
we may not be sure, at a given stage of a derivation, exactly what A-objects 
are are talking about, the subsequent course of the derivation may compel 
us to revise our initial assay of the links. 

In the light of these peculiarities, it is hard to regard Quine’s system 
either as a very satisfactory system in its own right or as a faithful rep- 
resentation of ordinary reasoning. 
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6. THE COPI-KALlSH SYSTEM 

In this section we shall deal with the system that Copi attempted to formu- 
late in [2] and that was correctly formulated by Kalish [7]. We shall present 
a standard formulation of the system and a reformulation in terms of 
dependency diagrams; we shall prove soundness with respect to the generic 
semantics; and finally we shall make a critical comparison between this 
system and Quine’s. 

The System. The system C has the usual propositional rules. The quanti- 
ficational rules may be schematically represented in the same way as for 
Quine’s system Q and with the same understanding concerning the relation- 
ship between the formulas q(x), q(t) and s(a): 

Insofar as it is separately stated, the local restriction on the rules is the 
same as for Quine’s system. However, the global restrictions are different. 
For EZ, there is one such restriction: 

Novelty. In any application 3xcp(x)/cp(a) of El, a is to be an A-letter 
that has not previously occurred in the derivation. 

For CJG, there are two global restrictions. The first is: 
Weak Flagging. No instantial term to an application of UG can pre- 

viously have been used as an instantial term to an application of EZ. 
Call an instantial term that comes from an application of EI an 3- 

instantial term and one that comes from an application of UG an V- 
instantial term. Then Weak Flagging and Novelty have the consequence 
that no Sinstantial term is also an V-instantial term. 

The second restriction is somewhat harder to state. Let us redefine the 
notion of immediate dependence for A-letters in a derivation by now saying 
that a immediately depends upon b - a < b - if, in some application of EI, 
a is the instantial term and b is a given term. Note that the rule UG is no 
longer a source of dependency relations. We may call the present notion 
of dependence ‘3-dependence’ if it needs to be distinguished from the pre- 
vious notion. As before, take dependence (<) to be the ancestral of 
immediate dependence. Then the second restriction on UG is: 



ARBITRARY OBJECTS 93 

Independence. In any application of UC, no A-letter occurring in either 
the conclusion or the suppositions to the inference can be identical to or 
depend upon the instantial term. 

Dependency Diagrams. As with Qume’s system, it is helpful to keep a 
running check on the correctness of derivations with the aid of dependency 
diagrams. The use of such diagrams, and also some differences from Quine’s 
system, are illustrated by the following derivations. 

First, we have a derivation of VU 3 v Fuv from Vx 3y Fxy: 

(1) 
(2) 
(3) 
(4) 
(5) 

Vx 3y Fxy Ass. 

3~ Fay 1, UI 
Fab 2,EI a 
3v Fav 
Vu 3vFuv 

3,EG b I 
4, UG. 

The diagram to the right is drawn at line (3). At that line, we check that b 
is new to the derivation. At line (5), we check that a does not occur in the 
premiss or suppositions to the inference and we check, through the use of 
the diagram, that no A-letter dependent upon a occurs in the premiss or 
suppositions. 

Second, we have a derivation of Vy 3x Fxy from 3x Vy Fxy : 

(1) 3x Vy Fxy Ass. 

(2) VY Fay 1,EZ 

(3) Fab 2,UI ao 
(4) 3x Fxb 3,EG 
(5) Vy 3x Fxy 4, UG 

The diagram with circular node is drawn at line (3). The circular node indi- 
cates that a is an 3-instantial term depending upon no other terms. 

Next, we have an attempted derivation of 3y Vx Fxy from Vx 3y Fxy: 

(1) 
(2) 
(3) 
(4) 

Vx 3 y Fxy Ass. 

3~ Fay 1,uz a 
Fab 2,EI 
Vx Fxb b I 

3, UG 

The diagram is drawn at line (3). We see, by consulting the diagram, that 
the derivation breaks down at line (4) since the dependent A-letter b 
appears in the conclusion Vx Fxb. 
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Finally, we have a derivation of Vx 3s Vy 3 t Fxsyt from Vx 3u Vy 3 v 
Fxuyv; 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

Vx3u Vy3vFxuyv 
3u Vy 3v Fauyv 
Vy 3 v Facyv 
3 v Facbv 
Facbd 
3 t Facbt 
Vy 3 t Facyt 
3x Vy3tFasyt 
vx3s Vy3tFxsyt 

ASS. 
1, UI 
2,EI 
3, UI 
4,EI 
5,EG 
6, UG 
7,EG 
8, UG 

At line (3), the diagram 

a 

C I 
is drawn. At line (5), it gets extended to the diagram at the right of the 
derivation. At each of these lines it must be checked that the instantial 
terms are new to the derivation. At line (6), it must be checked that a and 
c do not depend upon b. 

The formulation of Copi’s system may be further simplified by making a 
typographic distinction between V-instantial and 34nstantial terms (cf. [I], 
p. 88). Let us use a, b, c with variants for the former, and e,f,g with 
variants for the latter. This gives possiblyfiur types of subject-term: 
variables of quantification; UG-terms; El-terms; and individual terms. Intui- 
tively, the letters a, b, c, . . . are to be the names of unrestricted A-objects 
ande,f,g,. . . the names of potentially restricted A-objects. Thus the 
difference between UG- and EZ-terms marks not a difference in semantic 
role or even in the category of objects denoted, but merely a difference in 
how the denotation is determined. 

Armed with this typographic distinction, we may simplify the formu- 
lation of the rules and the construction of the dependency diagram. In the 
application cp(a)/Vx&) of UG, we now require that a be a UG-term; and 
in the application 3xcp(x)/de) of EZ, we require that e be an EZ-term. The 
Weak Flagging restriction may then be dropped. Similarly, the distinction 
between point and circular nodes in the construction of dependency 
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diagrams may also be dropped. What were formerly circular nodes will now 
be labelled by an EZ-term and, by this fact alone, will be inadmissable as 
nodes for V-instantial terms. Furthermore, if it is required that no EZ-term 
occur in a derivation until it has been introduced as an E-instantial term, 
then the satisfaction of Novelty can be determined from the diagram alone. 
For in the case of any occurrence of an EZ-term in a derivation, we may per- 
form the following check: if the occurrence is non-instantial, then the term 
must already occur in the diagram; if the occurrence is instantial, then the 
term must not already occur in the diagram. 

The dependency diagrams, especially when employed in connection with 
a typographic distinction between UC and EZ-instantial terms, provide a 
highly effective way of checking the correctness of derivations within C. 
It is certainly far superior to having no systematic method at all, i.e., to just 
surveying the derivation for dependencies at each application of UC. The 
only reasonable alternative I know of is to index the 34nstantial terms with 
the V-instantial terms upon which they depend. This means, in effect, that 
the rule EZ takes the form: 

From 3x&) infer cp(abl, . . . , b,), where a is new and br, . . . , b, are all 
of the b’-instantial terms in 3x@). 

The rule UC may then take the form: 
From &) infer Vxdx), where a does not occur in Vxdx) or any sup- 

position. 
Thus we obtain a system of the sort proposed by Suppes [ 171 and 
Borkowski-S-Iupecki [ 11. 

This formulation has the advantage of reducing the rule UG to something 
familiar. But the method of letting the 3-instantial terms carry the V- 
instantial terms upon which they depend as subscripts is very cumbersome. 
The same information is conveyed in a much more structured and compact 
form by means of dependency diagrams. 

In the light of these advantages and in the light of their semantic signifi- 
cance, we see that diagrams should have great value as a way of presenting 
the derivations of C within the classroom. 

Semantics. In view of the parallel treatment of Quine’s system, we may, 
in this and the next section, be brief. 

The basic idea behind the semantics is this: the V-instantial terms shall 
denote unrestricted A-objects; the 3instantial terms from inferences 
3xcp(x)/&z) shall denote putative cpers, dependent upon the objects 
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denoted by the given terms to the inference. Accordingly, let us say that an 
A-model M* is suitable for the derivation D in C if: 

(0 

(ii) 

(iii) 

a # b for distinct A-letters a and b of D; 

a is unrestricted for each A-letter a of D not 3-instantial in D; 

if the inference 3x&, bl, . . . , b,)/cp(a, bl, . . . , b,) occurs 
in D, then a is an A-object for which: 

(4 Ial= Lb,. . , , b,], i.e., a <c iff bi = c or bi( c for i = 
1,2 ,..., n,and 

(b) foranyvwithdomainlal,w=vU{(a,i>}EV 
iffMl=w(3xq(x,br ,..., b,)>cp(a,b, ,..., b,)). 

With each derivation D may be associated a system of definitions S con- 
sisting of (a, 3xcp(x) 1 q(x)) for each non-vacuous application 3xq(x)/q@) 
of EI in D and of (a, A) for each a in D that is not 34nstantial. It is then a 
simple matter to show that an A-model is suitable for a system of definitions 
iff it realizes the associated system of definitions. If M* is suitable for D and 
a and b are A-letters of D, then a will depend upon b in M* iff a syntac- 
tically depends upon b in D. As before, the dependency diagram for D will 
actually mirror the relevant portion of the dependency relation in M*. 

Soundness. We wish to establish line and line-to-line soundness for C. 
First, we need a result on the extendibility of suitable models: 

LEMMA 19. Let M* be a suitable model for the derivation D. Then M* is 
extendible over the class of A-objects designated by the A-letters in D. 

Proof By Theorem 7, it suffices to show that each definition in the 
system S of definitions associated with D is total in M. For definitions of 
the form (a, A), this is obvious; and for definitions of the form (a, 3xcp(x) 1 
q(x)), it follows from the logical truth of 3x(3x(p(x) 1 q(x)). 

THEOREM 20. (Line-to-Line Soundness for C.) Let D be a derivation in 
C and (4, cpd, . . . , (A,, aNA, d an argument pattern corresponding to 
an application of one of the rules in D. Then the inference A, > ql, . . . , 
A,, 1 cp,/A 1 cp is truth-to-truth validated relative to the class X of suitable 
models for D. 

noof The extendibility property of suitable models takes care of the 
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rules other than EZ and UG. The rule EZ is dealt with as before. This leaves 
UG. 

So let I&, al, . . . , a,JVxq(x,al, . . . , a,) be an application of UG in D 
with suppositions A(ul, : . . , a,). Let M* be a suitable model for D; and 
suppose, for reductio that A(cz, , . . . ,a,) 3 Vxq(x, al,. . . ,Q,) is not 
true in M*. Then for some v’ in V defined over {ar , . . . , a,), v’(d4, . . . , 
a,) 3 vxLp(x, al, . . . , a,)) is false in M. By Restriction we may suppose 
that v’ is defined on {al, . . . , a,}. Given that v’ has the diagram: 

, ala,...a, 
v. 

iliz. . . i, 

we then have that cp(ir, . . . , in) 3 Vxq(x, ir, . . . , in) is false in M. 
Let al, a2, . . . , a,, . . .,a,,p>n,betheclosure [al,a2 ,..., a,,] of 

{al, a2,. . . , a,}. By Partial Extendibility and Restriction, there is an assign 
ment with diagram: 

in v. 

ala2.. . a,. . . ap 
v: . . 

1112. . . i, . . . ip 

By the classical truth-condition for V, there is an ie E I for which 
A(il, . ..,in)3g(i0,i1,.. . , i,) is false in M. We wish to show that the 
assignment v+ with diagram: 

+. a0, al,. . . , ap v . 
io,il,. . . ,ip 

belongs to V. 
Let u be the assignment with diagram: 

a 
u: 7. 

lo 

We show that v+ E V by showing that the assignments v and u can be pieced 
together. 

Note first that u E V. For by a value-unrestricted, ie E VR(a); and so by 
Restriction, u = {(a, io)) E V. 

Now note that the conditions for Piecing are satisfied. The domain {a} 
of u is closed since a is independent; and the domain {al, . . . , a,,} of v is 
closed by stipulation. Also, u and v agree on common arguments, indeed 
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have no common arguments: for by the syntactic restrictions, ai <a and 
at=afailforeachi=1,2,... , n; and so by the definition of suitability, 
aidaandai=afailforeachi=1,2 ,..., n. 

We therefore have, by Piecing, that v+ = u U v E V, and the failure of 
the truth of A(a,, . . . , a,) 3 cp(a, al, . . . , a,) in M* follows. 

The reader may find it instructive to compare the proofs of Theorem 20 
and Theorem 9 for points of similarity and dissimilarity. 

Again, we have: 

LEMMA 2 1. For any classical model M and derivation D from C, there is 
an A-model M* that is based upon M and suitable for D. 

Proof. By Theorem 7, it suffices to check that the system of definitions 
associated with D is unequivocal and non-circular. But unequivocality 
follows from Novelty and Weak Flagging; and non-circularity follows from 
Novelty alone. 

Note that, again, we may see some of the restrictions on the rules having 
their origin in general desiderata upon a system of definitions. 

From this theorem, classical soundness may be obtained in the usual 
way. 

Critical Remarks. Which of the two system Q and C is to be preferred? 
There are various grounds for preference - closeness to ordinary reasoning, 
naturalness, ease of operation. But on all of them, it seems to me, the 
advantage lies with the system C 

First, the system Q embodies the restriction that no A-letter shall be 
generalised upon more than once. This is artificial and has no counterpart 
in ordinary reasoning. The system C, on the other hand, embodies no such 
restriction and, to that extent, is less artificial and closer to ordinary 
reasoning. 

Secondly, the semantics of Quine’s system requires that one interpret 
V-instantial terms in an artificial way as denoting some such thing as a 
putative counter-example to a generalisation. This is not in accord with our 
ordinary understanding and makes it hard to attach an intuitive significance 
to the derivations. On the other hand, the system C allows one to interpret 
V-instantial terms more naturally as denoting unrestricted A-objects. This is 
in accord with our ordinary understanding and makes it much easier to 
attach an intuitive significance to the derivations. 
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Moreover, the system Q cannot be interpreted in accord with the 
maxim that the designation of a term be fmed upon its introduction into 
the derivation; the interpretation of the V-instantial terms is retrospec- 
tively determined. In the system C the interpretation of all terms is fared 
on introduction. 

Finally, checks on the correctness of derivations are clumsy for the 
system Q. If we think of the dependency diagramas embodying that infor- 
mation from the rest of the derivation that is required to check the current 
line for correctness, then this difficulty is reflected in the fact that the 
diagram is not merely extended from one line to the next but may need 
to be substantially over-hauled. For the system C, on the other hand, no 
such difficulty arises. 

Given the undeniable advantage of the Copi-Kalish system over Quine’s, 
it is unfortunate that not more use of it has been made in the classroom. Of 
the many logic textbooks that have appeared over the years, several have 
been devoted to Quine’s system, but none to the system of Copi and Kalish. 
Copi had the chance in the third edition of Symbolic Logic; but at the last 
moment, he got cold feet and opted for a system in the style of Gentzen. 
One can only hope that others will be more adventurous and that the 
system C will get the exposure at the introductory level that it deserves. 

7. WHY GO GENERIC? 

We here enumerate in more detail some of the advantages to be gained from 
the adoption of generic semantics for natural deduction. It needs to be 
emphasized that the application to natural deduction is only one of many 
applications of the theory of arbitrary objects that is to be made and that 
therefore part of the advantage of the given application rests upon its 
absorption within a wider theory. We do not see the application to natural 
deduction as an isolated case but as part of a more pervasive adoption of a 
generic apparatus for dealing with matters of generality. But this larger 
issue is not one that we shall go into here. 

1. A Method of Discovery. The generic semantics constitutes a powerful 
heuristic device for discovering or rediscovering systems of natural deduc- 
tion with a rule of existential instantiation. 

It should be emphasized that the problem of fmding a suitable set of 
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restrictions on the rules for such systems is far from trivial. There is no 
obviously correct solution and there is no obvious procedure for finding 
the correct solution. Indeed, the history of attempts in this direction is 
studded with failures, with even such distinguished logicians as Quine [ 131 
and Prawitz [ 121 coming up with faulty solutions. 

However, with the advent of the generic semantics, these difficulties 
disappear. The correct restrictions may be found by seeing what would be 
required by a reasonable interpretation of the A-letters in terms of arbitrary 
objects. Suppose, for example, that we had started out with the idea that 
the instantial term a in applications 3xcp(x)/1&) of El was to denote a 
putative (per, dependent upon the A-objects denoted by the given terms, 
and that the other A-letters were to denote unrestricted A-objects. Then 
the required restrictions on the rules in the system C could have been 
almost immediately forthcoming. Weak Flagging would have followed from 
the requirement that there should not be two different specifications of 
the same A-object; and Independence would have followed from an informal 
version of the reasoning in the proof of Line-to-line Soundness. We do not 
quite get Novelty; but we do get the condition that the relation of 3- 
dependence be irreflexive, since otherwise one of the designated A-objects 
would depend upon itself. In fact, the system with the irreflexivity con- 
dition in place of Novelty is classically sound; and the stronger condition 
of Novelty may be thought to result from the imposition of the additional 
requirement that A-letters be interpreted upon introduction. 

Or again, we might have started off with the idea that the instantial term 
a in applications of 3xdx)/cp(a) of EZ was to denote a putative cp-er depen- 
dent upon the given A-objects, as before, but that the instantial term a in 
applications cp(a)/Vxdx) of UC was to denote a putative counter-example 
to Vxcp(x), dependent upon the other A-objects mentioned in dx). One 
would then have been immediately led to the restrictions of Quine’s system 
Q. Flagging would have followed from the requirement that there not be 
two different specifications of the same A-object; and Ordering or 
Irreflexivity would have followed from the requirement that the dependency 
relation among the A-objects be irreflexive. 

2. Semantic Significance. With the generic semantics, syntactic features 
or distinctions possess a significance that they would otherwise appear to 
lack. 
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We already have an example in the restrictions on the rules UG and EI. 
Considered on their own account, it is not clear why they take the par- 
ticular form that they do or what justifies them beyond the mere fact that 
“they work”. With the generic semantics, the exact form of the restrictions 
is immediately explicable and their justification is immediately forthcoming. 

The generic semantics also explains the syntactic discrepancies among 
systems. Why should the syntactic restrictions on the rule UG be so differ- 
ent for Quine’s system than for Copi’s? We see that there is an underlying 
semantical explanation in terms of the UG-instantial terms: in Quine’s 
system, they denote putative counter-examples; in Copi’s system, they 
denote unrestricted A-objects. 

Finally, the generic semantics confers a meaning on the derivations 
themselves. We need no longer think of a derivation as taking us through 
a detour of meaningless steps in order to establish what we are interested 
in. Instead, each line of the derivation is endowed with a meaning and, 
through the relations of dependency, the overall structure of the derivation 
acquires a significance that it would otherwise lack. 

3. Proofs of Soundness. The generic semantics enables one to provide 
simple proofs of classical soundness for systems of natural deduction with 
a rule of existential instantiation. 

Again, it needs to be emphasized that it is by no means a straightforward 
matter to provide such proofs. In contrast to more orthodox systems, it is 
not possible to prove, by a straightforward induction on the construction 
of the derivation, that each line is classically valid, since some of the lines 
with A-letters will not be classically valid. In fact, most authors have in 
effect followed the devious strategy of first associating derivations in the 
given system with derivations in a more orthodox system and then showing 
how classical soundness for the orthodox system transfers to the given 
system. 

With the generic semantics, these proofs become simpler and more direct. 
Indeed, they flow naturally from the particular semantics for the given 
system and from general results concerning A-objects. True, the general 
results must first be established and this involves at least as much work as 
any particular argument. But these results provide a general framework 
for dealing with the particular cases. Once the framework is set up, the 
proofs in particular cases become routine. 
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These proofs have a deeper philosophical significance. The classical (‘non- 
inductive’) proofs are suggestive of an instrumentalist conception of deduc- 
tion. According to this conception, the justification of such rules as UG or 
EZ depends not upon the validity of the inferences that they sanction but 
upon the fact that their application never leads to any harm: they never 
take us from meaningful premisses (ones without A-letters) to meaningful 
conclusions that are not classical consequences of them. Our own proofs, on 
the other hand, are suggestive of a more orthodox and, to my mind, more 
satisfactory conception of deduction. According to this conception, the 
justification of such rules as UG or EZ rests upon the local character of the 
inferences that they sanction as valid and not upon the global character of 
the system of rules to which they belong. 

4. Accord with Ordinary &QSOni?Ig. The generic semantics provides an 
interpretation of natural deduction that is more in accord with our under- 
standing of ordinary quantificational reasoning than any of the familiar 
alternatives. The issue is a large one, and I hope to deal with it fully else- 
where. I shall therefore content myself with the briefest account here. 

As has been pointed out, there exist in ordinary reasoning certain pro- 
cedures for arguing to a universal conclusion and from an existential 
premiss. We may establish that all triangles have interior angles summing to 
1 SO” by showing of an arbitrary triangle that its interior angles sum to 180” ; 
and having established that there exists a bisector to an angle, we feel 
entitled to give it a name and declare that it is a bisector to the angle. 

Without prejudging the question of their correct formalisation, let us call 
the first of these procedures inform@ UC and the second informal EZ. The 
question now arises as to the correct formalization of these procedures. 

It will readily be conceded that informal UG is correctly formalised by 
UG (or VZ), though there may be some doubt as to exactly what restrictions 
on the procedure are observed in our ordinary practice. The problem is with 
informal EZ. 

Let us revert to a typical application of this procedure: 

There exists a bisector to the angle (Y. 
Call it (let it be) B 

There seem to be two main views on how such a piece of reasoning is to be 
formalised. 
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According to the first, the second clause ‘Call it B’ corresponds to an 
assumption that B is a bisector to the angle. So the only reason we are 
entitled to infer that B is a bisector to the angle is that we have already 
assumed that it is. On this view, the reasoning would most appropriately be 
formalised using the rule $5’. 

On the other view, the clause ‘Call it B’ is already taken to represent an 
inference from the premiss ‘There exists a bisector to the angle (Y’. So there 
is no need for a further assumption. On this view, then, the reasoning is 
most appropriately formalised using the rule EL 

My own view is that both of these previous accounts are incorrect. I hold 
that the claim ‘There exists a bisector to the angle (Y’ introduces a certain 
arbitrary object into the discourse. The second clause then serves to give it 
a name, just as the ordinary English suggests. 

However, this is already to buy very heavily into the theory of arbitrary 
objects. Since I wish to be as cautious as possible in the postulation of 
arbitrary objects, let us play along with the hypothesis that the premiss is 
a straightforward existential statement (of the form 3x (x is a bisector to 
the angle (Y)). And under that hypothesis, let us ask what is the most 
plausible formalisation of the reasoning. 

It then seems to me that the advantages lie with EZ. Since the status of 
the second clause ‘Call it B’ is in question, let us consider an application of 
informal EZ that does not involve such a clause. Suppose we are arguing 
from the density of the reals to the conclusion that between any two reals 
there are two other reals. We might then proceed as follows: 

(1) 
(2) 
(3) 
(4) 
(5) 

(6) 

Take any two reals a and b. 
We may suppose a < b (since the other case is similar). 
Sincea<b,thereisarealcwitha<c<b. 
Since c < b, there is a real d with c < d < b. 
Buta<c<b(from(3)),a<d<b(sincea<c<d<b), 
and c # d (since c <d). 
So the conclusion then follows. 

Allowing for obvious compression, the formalisation using EZ can rep- 
resent this piece of reasoning pretty much as it stands. In step (3), we go 
from a < b to 3c(a <c < b), and thence to a <c < b. In step (4), we like- 
wise to go from c < b to 3d(c <d < b), and thence to c <d < b. 

However, the formalisation using 3 E calls for a radical modification in 
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the structure of the reasoning. In the transition between (3) and (4) it must 
be supposed that the assumption a < c < b is tacitly made. Likewise, in the 
transition between (4) and (5) it must be supposed that the assumption 
c < d < b is made. And when it comes to the conclusion (6), it must be 
supposed that the two assumptions are as quietly dropped as they were 
made. 

This is all most implausible and, along with other difficulties, makes the 
account using 3 E far inferior to the account using EI. If then informal EI 
corresponds to formal EZ, what account is to be given of the instantial terms 
in the formal rule and, by extension, of the instantial terms in the informal 
rule? 

Again, there are various hypotheses that have been proposed. One very 
common one is that, in the inference 3+(x)/&), the term a is the name of 
a specific individual. Given the truth of 3x1&), we arbitrarily select one of 
the individuals that cp’s and give it a name. But this proposal does not even 
get off the ground. For first, the statement 3xq(x) might be false (it could, 
for example, be a false supposition) and so there might be no individual 
cp-er for a to name. But second, even when 3xq(x) is true, we may be in 
no position to name any individual that cp’s. 

A more plausible proposal is the Skolemite hypothesis, according to 
which the instantial terms correspond to functional expressions. For 
example, the inference 3xFxbc/Fubc would more explicitly be represented 
as 3xFxbc/Ff(b, c)bc. But now the question arises as to the interpretation 
of the function symbol f. There would appear to be two main views: accord- 
ing to the first, f stands for a specific function (f is a functional constant); 
according to the second, f “stands for” an indefinite function (it is a func- 
tional variable, existentially quantified from the outside). But the first view 
suffers from the problem that we may be in no position to denote an appro- 
priate function, even though it exists. The second view, on the other hand, 
requires a radical alteration in the structure of our reasoning. The inference 
p(u), Jl(a)/cp(a) A $(a) (where a is a 0-ary function variable) would most 
naturally be represented by 3xcp(x), ~x$(x)/~x(~x) A G(x)). But this latter 
inference is valid (cf. Schagrin [ 161 and Lemmon [9]). So it must be sup- 
posed that the whole derivation takes place within the scope of outermost 
existential quantifiers for the functional variables. But this means that the 
lines up to a given stage of the derivation must all somehow be wrapped up 
into a single conjunction for the outermost quantifiers to apply to, and that 
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subsequent inferences must be seen as operations on the conjuncts within 
the resulting quantified statement. 

Perhaps the most plausible proposal of conventional sort is the one that 
treats the instantial terms as schematic or ambiguous names. The proposal 
might be formulated in the following way. Take my own semantics for a 
system of natural deduction and suppose that the individual values attach 
directly to the names. So instead of supposing that the A-letters a,, . . . , a, 
denote the A-objects al, . . . , a,, which can then simultaneously assume 
such values as iI, . . . , i,, we suppose that the A-letters can directly assume 
thevaluesiI,. . . , i,. Subject to this modification, the definitions of 
validity and the proofs of Soundness may proceed as before. 

We might even suppose that the ambiguous names are given some struc- 
ture, so that it is clear from that structure what values they can simul- 
taneously assume. To this end, we might appropriate the symbolism of the 
e-calculus. In the inference 3xcp(x)/&z), the term a would then be taken to 
be of the form uccp(x) (as in Routley [ 151) and the terms s = exfi and 
t = evRys, let us say, would be taken to assume all values i and j for which 
3xI3c 3 Pi and 3&i 3 R ji were true. 

Given that this proposal is satisfactory and that it does little injustice to 
the structure of derivations, why opt for the generic semantics? Why inter- 
pose the arbitrary objects between the names and the individuals? Why have 
an objectual rather than a nominal theory? 

There are various advantages, it seems to me, in having an objectual 
theory. One has to do with our intuition that, in informal reasoning involv- 
ing UG or EZ, we are dealing with definite objects. The objectual theory 
supports this intuition; the nominal theory does not. In any case, it is useful 
to have the statements of such reasoning express definite propositions. For 
we can then suppose that in following through the reasoning the reasoner 
has those propositions in mind and that the propositions or the inferences 
concerning them are evaluated for truth or validity in the normal way. 

The objectual theory is also conducive to conceptual clarity. For in its 
definition of A-model (with the conditions of Partial Extendibility, Piecing, 
etc.), it provides an analysis of that abstract structure that may be thought 
to underly the suitable assignment of values to terms. The structure may be 
realized linguistically: A-objects may be replaced by A-names, and objectual 
dependency by syntactic dependency. But that is only to obscure the 
abstract nature of the underlying structure. 
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In this respect, the objectual approach is somewhat akin to Kripke’s 
treatment of possible worlds as unstructured elements as opposed to 
Carnap’s treatment of them as state-descriptions. For many purposes, 
Kripke’s analysis is just what one needs; Carnap’s linguistic representation 
merely gets in the way. Similarly, for many purposes, the objectual 
approach is just what one needs; the linguistic representation of the A- 
objects or of the relation of dependency merely introduces irrelevancies. 

But these considerations are marginal. The main advantage in adopting 
the generic semantics has to do with the faithful representation of ordinary 
reasoning. In regard to straightforward first-order reasoning, this is not 
clear; for the nominal approach seems to perform as well as the objectual. 
But it becomes especially clear in regard to extensions of first-order reason- 
ing: for then the weakness of the nominal approach begin to show up. 

Consider the following piece of ordinary mathematical reasoning: 
Lety = f(x) be a continuous function. Take any real h. Then for some k, 

f(x + h) = y + k. Now since f is continuous, k + 0 as h + 0. So . . . . 
On the objectual approach, the statement ‘k + 0 as h + 0’ is readily intel- 
ligible, for this just attributes a certain property to the set of all pairs of 
values assumed by the A-objects k and h. But on the nominal approach, 
the statement is hard to make sense of, for the A-objects k and h are not at 
hand and it is not simply an ambiguous statement about each of the pairs of 
values that k and h can assume. In general, it seems impossible to reconcile 
the nominal approach with a reasonable view of the role of variable signs in 
mathematics. 
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