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ABSTRACT. We announce several theorems on the evolution of relative 

equilibria classes in the planar n-body problem. In an earlier paper 

[i] we announced a partial classification of relative equilibria of 

four equal masses. In [2] we described these new relative equilibria 

classes and showed the way in which a degeneracy arose in the four 

body problem. These results point the way toward classifying relative 

equilibria for any n > 4. 

i. DEGENERATE RELATIVE EQUILIBRIA CLASSES 

For any n ~ 4 and for any choice of positive masses m = (ml, ..,, mn) 

s R~ we study the degenerate critical points of a real analytic 

function V m < 0 which is defined Qn a real analytic manifold X m 

[i, 2, 3]. Each such critical point corresponds to a degenerate re- 

lative equilibria class. 

Let E n C R~ be the set of all m such that Vm has a degener- 

ate critical point. 

We show in Theorem i the existence of degenerate relative 

equilibria classes of V m for some m s R~ and for any n ~ 4. In Theorem 

2 we state a sharpened result on the nature of En for n ~ 4. In Theo- 

rem 3 places an upper bound on values of k for which En has positive 
k-dimensional (Hausdorff) measure. 

Finally, in light of Theorem i in the case of n = 4 masses 

m = (i, i, I, m 4) we count classes of relative equilibria. 

2. MAIN THEOREMS 

In the plane E 2 we place n - i unit masses at the vertices of a re- 

gular polygon of n - i sides with center at the origin. We place at 
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the origin an arbitrary positive mass mn. It follows from the defi- 
nition of relative equilibrium for all values of m, > 0 that this 
configuration is a relative equilibrium of n masses. 

Let E2 be identified with C so that we write the configura- 
tion above as (xl, . . . . xn) E Cn, where xn = 0 and for each i, 
1 g i $ n - 1, Xi = Ui-l, where w # 1 is the first primitive n-l root 
of unity. Let x E Xm be the relative equilibria class which contains 
this configuration for any given m = (1, . . . . 1, m,). In the theorem 
below v E T,X, is the tangent vector which corresponds to 
(~1, . . . . vn) E Cn, where vn = 0 and for each i, 1 2 i 6 n - 1, 
Vi = w2(i-1). 

THEOREM 1. Let x e X, be a relative equilibria class as defined above 
for any n 2 4. Then x & xm is a degenerate critical point of vrn if 
and only if m = (1, . . - I 1, mn*) where 

m* = 6(n-1)3-3(n-1) (A+B) ' n 

where A = D2cm,(x)(v, v) and B = v,,(x) foTm' = (1, . . . . 1, 0). 

COROLLARY 1.1. For m = (1, . . . . 1, m,) and mn < rng the index of x 
(i.e. the index of D2vm(x)) equals 2n - 4 and x is a nondegenerate 
local maximum of 9,. For mn > rng the index of x equals 2n - 6 and x 
is a nondegenerate saddle. When mn = rn: the rank of x (= index of x) 
equals 2n - 6. 

Let C,, i C C, denote the set of masses m E C, such that cm 
has a degenerate critical point with rank which does not exceed 
2n - 4 - i, i 2 1. In particular Cn =Cn, 1 1 Cn, 2 1 . . . 2 Cn, n-2 
holds and by [1, Theorem 21 Cn, n-1 = fl holds for any n 2 4. 

By Theorem 1 we have shown that C,, 2 # @ and consequently, 
C, # ei for any n 2 4. We sharpen this result to include C,, i for any 
i,l&.i&n-2. 

THEOREM 2. Cn, i - Cn, i+l # fl for any i, 1 s i A n-2, and Cn, i = @ 
for any i > n-2 and for any n 2 4. 

Finally, we state a result on the k-dimensional (Hausdorff) 
measure of C, [4, Theorem 31. 

Let A be a subset of Rn. We say that A has k-dimensional 
measure 0 provided that for each E > 0 there is a cover of A by a 
sequence of sets {Ai} such that 

CM (diam Ai)k < E. 
i=l 

If A has k-dimensional measure 0, then A has r-dimensional measure 0 
for all r, k $ r s n. If A is a closed subset of Rn, we say that A 
has positive k-dimensional (Hausdorff) measure provided that A fails 
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to have k-dimensional measure 0. 

THEOREM 3. En has positive k-dimensional (Hausdorff) measure for any 

k, 0 ~ k < n - 1 and for any n > 4. 

3. CLASSIFYING RELATIVE EQUILIBRIA 

Let m = (i, I, I, m 4) be chosen with m 4 > 0. We now count the number 

of relative equilibria classes in the case of n : 4 masses. 

THEOREM 4. For m = (i, i, i, m 4) and for any m 4 < m 4 there are 38 

classes of relative equilibria. Their distribution is 8 maxima of 

index 4, 18 saddles of index 3 and 12 saddles (the Moulton classes) 

of index 2. 

COROLLARY 4.1. For m: (i, i, i, m4) and for any m 4 < m4, V m is a 
Morse function. 

COROLLARY 4.2. When m = (i, i, i, m4), V m has 32 critical points. 

There are 6 maxima (index 4), 12 saddles (index 3), 12 saddles (index 

2) and 2 degenerate saddles of type (0, 2, 0). 

Remark. The classification given by Corollary 4.2 cor- 

responds to the minimal classification of [3, Theorem 4]. 

For m 4 > m 4 new classes of relative equilibria exist in 

addition to those 38 classes for m 4 < m 4. Compare [i, Theorem 5]. 

In particular there are other degenerate critical points of V m for 

a unique m : (i, i, i, m~), where m~ < m~ < i. 

By analyzing this second degeneracy we are abl4 to account 

by evolution for the existence of precisely 146 classes of relative 

equilibria in the case of n = 4 equal masses. 
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