CLASSIFYING RELATIVE EQUILIBRIA. III

JULIAN I. PALMORE* Dept. of Mathematics, University of Michigan, Ann Arbon, Mich. 48104, U.S.A.

ABSTRACT. We announce several theorems on the evolution of relative equilibria classes in the planar n-body problem. In an earlier paper [1] we announced a partial classification of relative equilibria of four equal masses. In [2] we described these new relative equilibria classes and showed the way in which a degeneracy arose in the four body problem. These results point the way toward classifying relative equilibria for any n > 4.

1. DEGENERATE RELATIVE EQUILIBRIA CLASSES

For any $n \ge 4$ and for any choice of positive masses $m = (m_1, \ldots, m_n) \epsilon R_+^n$ we study the degenerate critical points of a real analytic function $\tilde{V}_m < 0$ which is defined on a real analytic manifold X_m [1, 2, 3]. Each such critical point corresponds to a degenerate relative equilibria class.

Let $\Sigma_n \subseteq R^n_{\mp}$ be the set of all m such that \tilde{V}_m has a degenerate critical point.

We show in Theorem 1 the existence of degenerate relative equilibria classes of \tilde{V}_m for some m $\epsilon \ R^n_+$ and for any $n \geq 4$. In Theorem 2 we state a sharpened result on the nature of Σ_n for $n \geq 4$. In Theorem 3 places an upper bound on values of k for which Σ_n has positive k-dimensional (Hausdorff) measure.

Finally, in light of Theorem 1 in the case of n = 4 masses $m = (1, 1, 1, m_4)$ we count classes of relative equilibria.

2. MAIN THEOREMS

In the plane E^2 we place n - 1 unit masses at the vertices of a regular polygon of n - 1 sides with center at the origin. We place at

*Research supported in part by NSF grant MPS-73-03735 A04.

Letters in Mathematical Physics 1 (1975) 71-73. All Rights Reserved. Copyright © 1975 by D. Reidel Publishing Company, Dordrecht-Holland. the origin an arbitrary positive mass m_n . It follows from the definition of relative equilibrium for all values of $m_n > 0$ that this configuration is a relative equilibrium of n masses.

Let E^2 be identified with C so that we write the configuration above as $(x_1,\hdots,x_n)\in C^n,$ where $x_n=0$ and for each i, $1\leq i\leq n-1,\hdots,x_i=\omega^{i-1},$ where $\omega\neq 1$ is the first primitive n-1 root of unity. Let $x\in X_m$ be the relative equilibria class which contains this configuration for any given m = (1, \ldots, 1, m_n). In the theorem below v ϵ T_xX_m is the tangent vector which corresponds to $(v_1,\hdots,v_n)\in C^n,$ where $v_n=0$ and for each i, $1\leq i\leq n-1,\hdots,v_i=\omega^2(i-1).$

THEOREM 1. Let x ε X_m be a relative equilibria class as defined above for any n \geq 4. Then x ε X_m is a degenerate critical point of \tilde{V}_m if and only if m = (1, ..., 1, m_n^{*}) where

$$m_{n}^{*} = \frac{A(B-(n-1)^{2})}{6(n-1)^{3}-3(n-1)(A+B)},$$

where $A = D^{2}\tilde{V}_{m}$, (x) (v, v) and $B = \tilde{V}_{m}$, (x) for $m' = (1, ..., 1, 0)$.

COROLLARY 1.1. For $m = (1, ..., 1, m_n)$ and $m_n < m_n^*$ the index of x (i.e. the index of $D^2 \tilde{V}_m(x)$) equals 2n - 4 and x is a nondegenerate local maximum of \tilde{V}_m . For $m_n > m_n^*$ the index of x equals 2n - 6 and x is a nondegenerate saddle. When $m_n = m_n^*$ the rank of x (= index of x) equals 2n - 6.

Let Σ_n , $i \subseteq \Sigma_n$ denote the set of masses m $\varepsilon \Sigma_n$ such that \tilde{V}_m has a degenerate critical point with rank which does not exceed 2n - 4 - i, $i \ge 1$. In particular $\Sigma_n = \Sigma_n$, $1 \supseteq \Sigma_n$, $2 \supseteq \ldots \supseteq \Sigma_n$, n-2 holds and by [1, Theorem 2] Σ_n , $n-1 = \emptyset$ holds for any $n \ge 4$.

By Theorem 1 we have shown that Σ_n , $2 \neq \emptyset$ and consequently, $\Sigma_n \neq \emptyset$ for any $n \geq 4$. We sharpen this result to include Σ_n , i for any i, $1 \leq i \leq n - 2$.

THEOREM 2. Σ_n , $i = \Sigma_n$, $i+1 \neq \emptyset$ for any $i, 1 \leq i \leq n-2$, and Σ_n , $i = \emptyset$ for any i > n-2 and for any $n \geq 4$.

Finally, we state a result on the k-dimensional (Hausdorff) measure of Σ_n [4, Theorem 3].

Let A be a subset of \mathbb{R}^n . We say that A has k-dimensional measure 0 provided that for each $\varepsilon > 0$ there is a cover of A by a sequence of sets $\{A_i\}$ such that

 Σ^{∞} (diam A_i)^k < ϵ .

If A has k-dimensional measure 0, then A has r-dimensional measure 0 for all r, $k \leq r \leq n$. If A is a closed subset of \mathbb{R}^n , we say that A has positive k-dimensional (Hausdorff) measure provided that A fails

to have k-dimensional measure 0.

THEOREM 3. Σ_n has positive k-dimensional (Hausdorff) measure for any k, $0 \le k \le n - 1$ and for any $n \ge 4$.

3. CLASSIFYING RELATIVE EQUILIBRIA

Let $m = (1, 1, 1, m_4)$ be chosen with $m_4 > 0$. We now count the number of relative equilibria classes in the case of n = 4 masses.

THEOREM 4. For $m = (1, 1, 1, m_4)$ and for any $m_4 < m_4^2$ there are 38 classes of relative equilibria. Their distribution is 8 maxima of index 4, 18 saddles of index 3 and 12 saddles (the Moulton classes) of index 2.

COROLLARY 4.1. For $m = (1, 1, 1, m_4)$ and for any $m_4 < m_4^*$, V_m is a Morse function.

COROLLARY 4.2. When $m = (1, 1, 1, m_4^*)$, \tilde{V}_m has 32 critical points. There are 6 maxima (index 4), 12 saddles (index 3), 12 saddles (index 2) and 2 degenerate saddles of type (0, 2, 0).

Remark. The classification given by Corollary 4.2 corresponds to the minimal classification of [3, Theorem 4].

For $m_4 > m_4^*$ new classes of relative equilibria exist in addition to those 38 classes for $m_4 < m_4^*$. Compare [1, Theorem 5]. In particular there are other degenerate critical points of \tilde{V}_m for a unique $m = (1, 1, 1, m_\mu^+)$, where $m_4^* < m_4^+ < 1$.

By analyzing this second degeneracy we are able to account by evolution for the existence of precisely 146 classes of relative equilibria in the case of n = 4 equal masses.

REFERENCES

- Palmore, J., <u>Bull. Amer. Math. Soc.</u> <u>79</u>, 904 (1973). MR <u>47</u> No 9922.
- 2. Palmore, J., 'Relative Equilibria of the n-Body Problem', Thesis, University of California, Berkeley, Calif., 1973.
- 3. Palmore, J., Bull. Amer. Math. Soc. <u>81</u>, 489 (1975).
- 4. Palmore, J., 'Measure of Degenerate Relative Equilibria. I', preprint, 1975.