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ABSTRACT. We announce several theorems on the evolution of relative
equilibria classes in the planar n-body problem. In an earlier paper
[1] we announced a partial classification of relative equilibria of
four equal masses. In [2] we described these new relative equilibria
classes and showed the way in which a degeneracy arose in the four
body problem. These results point the way toward classifying relative
equilibria foxr any n > 4,

1. DEGENERATE RELATIVE EQUILIBRIA CLASSES

For any n 2 4 and for any choice of positive masses m = (m;, ..,, mn)
€ R} we study the degenerate critical points of a real analytic
function v, < O which is defined on a real analytic manifold Xy

[1, 2, 3]. Each such critical point corresponds to a degenerate re-
lative equilibria class.

Let £, C R} be the set of all m such that Gm has a degener-
ate critical point.

We show in Theorem 1 the existence of degenerate relative
equilibria classes of V, for some m € RE and for any n 2 4. In Theorem
2 we state a sharpened result on the nature of I, for n z 4. In Theo-
rem 3 places an upper bound on values of k for which I, has positive
k-dimensional (Hausdorff) measure.

Finally, in light of Theorem 1 in the case of n = 4 masses
m= (1, 1, 1, m;) we count classes of relative equilibria.
2. MAIN THEOREMS

In the plane E? we place n - 1l unit masses at the vertices of a re-
gular pelygon of n - 1 sides with center at the origin. We place at
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the origin an arbitrary positive mass m,. Tt follows from the defi-
nition of relative equilibrium for all values of m, > O that this
configuration is a relative equilibrium of n masses.

Let E2 be identified with C so that we write the configura-

tion above as (x}, ..., x,) & C", where x, = 0 and for each i,

1 £ign-1, x4 = wi- 1, where w # 1 is the first primitive n-1 root
of unity. Let x € X, be the relative equilibria class which contains

this configuration for any given m = (1, ..., 1, mp). In the theorem

below v € TxXy is the tangent vector which corresponds to
(Vvi, «.., vn) € CB, where v, = 0 and for each i, 1 ¢ i < n -1,

THEOREM 1. Let x € X be a relative equilibria class as defined above
for any n 2 " 4. Then x € X, is a degenerate critical point of V

and only if m = (1, ..., 1, m, *) where
. A(B-(n-1)2)
m = ’
n 6(n-1)3-3(n-1) (A+B)
where A = D2V, (x) (v, v) and B = V.« (x) form' = (1, ..., 1, 0).
COROLLARY 1.1. For m = (1, ..., 1, mp) and my < m} the index of x

(i.e. the index “of DZV (x)) equals 2n - "4 and x is a nondegenerate
local maximum of Vy. For my > m¥ the index of x equals 2n - 6 and x
is a nondegenerate saddle. When m, = m{ the rank of x (= index of x)
equals 2n - 6.
Let Ip, i & Ip denote the set of masses m € Ip such that ﬁm

has a degenerate critical point with rank which does not exceed
2n - 4 - i, 1 2 1. In particular Ip =Iy, 1 2 2ZIpn, 2 2 ... 2 In, n-2
holds and by [1, Theorem 2] IZn, n-1 = # holds for any n 2z 4.

By Theorem 1 we have shown that Zn, 2 # @ and conseqguently,
n # @ for any n 2 4. We sharpen this result to include Ln, i for any
1 £1ign- 2.

i,

THEOREM 2. Ip, i — Zn, i+1 # @ for any i, 1
for any i > n~-2 and for any n 2 4.

"

i gn-2, and Ip, i =0

Finally, we state a result on the k-dimensional (Hausdorff)
measure of I, [4, Theorem 3].

Let A be a subset of R"™. We say that A has k-dimensional
measure 0 provided that for each € > 0 there is a cover of A by a
sequence of sets {A;} such that

oo k
L (diam Ai) < g.
i=1
If A has k-dimensional measure 0, then A has r—-dimensional measure 0
for all r, k £ r £ n. If A is a closed subset of R, we say that A

has positive k-dimensional (Hausdorff) measure provided that A fails
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to have k-dimensional measure O.

THEOREM 3. X, has positive k-dimensional (Hausdorff) measure for any
k, 0 £k £n -1 and for any n 2 4.

3. CLASSIFYING RELATIVE EQUILIBRIA

Let m = (1, 1, 1, my,) be chosen with my > 0. We now count the number
of relative equilibria clasges in the case of n = 4 masses.

THEOREM 4. For m = (1, 1, 1, my) and for any my < mz there are 38
classes of relative equilibria. Their distribution is 8 maxima of
index 4, 18 saddles of index 3 and 12 saddles (the Moulton classes)
of index 2.

*
COROLLARY 4.1. For m= (1, 1, 1, my) and for any my < my,, Vp is a
Morse function.

COROLLARY 4.2. Whenm = (1, 1, 1, m:), Vi has 32 critical points.
There are 6 maxima (index 4), 12 saddles (index 3), 12 saddles (index

2) and 2 degenerate saddles of type (0, 2, 0).
Remark. The classification given by Corollary 4.2 cor-
responds to the minimal classification of [3, Theorem 4].

For my, > mﬁ new classes of re%ative equilibria exist in
addition to those 38 classes for m, < my. Compare [1, Theorem 5].
In particular there are other degenerate critical points of V, for
a unique m = (1, 1, 1, mx), where mj < mt < 1.

By analyzing this second degeneracy we are able to account
by evolution for the existence of precisely 146 classes of relative
equilibria in the case of n = 4 equal masses.
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