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Abstract

Let f(n) be a totally multiplicative function such that |f(n)| ≤ 1 for all n,
and let F (s) =

∑∞
n=1

f(n)n−s be the associated Dirichlet series. A variant of

Halász’s method is developed, by means of which estimates for
∑N

n=1
f(n)/n are

obtained in terms of the size of |F (s)| for s near 1 with <s > 1. The result obtained
has a number of consequences, particularly concerning the zeros of the partial sum
UN (s) =

∑N

n=1
n−s of the series for the Riemann zeta function.

1. Introduction

Let f(n) be a multiplicative function such that |f(n)| ≤ 1 for all n. Then the
associated Dirichlet series

(1) F (s) =
∞∑
n=1

f(n)n−s

is absolutely convergent for σ > 1. (We write s = σ+it.) In 1968, Halász [1] showed
that if for every T > 0, F (s) = o

(
1/(σ− 1)

)
as σ → 1+, uniformly for |t| ≤ T , then

S0(x) =
∑
n≤x f(n) = o(x). One may note that Halász’s theorem, together with

the information that ζ(1 + it) 6= 0, yields the estimate
∑
n≤x µ(n) = o(x), which

is equivalent to the Prime Number Theorem. Later, Halász [2] established a sharp
quantitative form of his theorem. After further refinements of Montgomery [5] and
Tenenbaum [8], this takes the following form.

Theorem 1. Suppose that f(n) is a multiplicative function such that
|f(n)| ≤ 1 for all n, and let F (s) and S0(x) be defined as above. For α > 0
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put

M0(α) =
( ∞∑
k=−∞

max
|t−k|≤1/2
1+α≤σ≤2

∣∣∣F (σ + it)
σ + it

∣∣∣2)1/2.
Then for x ≥ 3,

(2) S0(x)� x

log x

1∫
1/ log x

M0(α)α−1 dα.

Since |F (2)| � 1 it follows that M0(α) � 1 and hence in the most favorable
circumstance Theorem 1 gives the estimate

S0(x)� x log log x
log x

.

To see that this is sharp, take f(n) to be the totally multiplicative function deter-
mined by the equations

f(p) =
{
e(φp) when

√
x < p ≤ x,

i otherwise,

where the φp are at our disposal. Then by comparing F (s) with exp(i log ζ(s)) it
follows that |S0(u)| � u/ logu when 2 ≤ u ≤ √x, and that M0(α)� 1. Moreover,

S0(x) =
∑
n≤x

p|n⇒p≤x

f(n) +
∑

√
x<p≤x

f(p)S0(x/p),

so that by choosing the φp appropriately we have

|S0(x)| =
∣∣∣∣ ∑

n≤x
p|n⇒p≤x

f(n)
∣∣∣∣+

∑
√
x<p≤x

|S0(x/p)| �
∑

√
x<p≤x

x

p log(2x/p)
� x log log x

log x
.

Thus in particular we see that the integral in (2) cannot be replaced by M0(1/ logx).

In this paper we consider similar estimates for the partial sum

S1(x) =
∑
n≤x

f(n)
n

in terms of the quantity

M1(α) =
( ∞∑
k=−∞

max
|t−k|≤1/2
1+α≤σ≤2

∣∣∣ F (σ + it)
σ − 1 + it

∣∣∣2)1/2
for α > 0.
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Theorem 2. Suppose that x ≥ 3, that f(n) is a totally multiplicative function
such that |f(n)| ≤ 1 for all n, and that S1(x) and M1(α) are defined as above. Then

(3) S1(x)� 1
log x

1∫
1/ log x

M1(α)α−1 dα.

In Theorem 1 the upper bound obtained is smaller than the trivial bound
S0(x) � x by at best (log log x)/ log x, but for S1 we are more successful. The
trivial upper bound is S1(x) � log x, and in the most favorable circumstances
we obtain an upper bound that is smaller than this by a factor (log x)−2 log log x.
Because (3) is comparatively farther from the trivial, its proof is more delicate. The
hypothesis that f is totally multiplicative could be relaxed to requiring merely that
f be multiplicative, but then the proof would become even more complicated. The
restriction to totally multiplicative functions is not a hindrance below, since our
intended applications pertain to totally multiplicative functions.

It is well-known that the hypothesis that F (σ) = o
(
1/(σ−1)

)
as σ → 1+ does

not imply that S0(x) = o(x), even when f(n) is a totally multiplicative unimodular
function. (For example, if f(n) = ni then F (s) = ζ(s − i), |F (σ)| is uniformly
bounded for σ ≥ 1, but S0(x) ∼ x1+i/(1 + i).) In contrast, by elementary reasoning
we may estimate M1(α) in terms of |F (σ)|, and hence Theorem 2 provides an
estimate of S1 in terms of |F (σ)|.

Theorem 3. Suppose that x ≥ 3, and that 1 + 1
log x ≤ σ ≤ 2. If f(n) is a

totally multiplicative function such that |f(n)| ≤ 1 for all n, then

(4) S1(x)� |F (σ)|(σ − 1)
(
(σ − 1)−4/π + log x

)
.

It is instructive to compare this with the Hardy–Littlewood Tauberian the-
orem, which (in one form) asserts that if f(n) � 1 and F (σ) = o(1/(σ − 1)) as
σ → 1+, then S1(x) = o(log x) as x → ∞. The same conclusion is seen in (4),
under more stringent hypotheses. The advantage of Theorem 3 is that it is quan-
titatively more precise. For example, a quantitative form of the Hardy–Littlewood
Tauberian theorem (see Ingham [4]) asserts that if f(n) � 1 and F (σ) � 1 then
S1(x)� (log x)/ log log x. This is only slightly better than the trivial bound, but it
is best possible (take f(n) = cos

(
(log logn)2

)
). By comparison, in the more restrict-

ed situation of Theorem 3 we have the much better bound S1(x) � (log x)1−π/4.
Seen in this light, Theorems 1–3 are quantitative Tauberian theorems whose hy-
potheses are of an arithmetic nature.

By taking σ = 1 + 1/ logx in Theorem 3, we see in particular that

(5) S1(x)� |F (1 + 1/ logx)|(log x)4/π−1.

This estimate is sharp, as may be seen by letting f be the totally multiplicative
function for which f(p) = b( 1

2π log p) where b(u) has period 1 and b(u) = ieiπu for
0 ≤ u ≤ 1. In this case,

S1(x) ∼ c1xi(log x)2/π−1
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as x→∞, and
F (σ) ∼ c2(σ − 1)2/π

as σ → 1+. It may be further shown that

F (σ + i) ∼ c3(σ − 1)−2/π

as σ → 1+, and that M1(α) ≈ α−2/π in this situation. Here the cj are non-zero
complex constants.

The estimates (4) and (5) do not hold if f is merely assumed to be multiplica-
tive instead of totally multiplicative. To see this, suppose that f is the multiplicative
function defined by the relations

f(2k) = −1,

f(pk) = pki (p > 2)

for k > 0. Then |F (σ)| � (σ − 1), so the right hand side of (5) is � (log x)4/π−2 =
o(1), while in actuality S1(x) ∼ cxi as x→∞, with c 6= 0.

Let

(6) UN(s) =
N∑
n=1

n−s.

Turán [10] proved that UN (s) 6= 0 in the half-plane σ ≥ 1 + 2(log logN)/ logN , for
all large N . By introducing the estimate of Theorem 3 into Turán’s argument, we
obtain the following stronger result.

Theorem 4. Suppose that UN (s) is given by (6). There is a constant N0

such that if N > N0, then UN (s) 6= 0 whenever

σ ≥ 1 +
( 4
π
− 1
) log logN

logN
.

In the opposite direction, Montgomery [6] has shown that for each c < 4/π−1
there is an N0(c) such that if N > N0(c) then UN(s) has zeros in the half-plane
σ > 1 + c(log logN)/ logN .

As an application of Theorem 1, we consider the behaviour of

T (x, n) =
∑
m|n
m≤x

µ(m).

Theorem 5. In the above notation,

T (x, n)� x(log x)−1+1/π

uniformly for x ≥ 2, n ≥ 1.

It is not hard to see that maxn |T (x, n)| = Ω
(
x(log x)−1+1/π

)
, but Hall and

Tenenbaum [3] have shown more, namely that maxn |T (x, n)| � x(log x)−1+1/π .
Thus the upper bound above is sharp for all x.
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2. Proof of Theorem 2

We first note that M1(α)� 1 uniformly for 0 < α ≤ 1, since

|F (2)| ≥
∏
p

(
1 +

1
p2

)−1
> 0.

From this we see that we may assume that x ≥ x0, since the implicit constant may
be adjusted to deal with the range 3 ≤ x ≤ x0. If we multiply both sides of (3) by
log x then the right hand side is an increasing function of x. Also, |S1(x)| log x is
increasing in each interval [n, n + 1). Thus if the equation |S(x)| log x = V has a
root then it has a least root. Hence it suffices to prove (3) when x is a member of
the set

S = {x ≥ x0 : x0 ≤ y ≤ x⇒ |S(y)| log y < |S(x)| log x}.
Multiply both sides of the identity

log x = logn+
(logn) log x/n

log x
+

(log x/n)2

log x
by f(n)/n and sum over n ≤ x to obtain the relation

S1(x) log x =
∑
n≤x

f(n)
n

logn+
1

log x

∑
n≤x

f(n)
n

(logn) log x/n

+
1

log x

∑
n≤x

f(n)
n

(log x/n)2

= T1 + T2 + T3,(7)

say. (This is equivalent to integrating the inverse Mellin transform by parts twice.)
Our first step is to show that if x ∈ S then

(8) T1(x)�
x∫

1

|S(u)| du
u

+ |S(x)| log log x.

We write logn =
∑
d|nΛ(d), and invert the order of summation. Since f is totally

multiplicative, we find that

T1(x) =
∑
d≤x

f(d)Λ(d)
d

∑
m≤x/d

f(m)
m

.

Since |f(d)| ≤ 1 for all d, it follows that

(9) T1(x)�
∑
d≤x

Λ(d)
d
|S(x/d)|.

We take h = x/ log x, and observe that if x− h ≤ v ≤ x, then trivially

T1(x)− T1(v) =
∑

v<n≤x

f(n) logn
n

� hx−1 log x,
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so that

T1(x)� hx−1 log x+
1
h

x∫
x−h

|T1(v)| dv.

By (9) this is

� 1 +
1
h

x∫
x−h

∑
d≤v

Λ(d)
d
|S1(v/d)| dv.

Since S(u) = 1 for 1 ≤ u < 2, it follows that the sum over x/2 < d ≤ x− h is � 1
and hence the second term above is � 1. Thus the above is

� 1
h

∑
d≤x

Λ(d)
d

x∫
x−h

|S1(v/d)| dv

� 1
h

∑
d≤x

Λ(d)

x
d∫

x−h
d

|S1(u)| du

� 1
h

x∫
1

|S1(u)|
( ∑

x−h
u ≤d≤ xu

Λ(d)
)
du.(10)

Write this integral as
y∫
1

+
x∫
y

where y = x/(log x)2. Suppose first that 1 ≤ u ≤ y.

Then ∑
x−h
u <d≤ xu

Λ(d)�
∑

k≤2 log x

1
k

(
log

x

u

)(
π
((x
u

)1/k)− π((x− h
u

)1/k))
.

Here the last factor counts the number of primes in an interval I = I(x, h, u, k).
This interval is contained in an interval I′ of length � h/(ku). By applying the
Brun–Titchmarsh inequality to I′ we see that the number of primes in question is
� h/

(
ku log(4h/(ku))

)
. Hence the above is

�
∑

k≤2 log x

1
k

(
log

x

u

) h

ku log(4h/(ku))
� h/u.

Hence

(11)

y∫
1

� h

y∫
1

|S1(u)| du
u
.

To treat the remaining range we appeal to our assumption that x ∈ S. Since
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log u � log x in this range, it follows that S1(u)� |S1(x)|. On the other hand,

x∫
y

∑
x−h
u <d≤ xu

Λ(d) du�
∑
d≤x/y

Λ(d)

x
d∫

x−h
d

du� h
∑

d≤(logx)2
Λ(d)/d� h log log x,

and hence
x∫
y

� h|S1(x)| log log x.

On inserting this and (11) in (10), we obtain (8).
Next we show that

(12)

x∫
e

|S1(u)| log u
du

u
�M1

( 2
log x

)
log x.

By the Cauchy–Schwarz inequality the integral here is

≤ (log x)1/2
( x∫

2

|S1(u)|2(log u)2
du

u

)1/2
,

so it suffices to show that

(13)

∞∫
e

|S1(u)|2(log u)2
du

u1+2α
� α−1M1(α)2.

On writing

S1(u) log u =
∑
n≤u

f(n)
n

logn+
∑
n≤u

f(n)
n

log u/n,

we see that this integral is

�
∞∫
1

∣∣∣∣∑
n≤u

f(n)
n

logn
∣∣∣∣2 du

u1+2α
+

∞∫
1

∣∣∣∣∑
n≤u

f(n)
n

log u/n
∣∣∣∣2 du

u1+2α
.

By Plancherel’s identity this is

(14) �
∞∫
−∞

∣∣∣∣F ′(1 + α+ it)
α+ it

∣∣∣∣2 dt+

∞∫
−∞

∣∣∣∣F (1 + α+ it)
(α+ it)2

∣∣∣∣2 dt.
To treat the first of these integrals we break the range of integration into intervals
of length 1 and write F ′ = F · F ′/F . Thus the integral is

�
∑
k

(
max

|t−k|≤1/2

∣∣∣F (1 + α+ it)
α+ it

∣∣∣2) k+1/2∫
k−1/2

∣∣∣F ′
F

(1 + α+ it)
∣∣∣2 dt
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�M1(α)2 sup
k

k+1/2∫
k−1/2

∣∣∣F ′
F

(1 + α+ it)
∣∣∣2 dt.

Thus it suffices to show that
T+1/2∫
T−1/2

∣∣∣F ′
F

(1 + α+ it)
∣∣∣2 dt� α−1

uniformly for 0 < α ≤ 1. To this end we recall that if |an| ≤ bn for all n then

(15)

T+U∫
T−U

∣∣∣∣∑
n

ann
−it
∣∣∣∣2 dt ≤ 3

U∫
−U

∣∣∣∣∑
n

bnn
−it
∣∣∣∣2 dt.

This is a refined form of an inequality used by Halász [1], [2]. For a simple proof
see Montgomery [7, pp. 131–132]. Since

F ′

F
(s) = −

∞∑
n=1

f(n)Λ(n)n−σ−it,

it follows by (15) that

T+1/2∫
T−1/2

∣∣∣F ′
F

(1 + α+ it)
∣∣∣2 dt ≤ 3

1/2∫
−1/2

∣∣∣ζ′
ζ

(1 + α+ it)
∣∣∣2 dt� 1/2∫

−1/2

|α+ it|−2 dt� α−1

and hence that

(16)

∞∫
−∞

∣∣∣∣F ′(1 + α+ it)
α+ it

∣∣∣∣2 dt� α−1M1(α)2.

The second integral in (14) is

(17) �
∑
k

(
max

|t−k|≤1/2

∣∣∣F (1 + α+ it)
α+ it

∣∣∣2) k+1/2∫
k−1/2

|α+ it|−2 dt� α−1M1(α)2.

On combining these estimates we obtain (13), and with it (12).

Let J(x) denote the left hand side of (12). By integrating by parts we see
that

x∫
e

|S1(u)| du
u
≤ J(x)

log x
+

x∫
e

J(u)
u(log u)2

du.

By (12) this is
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�M1

( 2
log x

)
+

1∫
1/ log x

M1(2α)α−1 dα.

But M1(α) is decreasing, so the above is

�
1∫

1/ log x

M1(α)α−1 dα.

On combining this with (8), we find that

(18) T1(x)�
1∫

1/ log x

M1(α)α−1 dα+ |S1(x)| log log x.

We now treat T2, as defined in (7). Clearly

T2 log x =
1

2πi

α+i∞∫
α−i∞

F ′(s+ 1)
s2

xs ds

for any α > 0. For 1/ logx ≤ α ≤ 2/ logx this is

�
∞∫
−∞

|F ′(1 + α+ it)|
|α+ it|2 dt.

By the Cauchy–Schwarz inequality this integral is

�
(
α−1

∞∫
−∞

∣∣∣F ′(1 + α+ it)
α+ it

∣∣∣2 dt)1/2.
Thus by (16) we see that

T2 �
M1(α)
α log x

uniformly for 1/ logx ≤ α ≤ 2/ logx, and hence

(19) T2 �
2/ log x∫

1/ log x

M1(α)α−1 dα.

We treat T3 similarly. For α > 0 we have

T3 log x =
1
πi

α+i∞∫
α−i∞

F (s+ 1)
s3

xs ds.
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If 1/ logx ≤ α ≤ 2/ logx then this is

�
∞∫
−∞

|F (1 + α+ it)|
|α+ it|3 dt.

By the Cauchy–Schwarz inequality this is

�
(

1
α

∞∫
−∞

∣∣∣F (1 + α+ it)
(α + it)2

∣∣∣2 dt)1/2.
This integral is the second integral in (14), which is majorized in (17). Thus

T3 �
M1(α)
α log x

uniformly for 1/ logx ≤ α ≤ 2/ logx, and hence

T3 �
2/ log x∫

1/ log x

M1(α)α−1 dα.

On combining (18), (19), and the above in (7), we find that

S1(x) log x�
1∫

1/ log x

M1(α)α−1 dα+ |S1(x)| log log x.

But log logx = o(log x), so the last term on the right is small compared with the
left hand side for x ≥ x0. Thus we have (3), and the proof is complete.

3. Proof of Theorem 3

We first establish two lemmas.

Lemma 1. Suppose that f(n) is a totally multiplicative function such that
|f(n)| ≤ 1 for all n, and for σ > 1 let F (s) be defined as in (1). If 1 < σ1 ≤ σ2 ≤ 2
then

σ1 − 1
σ2 − 1

�
∣∣∣F (σ2)
F (σ1)

∣∣∣� σ2 − 1
σ1 − 1

.

Proof. The quotient in question is

� exp
(
<
∑
p

f(p)
(
p−σ2 − p−σ1

))
.
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Since |f(p)| ≤ 1, this is

≤ exp
(∑

p

p−σ1 − p−σ2
)
� ζ(σ1)
ζ(σ2)

� σ2 − 1
σ1 − 1

.

The lower bound is proved similarly.

Lemma 2. Let f(n) and F (s) be as in the preceding lemma. If 1 < σ ≤ 2 and
|t| ≤ 2 then

F (σ + it)
F (σ)

�
(

1 +
|t|

σ − 1

)4/π
.

If 1 < σ ≤ 2 and |t| ≥ 2 then

F (σ + it)
F (σ)

�
( log |t|
σ − 1

)4/π
.

Proof. We may suppose that t > 0. Since

F ′

F
(s) = −

∞∑
n=1

Λ(n)f(n)
ns

� −ζ
′

ζ
(σ)� 1

σ − 1
,

it follows that |F (σ + it)| � |F (σ)| when 0 ≤ t ≤ σ − 1. As for t ≥ σ − 1, we note
that the quotient in question has modulus

� exp
(
<
∑
p

f(p)
pσ

(p−it − 1)
)

≤ exp
(

2
∑
p

1
pσ
| sin(

t

2
log p)|

)
.(20)

Suppose that σ − 1 ≤ t ≤ 2. Since | sinx| ≤ x, the sum over p ≤ e1/t is

� t
∑
p≤e1/t

log p
p
� 1.

Since | sinx| ≤ 1, the sum over p ≥ e1/(σ−1) is

�
∑

p>e1/(σ−1)

p−σ � 1.

The remaining sum is

(21) ≤
∑

e1/t<p≤e1/(σ−1)

∣∣ sin ( t
2

log p
)∣∣

p
.

Put

L(y) =
∑
p≤y

1
p
, I(y) =

y∫
0

| sinu| du.
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Thus
L(y) = log log y + c+O((log 2y)−2), I(y) =

2
π
y +O(1).

It follows by partial summation that the sum (21) is

2
π

log
t

σ − 1
+O(1)

when σ − 1 ≤ t ≤ 2. This gives the stated result in this case.
Now suppose that t ≥ 2. We write

(22) | sinπθ| =
∞∑

k=−∞
cke(kθ)

where ck = 2π−1(1− 4k2)−1. The quantity (20) is

� exp
(

2
∞∑
n=1

Λ(n)
nσ logn

| sin(
t

2
logn)|

)
= exp

(
2
∞∑

k=−∞
ck

∞∑
n=1

Λ(n)
logn

n−σ+ikt
)

=
∞∏

k=−∞
|ζ(σ − ikt)|2ck .

The term k = 0 contributes an amount � (σ− 1)−4/π. We let C be a constant such
that

|ζ(σ + it)| ≥ 1
C log t

uniformly for σ ≥ 1, t ≥ 2. The existence of such a C is assured, for example, by
(3.11.18) of Titchmarsh [9]. Since ck < 0 when k 6= 0, the product above is

� (σ − 1)−4/π
∞∏
k=1

(C log πkt)−4ck .

Moreover log πkt� (log πk)(log t) and
∑∞
k=1 |ck| log log k <∞, so the above is

� (σ − 1)−4/π(log t)−4
∑∞

k=1
ck .

By evaluating (22) at θ = 0 we see that
∑∞
k=1 ck = −1/π. Thus the proof of Lemma

2 is complete.

We now use the lemmas to show that if 0 < α ≤ β ≤ 1, |t| ≤ 1/2, then

(23)
F (1 + β + it)

β + it
� |F (σ)|

(
α−2(σ − 1) + α−1(σ − 1)1−4/π + α1−4/π(σ − 1)−1

)
.

We also show that if k is a non-zero integer, 0 < α ≤ β ≤ 1, |t− k| ≤ 1/2, then

(24) F (1 + β + it)� |F (σ)|
(

log 2|k|
)4/π(

α−1(σ − 1)1−4/π + α1−4/π(σ − 1)−1
)
.

From these estimates it follows immediately that

M1(α)� |F (σ)|
(
α−2(σ − 1) + α−1(σ − 1)1−4/π + α1−4/π(σ − 1)−1

)
,
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and then Theorem 3 follows by applying Theorem 2.
We prove (23) first. Suppose that σ − 1 ≤ β. By Lemma 2 we see that

F (1 + β + it)
β + it

� |F (1 + β)|
(
1 + |t|

β

)4/π
|β + it| � |F (1 + β)|β−4/π(β + |t|)4/π−1

� |F (1 + β)|β−4/π

since |t| ≤ 1/2. As σ − 1 ≤ β, by Lemma 1 this is

� |F (σ)| β

σ − 1
β−4/π � |F (σ)|α1−4/π(σ − 1)−1

since β ≥ α. This gives (23) in this case. Suppose alternatively that β ≤ σ − 1.
Then by Lemma 1,

F (1 + β + it)
β + it

� |F (σ + it)|
|β + it| ·

σ − 1
β
� |F (σ + it)|

|α+ it| ·
σ − 1
α

since β ≥ α. By Lemma 2 this is

� |F (σ)|
(

1 +
|t|

σ − 1

)4/π σ − 1
|α+ it|α.

If |t| ≤ β − 1 then the product of the last two factors is � (σ − 1)α−2, while if
σ − 1 ≤ |t| ≤ 1/2 then the product of the last two factors is � (σ − 1)1−4/πα−1.
Thus we have (23) in all cases.

We now derive (24). If σ − 1 ≤ β, then by Lemma 2

F (1 + β + it)� |F (1 + β)|
( log 2|k|

β

)4/π
.

By Lemma 1 this is

� |F (σ)| · β

σ − 1

( log 2|k|
β

)4/π
� |F (σ)|(log 2|k|)4/πα1−4/π(σ − 1)−1

since β ≥ α. This gives (24) in this case. Alternatively, suppose that β ≤ σ − 1.
Then by Lemma 1 we see that

F (1 + β + it)� |F (σ + it)| · σ − 1
β
� |F (σ + it)| · σ − 1

α

since β ≥ α. By Lemma 2 this is

� |F (σ)|(log 2|k|)4/πα−1(σ − 1)1−4/π.

Thus we have (24) in all cases, and the proof is complete.

4. Proof of Theorem 4

We adopt the notation of Theorem 3. By integrating by parts we see that∑
n>N

f(n)n−σ = −S1(N)N1−σ + (σ − 1)

∞∫
N

S1(u)u−σ du
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for σ > 1. By (3) it follows that the above is

� |F (σ)|(σ − 1)
(

(σ − 1)−4/π + logN
)
N1−σ

when 1 + 1
logN ≤ σ ≤ 2. Since

UN(s) = ζ(s) −
∑
n>N

n−s,

by taking f(n) = n−it we deduce that

UN (s) = ζ(s)
(

1 +O
(
(log logN)1−4/π

))
uniformly for

σ ≥ 1 +
( 4
π
− 1
) log logN

logN
.

Since ζ(s) 6= 0 in this half-plane, it follows that UN(s) 6= 0, and the proof is
complete.

5. Proof of Theorem 5

We apply Theorem 1 with f(m) = µ(m) when m|n, f(m) = 0 otherwise.
Then

F (s) =
∏
p|n

(1− p−s)

and we require an estimate for this that is uniform in n.

Lemma 3. Suppose that 1 < σ ≤ 2. If |t| ≤ 2 then

(25)
∏
p|n

(
1− p−s

)
� 1 +

( |t|
σ − 1

)1/π
.

If |t| ≥ 2 then

(26)
∏
p|n

(
1− p−s

)
� (σ − 1)−1/π log |t|.

Proof. Put G(s) =
∏
p|n
(
1 + p−s

)−1. Since |F (s)| � |G(s)| uniformly
for σ ≥ 1, it suffices to estimate |G(s)|. We may suppose that t ≥ 0. Clearly
0 < G(σ) ≤ 1. Since

G′

G
(s) = −

∑
p|n

log p
ps + 1

� −ζ
′

ζ
(σ)� 1

σ − 1
,
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it follows that G(s)� 1 if 0 ≤ t ≤ σ − 1. Now suppose that t ≥ σ − 1. We observe
that

(27) |G(s)| � exp
(
−
∑
p|n

p−σ cos(t log p)
)
≤ exp

(∑
p

p−σg(
1

2π
t log p)

)
where g(x) = −min(0, cos 2πx). Suppose that σ−1 ≤ t ≤ 2, and put X = exp(1/t),
Y =exp(1/(σ−1)). We observe that

∑
p>Y p

−σ�1, and that
∑
p≤Y

(
p−1−p−σ

)
�1.

Hence

(28) G(s)� exp
( ∑
X<p≤Y

p−1g(
1

2π
t log p)

)
.

Put

L(y) =
∑
p≤y

1
p
, I(y) =

y∫
0

g(u) du.

Thus
L(y) = log log y + c+O((log 2y)−2), I(y) =

1
π
y +O(1).

It follows by partial summation that the sum in (28) is

=
1
π

log
t

σ − 1
+O(1)

when σ − 1 ≤ t ≤ 2. Thus we have (25).
Now suppose that t ≥ 2. We write g(x) =

∑
k ĝ(k)e(kx), and note that

ĝ(±1) = −1/4, ĝ(2k) = π−1(−1)k+1(4k2−1)−1, and that ĝ(k) = 0 otherwise. The
expression (27) is

� exp
( ∞∑
n=1

Λ(n)
nσ logn

g(
1

2π
t logn)

)
= exp

( ∞∑
k=−∞

ĝ(k)
∞∑
n=1

Λ(n)
logn

n−σ+ikt
)

=
∞∏

k=−∞
|ζ(σ − ikt)|̂g(k).

The term k = 0 contributes an amount � (σ − 1)−1/π. From (3.5.1) and (3.11.18)
of Titchmarsh [9] we know that there is a constant C such that

1
C log t

≤ |ζ(σ + it)| ≤ C log t

uniformly for σ ≥ 1, t ≥ 2. Hence the product above is

� (σ − 1)−1/π(log t)A

where

A =
∑
k 6=0

|ĝ(k)| = 1
2

+
2
π

∞∑
k=1

1
4k2 − 1

=
1
2

+
1
π
< 1.

Thus we have (26), and the proof is complete.
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By Lemma 3 we see that M0(α) � α−1/π for 0 < α ≤ 1. Thus Theorem 5
follows from Theorem 1.

REFERENCES
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