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MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

H. L. MoNTGOMERY! (Michigan) AND R. C. VAUGHAN? (Pennsylvania)

Dedicated to Professor Andrds Sdrkézy on the occasion of his 60th birthday

Abstract

Let f(n) be a totally multiplicative function such that |f(n)| < 1 for all n,
and let F(s) = Zzozl f(n)n™° be the associated Dirichlet series. A variant of

Haldsz’s method is developed, by means of which estimates for 25:1 f(n)/n are
obtained in terms of the size of |F(s)| for s near 1 with ®s > 1. The result obtained
has a number of consequences, particularly concerning the zeros of the partial sum

Un(s) = Zgil n~ % of the series for the Riemann zeta function.

1. Introduction

Let f(n) be a multiplicative function such that | f(n)| < 1 for all n. Then the
associated Dirichlet series

(1) F(s)=Y_ f(nn~

is absolutely convergent for o > 1. (We write s = o+it.) In 1968, Haldsz [1] showed
that if for every T' > 0, F(s) = o(1/(c — 1)) as 0 — 17, uniformly for [t| < T, then
So(x) = >,<, f(n) = o(xz). One may note that Haldsz’s theorem, together with
the information that ¢(1 + it) # 0, yields the estimate Y. _ u(n) = o(x), which
is equivalent to the Prime Number Theorem. Later, Halasz TQ] established a sharp
quantitative form of his theorem. After further refinements of Montgomery [5] and
Tenenbaum [8], this takes the following form.

THEOREM 1. Suppose that f(n) is a multiplicative function such that
[f(n)] < 1 for all n, and let F(s) and So(x) be defined as above. For o > 0
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put
00 . 1/2
F(o+it)?
My (a) = ‘7‘ .
o(@) ( Z \tfrlrcﬁag}i/z o+ it )
k=—o0 1+a<o<2
Then for x > 3,
1
2) Solx) < 102 . / Mo(a)a~" do.

1/logx

Since |F(2)] < 1 it follows that My(c) > 1 and hence in the most favorable
circumstance Theorem 1 gives the estimate

log1
S()(.L“) < M
logz

To see that this is sharp, take f(n) to be the totally multiplicative function deter-
mined by the equations

e(¢p) when /z <p <z,
i otherwise,

f(p)={

where the ¢, are at our disposal. Then by comparing F'(s) with exp(ilog((s)) it
follows that |So(u)| > u/logu when 2 < u < /z, and that Mp(«) < 1. Moreover,

So@) = S fm+ Y f@)Se(/p),

n<w Va<p<w
pln=p<z

so that by choosing the ¢, appropriately we have

. Z Z x xloglogx
5ol _' f Sofa/ml> 3 plog(Zefp) ~  loga
| nj;z Vr<p<z Ve<p<z
pln <z

Thus in particular we see that the integral in (2) cannot be replaced by My(1/logx).
In this paper we consider similar estimates for the partial sum
f(n)
S = =
1(z) ng; "

in terms of the quantity

o0

F(o +1it) 2\"/?
M) = Flo+it
(@) ( 2. —hi2 o — 1+t )

k=—o0 1+a<o<2

for oo > 0.



MEAN VALUES OF MULTIPLICATIVE FUNCTIONS 201

THEOREM 2. Suppose that x > 3, that f(n) is a totally multiplicative function
such that | f(n)| <1 for alln, and that S1(z) and M;(a) are defined as above. Then

1

(3) Si(x) < log 7

/1 M (a)a™ ! da.

1/logx

In Theorem 1 the upper bound obtained is smaller than the trivial bound
So(x) < x by at best (loglogz)/logz, but for S; we are more successful. The
trivial upper bound is S;(z) < logz, and in the most favorable circumstances
we obtain an upper bound that is smaller than this by a factor (log z)~2loglog z.
Because (3) is comparatively farther from the trivial, its proof is more delicate. The
hypothesis that f is totally multiplicative could be relaxed to requiring merely that
f be multiplicative, but then the proof would become even more complicated. The
restriction to totally multiplicative functions is not a hindrance below, since our
intended applications pertain to totally multiplicative functions.

It is well-known that the hypothesis that F(o) = o(1/(c—1)) as ¢ — 1T does
not imply that Sp(x) = o(z), even when f(n) is a totally multiplicative unimodular
function. (For example, if f(n) = n’ then F(s) = ((s — i), |F(c)| is uniformly
bounded for o > 1, but So(x) ~ 2'*%/(1+14).) In contrast, by elementary reasoning
we may estimate M;j(«) in terms of |F(o)|, and hence Theorem 2 provides an
estimate of S; in terms of |F'(o)].

THEOREM 3. Suppose that x > 3, and that 1 + —— < o < 2. If f(n) is a

log x
totally multiplicative function such that |f(n)| <1 for all n, then
(4) Si(z) < |F(0)|(0 —1)((e — 1)~ +logz).

It is instructive to compare this with the Hardy—Littlewood Tauberian the-
orem, which (in one form) asserts that if f(n) < 1 and F(o) = o(1/(c — 1)) as
o — 17, then S;(z) = o(logz) as * — oo. The same conclusion is seen in (4),
under more stringent hypotheses. The advantage of Theorem 3 is that it is quan-
titatively more precise. For example, a quantitative form of the Hardy—Littlewood
Tauberian theorem (see Ingham [4]) asserts that if f(n) < 1 and F(o) < 1 then
S1(z) < (logx)/loglogx. This is only slightly better than the trivial bound, but it
is best possible (take f(n) = cos ((loglogn)?)). By comparison, in the more restrict-
ed situation of Theorem 3 we have the much better bound S;(z) < (logz)'~™/4.
Seen in this light, Theorems 1-3 are quantitative Tauberian theorems whose hy-
potheses are of an arithmetic nature.

By taking 0 =14 1/loga in Theorem 3, we see in particular that
(5) Si(z) < |F(1+1/logz)|(log z)/™1.

This estimate is sharp, as may be seen by letting f be the totally multiplicative
function for which f(p) = b(5= logp) where b(u) has period 1 and b(u) = ie"™ for
0 <u < 1. In this case,

Si(z) ~ oot (log :10)2/”_1



202 H. L. MONTGOMERY AND R. C. VAUGHAN

as r — oo, and
F(o) ~ ea(o —1)¥"

as ¢ — 17. It may be further shown that
F(o+1i) ~ecs(oc—1)72/™

as 0 — 11, and that M;(a) ~ o~2/7 in this situation. Here the ¢j are non-zero
complex constants.

The estimates (4) and (5) do not hold if f is merely assumed to be multiplica-
tive instead of totally multiplicative. To see this, suppose that f is the multiplicative
function defined by the relations

f(2k) = _]-7
fe5 =" (0>2)
for k > 0. Then |F(c)| < (o0 — 1), so the right hand side of (5) is =< (logz)*/™2 =
o(1), while in actuality S;(z) ~ cx® as x — oo, with ¢ # 0.
Let

(6) Un(s) = ans.

Turdn [10] proved that Un(s) # 0 in the half-plane ¢ > 1+ 2(loglog N')/log N, for
all large N. By introducing the estimate of Theorem 3 into Turdn’s argument, we
obtain the following stronger result.

THEOREM 4. Suppose that Un(s) is given by (6). There is a constant No
such that if N > Ny, then Un(s) # 0 whenever

4 loglog N
> 14 (= - 1)
=1+ T log N
In the opposite direction, Montgomery [6] has shown that for each ¢ < 4/m—1
there is an Ny(c) such that if N > Np(c) then Uy(s) has zeros in the half-plane
o> 1+ c(loglogN)/log N.
As an application of Theorem 1, we consider the behaviour of

@)= Y ulm).

m|n
m<x

THEOREM 5. In the above notation,
T(z,n) < x(logz) 1+~
uniformly for x > 2, n > 1.
It is not hard to see that max, |T'(z,n)| = Q(z(logz)~**!/™), but Hall and

Tenenbaum [3] have shown more, namely that max, |T(z,n)| > z(logz)~'+1/7.
Thus the upper bound above is sharp for all x.
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2. Proof of Theorem 2

We first note that M;(«) > 1 uniformly for 0 < o < 1, since
13\-!
2)|ZH<1+E> > 0.
P

From this we see that we may assume that x > xg, since the implicit constant may
be adjusted to deal with the range 3 < x < zo. If we multiply both sides of (3) by
log x then the right hand side is an increasing function of . Also, |S;(z)|logz is
increasing in each interval [n,n + 1). Thus if the equation |S(z)|logz = V has a
root then it has a least root. Hence it suffices to prove (3) when z is a member of
the set

S={z>x0:20 <y<z=|Sy)llogy < |S(x)|logz}.

Multiply both sides of the identity

(logn)logz/n n (log z/n)?

logz =logn +
log log

by f(n)/n and sum over n < x to obtain the relation

Si(z)logx = Zf logn —|— Zf (logn)logz/n

n<lx n<x
10 Z f(n 1og z/n)?
g1;n<:zc
(7) ::11 +’Té4—1%,

say. (This is equivalent to integrating the inverse Mellin transform by parts twice.)
Our first step is to show that if z € G then

) Ti(o) < [ I8)] % + |S(0) logloga.

We write logn = 3=, A(d), and invert the order of summation. Since f is totally
multiplicative, we find that

-y f7 v T
d<z m<z/d
Since |f(d)| <1 for all d, it follows that
A(d
©) 1) < 3 M
d<z
We take h = x/logz, and observe that if x — h < v < z, then trivially

Ty(x) - Ti(v) = Y f(n)%

v<n<lx

< hz'log,



204 H. L. MONTGOMERY AND R. C. VAUGHAN
so that

x
Ty (z) < hx 'logz + % / [T (v)] dv.

z—h

By (9) this is

<<1+1/Z(T (v/d)| dv.

d<v

=
8

Since S(u) =1 for 1 < w < 2, it follows that the sum over /2 <d <z —his > 1
and hence the second term above is > 1. Thus the above is

hz / 1Sy (v/d)| dv

d<zx

<<hZA /|s1 ) du

d<z

(10) <L = /|51 (

y oz
Write this integral as [+ [ where y = x/(logz)?. Suppose first that 1 < u < y.
1 Y

A(d)) du.

z— ’L<d<i
Su

Then
> w3 ) (G (550)
%<d§% k<2logx

Here the last factor counts the number of primes in an interval J = J(x, h, u, k).
This interval is contained in an interval 3’ of length < h/(ku). By applying the
Brun-Titchmarsh inequality to J’ we see that the number of primes in question is
< h/(kulog(4h/(ku))). Hence the above is

h
< Z ( )m < h/u

k<2logz

Hence
Y Y d

(11) /<< h/|Sl(u)|—u.
1 1

To treat the remaining range we appeal to our assumption that © € &. Since
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logu =< log x in this range, it follows that S;(u) < |S1(x)|. On the other hand,

/ Z A(d)du<<ZA /du<<h > A(d)/d < hloglogz,

d<z/y d<(logx)?

and hence
x

/<< h|S1(x)| loglog .
y
On inserting this and (11) in (10), we obtain (8).
Next we show that

xT
du 2
(12) /|sl<u)|1ogu; <M () v

By the Cauchy—Schwarz inequality the integral here is

1/2
< (log x) 1/2</|51 %(logu)? ;) ,

so it suffices to show that

oo

(13) / 1S1 ()05 u)* e < 0~ M (0

€

On writing

u)logu = Z @bgn—i— Z @bgu/n,

n<u n<u

we see that this integral is

< [ 2w d/

n<u
By Plancherel’s identity this is

F'(1
(14) <</' + a +it)
a+ it

Z fsln log /n

n<u

1+2a

dt.

/ 1—|—a—|—zt
+zt

To treat the first of these integrals we break the range of integration into intervals
of length 1 and write F/ = F - F//F. Thus the integral is

k+1/2

F(l4+a+it))? o 2
_ —(1 t‘ dt
<<Zk:<|tr£a<}i/2’ a+ it ’) / ’F( +oti)

k—1/2
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k+1/2
r 2
< M (a)? sup / ‘F(l +a —l—z't)’ dt.
i k—1/2
Thus it suffices to show that
T+1/2
F’ INE 1
/ ‘F(l—ka—kzt)’ dt < o
T—1/2

uniformly for 0 < o < 1. To this end we recall that if |a,| < b, for all n then

T+U 9 U
(15) / dt < 3 /
T—-U U

This is a refined form of an inequality used by Hal4sz [1], [2]. For a simple proof
see Montgomery [7, pp. 131-132]. Since

- Z f(R)A(n)n=77%,

—it —it
nTl

2
dt.

it follows by (15) that
T+1/2 1/2 1/2
E’ 2 / 2
/ )F(l—ka—kit)‘ dt <3 / Z(1+a+it)) dt < / loo 4 it| 2 dt < ot

T-1/2 —1/2 —1/2

and hence that

(16) dt < a M (a)?.

/ F'( 1—|—a+zt
oz—l—zt

The second integral in (14) is

k+1/2

Pl it) 12
(1) <> ( max ‘M‘ / o+ it "2 dt < o~ M, (a)?.
— \ le—ki<1/2

o+t
k—1/2

On combining these estimates we obtain (13), and with it (12).

Let J(z) denote the left hand side of (12). By integrating by parts we see

that
J@) , [ I
/'S w logac +/u(10gu)2 du

€

By (12) this is
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1/logx

But M, («) is decreasing, so the above is

< / M (a)a™! da.
1/logx

On combining this with (8), we find that

/1 M (2a)a

! da.

(18) Ti(z) < / M, (a)a™ ! da + |Si ()| loglog .

We now treat T5, as defined in (7). Clearly

a+100

1 F’ 1
Tylogx = — / Mxs ds
2mi §2

a—100

for any a > 0. For 1/logzx < a < 2/logz this is

F'(1
<</| +a+lt)|dt.
a + it]?

By the Cauchy—Schwarz inequality this integral is
o / F'(14 a+it)
< (et ] [P
a4+t

Ml(Oé)
alogx

Thus by (16) we see that
<K

uniformly for 1/logz < a < 2/logx, and hence

2/logx

(19) Ty < / M, (a)a™ da.

1/logx

We treat T3 similarly. For a > 0 we have
a+100

F( 1)
T3log33— / S+ z®ds

a—100

1/2
‘ dt) .

207
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If 1/logx < o < 2/log x then this is

F(1
< /I +0¢+zt)|dt
|+ it|3

By the Cauchy—Schwarz inequality this is

1/2
(1
( / ‘ + o - it) ‘ dt) .
(o +it)?
This integral is the second integral in (14), which is majorized in (17). Thus

M1 (Oé)
alogx

T <«

uniformly for 1/logz < o < 2/logx, and hence
2/log x
T3 < / M (a)a™t da.
1/log

On combining (18), (19), and the above in (7), we find that

Si(z)logx < / M (a)a™ " da + |Si ()| log log .
1/logx

But loglogz = o(log z), so the last term on the right is small compared with the
left hand side for © > x9. Thus we have (3), and the proof is complete.

3. Proof of Theorem 3
We first establish two lemmas.

LEMMA 1. Suppose that f(n) is a totally multiplicative function such that
|f(n)| <1 for all n, and for o > 1 let F(s) be defined as in (1). If 1 < o1 <09 <2
then

o1 — 1 09 — 1

0'2—1

<<’F )<<Ul_1.

ProOF. The quotient in question is

o (R 0270,
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Since |f(p)| < 1, this is
—o —0 C(Jl) g — 1
< T — 2= —.
= (Zp P ) o2) "o —1

The lower bound is proved similarly.

X

LEMMA 2. Let f(n) and F(s) be as in the preceding lemma. If1 < o <2 and
[t] < 2 then
F(o +it)
F(o)
If1 <o <2 and|t| > 2 then

|t| 4/
< (1 T —) .
o—1

F(o +1it) < (log |t|)4/7f.

F(o) o—1
ProOOF. We may suppose that ¢t > 0. Since
Fo A f(n) ¢ 1
FO=- LT < @<y

it follows that |F'(o +it)| < |F(o)] when 0 <t <o —1. As for ¢t > o — 1, we note
that the quotient in question has modulus

= exp (%Z %(p_it — 1))

(20) < exp (22%|sin(%logp)|).

p

Suppose that o — 1 <t < 2. Since |sinz| < z, the sum over p < e'/* is

lo
<t S B«
p<el/t

Since |sinz| < 1, the sum over p > el/(e=1) ig
< Y pU<l
p>el/(e—1)
The remaining sum is
}sin (i 10gp)|
@ <y LnGlen)]
el/t<p<el/(0—1) p

Put
y

L(?J):Z%, I(y)=/|sinu|du.

p<y 0



210 H. L. MONTGOMERY AND R. C. VAUGHAN

Thus 9
L(y) =loglogy + ¢+ O((log2y)~%),  I(y) = —y+0(1).

It follows by partial summation that the sum (21) is

2 t

—log +0(1)

T o—1

when o — 1 <t < 2. This gives the stated result in this case.
Now suppose that ¢t > 2. We write

oo

(22) |sin7d| = Z cre(k0)

k=—o0

where ¢, = 27 1(1 — 4k%)~. The quantity (20) is

_ = Aln) |t B N A i
= exp <22 e 1Ogn|sm(2 1ogn)|> = exp (2 Z ck; lognn

n=1 k=—o0

o0

= I Icto— ikny>.

k=—o0

The term k = 0 contributes an amount < (o —1)~%™. We let C be a constant such
that

it)| >
Ko +i0)] >

uniformly for 0 > 1, ¢ > 2. The existence of such a C' is assured, for example, by
(3.11.18) of Titchmarsh [9]. Since ¢ < 0 when k # 0, the product above is
(oo}
<L (o —1)"4" H(Clog mhkt) 4k,
k=1

Moreover log Tkt < (log 7k)(logt) and Y ;- | |cx|loglog k < oo, so the above is

< (0 — 1)~ (logt)* 2nmr .
By evaluating (22) at # = 0 we see that >~ | ¢ = —1/7. Thus the proof of Lemma
2 is complete.

We now use the lemmas to show that if 0 < o < 8 <1, || < 1/2, then
F(1+p+it)
B+t
We also show that if k is a non-zero integer, 0 < o < <1, |t — k| < 1/2, then

(24) F(1+ B+ it) < |F(o)](log 2/k|)*'™ (orl(a — )T o (g - 1)*1).

(23) < |F(0)] (072(0 D dalo— DY LY - 1)*1).

From these estimates it follows immediately that

Mi(a) < |F(o)| (on(o ) ta o - D)IYT LT (g 1)*1),
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and then Theorem 3 follows by applying Theorem 2.
We prove (23) first. Suppose that 0 — 1 < §. By Lemma 2 we see that

F(1 . 1+ 1t] 4/
% <|F(1 +ﬁ)|% = |[F(1+ B)|8~4 (5 + |t/

< |F(1+B)[3~4"
since |t] < 1/2. As 0 — 1 < 3, by Lemma 1 this is
p
<|F(o)l——
since § > «. This gives (23) in this case. Suppose alternatively that § < o — 1.
Then by Lemma 1,
F1l+p8+1w) |F(o+it) o—1 _[|F(o+it) o-1
B+ it B+it] B la+it| a
since 8 > «. By Lemma 2 this is

s < |F(o)la! (0~ 1)

oc—1
| + it]a
If [t| < 8 — 1 then the product of the last two factors is < (0 — 1)a~2, while if
o —1 < |t| < 1/2 then the product of the last two factors is < (o — 1)'=4/7a 1.
Thus we have (23) in all cases.
We now derive (24). If 0 — 1 < 3, then by Lemma 2

10g2|k|)4/7r
5 .

< IF@)|(1+ U'i' 1)4/”

F(1+p+it) < |F(1+6)I(

By Lemma 1 this is

B (log2|k|
< IF@)l- =5 (25
since 3 > «. This gives (24) in this case. Alternatively, suppose that 8 < o — 1.
Then by Lemma 1 we see that

4/m
) < IF(@)(0g 20k "0l (o — 1)

—1 —1
F(1+ B+it) < |F(o+it)| - UT < |F(J+it)|-JT

since 8 > «. By Lemma 2 this is
< |F(0)|(log 2|k)* ™o~ (o — 1)1=4/,

Thus we have (24) in all cases, and the proof is complete.

4. Proof of Theorem 4

We adopt the notation of Theorem 3. By integrating by parts we see that

n>N

S T = —S{(N)N'7 4 (o — 1) / Sy (w)u=" du
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for 0 > 1. By (3) it follows that the above is
< |F(0)|(0 — 1) ((0 — 1)~ 4+ log N)NH

when 1 + < o < 2. Since

Un(s) = ¢(s) = S,

n>N

_1
log N

by taking f(n) = n~" we deduce that

Un(s) = C(S)(l +0O((loglog N)174/7r)>

uniformly for

4 loglog N
> 14 (- 1)
o=l m log N

Since ((s) # 0 in this half-plane, it follows that Un(s) # 0, and the proof is
complete.

5. Proof of Theorem 5

We apply Theorem 1 with f(m) = p(m) when m|n, f(m) = 0 otherwise.
Then

F(s) =10 -p)

pln

and we require an estimate for this that is uniform in n.

LEMMA 3. Suppose that 1 < o < 2. If |t| <2 then

» 8 \Um
(25) E(l—p‘)«l—k(%) .
If |t| > 2 then
(26) H (1-p~%) < (0 —1)"Y"logt].
pln

Proor. Put G(s) = [[,, (1 —l—p_s)_l. Since |F(s)| < |G(s)| uniformly
for ¢ > 1, it suffices to estimate |G(s)|. We may suppose that ¢ > 0. Clearly
0 < G(o) < 1. Since

G logp ¢! 1
() = pZ;psH <) <3
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it follows that G(s) < 1if 0 <t < o — 1. Now suppose that t > o — 1. We observe
that

(27) |G(s)| < exp( Zp cos(tlogp)) < exp (Zp g —tlogp))
pln

where g(z) = — min(0, cos 27rx). Suppose that 0 —1 < ¢t < 2, and put X = exp(1/t),
Y =exp(1/(c—1)). We observe that 3 _, p~? <1, and that 3 (p'-p7)<1.
Hence )

(28) G(s <<eXp( > o g—tlogp))
X<p<Y
Put y
Z— 1) = [ gtu)du.
Thus
L(y) = loglogy + ¢+ O((log2y) ™), I(y) = —y+O(1).

It follows by partial summation that the sum in (28) is

1 t
=1 o
—log——+ (1)

when o — 1 <t < 2. Thus we have (25).

Now suppose that ¢t > 2. We write g(x) = ), g(k)e(kx), and note that
g(£1) = —1/4, §(2k) = 7~ H(—1)*1(4k> —1)~', and that g(k) = 0 otherwise. The
expression (27) is

o~ _Am) 1 i
xexp(Z n"l(?gng(%tbgn» :exp< Z Z logn +kt>

n=1 k=—o0

o0

=TI Icto —ikt)®.

k=—o0

The term k = 0 contributes an amount < (¢ — 1)~*/". From (3.5.1) and (3.11.18)
of Titchmarsh [9] we know that there is a constant C' such that

1
Clogt —

uniformly for ¢ > 1, ¢t > 2. Hence the product above is

< (0 —1)"Y"(logt)A

< |¢(o +1it)] < Clogt

where
o0

1 2 1 1 1
A= Il =5+ 2 gEer TR <t

Thus we have (26), and the proof is complete.
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By Lemma 3 we see that My(a) < a~'/™ for 0 < a < 1. Thus Theorem 5

follows from Theorem 1.

(1]
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