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Abstract. A new quantum group is derived from a 'nonstandard' braid group representation by 
employing the Faddeev-Reshetlkhin-Takhtajan constructive method. The classical limit is not a Lie 
superalgebra, despite relations like .,c 2 = )'~ = 0. We classify all finite-dimensional irreducible representa- 
tions of  the new Hopf  algebra and find only one- and two-dimensional ones. 
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I. Introduction 

Recently, the so-called quantum groups [1, 2] have attracted a lot of attention. 
Originally they were invented for a systematic procedure for solving the quantum 
Yang-Baxter equations [3]. During the last two years, hidden quantum group 
structures have been revealed in various physically interesting models and theories, 
such as conformal field theory [4], topological Chern-Simons gauge theory [5], and 
integrable statistical lattice models [6]. 

Mathematically. quantum groups have been characterized by Drinfeld [1] as 
noncommutative and noncocommutative Hopf algebras. However, almost all 
known concrete examples have been restricted to the 'standard' q-deformation of 
usual symmetrizable Kac-Moody Lie algebras or groups, except the generalizations 
to Lie superalgebras or groups. In this Letter, we present the explicit construction 
of some new quantum groups (or noncommutative and noncocommutative Hopf 
algebras), which are associated with certain 'nonstandard' braid group representa- 
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tions (BGR's). By now, it has become well-known that many BGRs can be 
obtained from the universal R-matrix [7, 8] for the standard q-deformation of usual 
Lie algebras; we refer to such BGRs as 'standard' ones. A lot of 'nonstandard' 
BGRs, which cannot be obtained in this way, have been available by the direct 
method in our previous works [9, 10]. There we have asked: What are the quantum 
groups associated with these new 'nonstandard' BGRs? This Letter represents the 
first step in this direction. 

As pointed out by Faddeev, Reshetikhin and Takhtajan [ 12], the usual quantum 
groups (or the standard q-deformation of usual Lie algebras) can be obtained by a 
definite, purely algebraic procedure from appropriate standard BGRs or R- 
matrices, viewing the latter as a sort of structure constants and the braid Yang- 
Baxter relations they satisfy as the generalized Jacobi identities. In this Letter, we 
will apply their procedure to the simplest nonstandard or BGR [9, 10] 

0 0  0 

/~+= 0 1 0 
1 q--q-~ 0 (1.1) 

0 0 _ q - I  

We determine both the Hopf algebra and its dual associated with this BGR. (Some 
previous discussions can be found in [13, 14].) These Hopf algebras are certainly 
beyond the usual ones associated with Lie algebras or superalgebras. Particularly, 
their representation theory does not bear any resemblance to that of usual quantum 
groups, in that the only finite-dimensional irreducible representations are one- and 
two-dimensional ones. A complete classification of two-dimensional irreducible 
representations and their fusion rules will be given below. An interesting question 
is what would be the two-dimensional conformal field theory with this quantum 
group as hidden symmetry (or chiral exchange algebra). 

Another motivation comes from a close relation of the R-matrix of (1.1) with the 
Alexander-Conway polynomial in the knot theory [13, 14]. We expect our new 
quantum group will shed more light on the complete relationship with the Alexan- 
der-Conway polynomial. 

2. Deriving New Quantum Group Xq(2) 

Following [12], we consider the equations 

(L {-+) | L{+))R + = R +(L {+) | L{-+)), (2.1) 

(L C-) | L~+))k + =/~ +(L (+) | L{-)), (2.2) 

with R,,b.,.a given by Equation (1.1). Here, we have adopted the following conven- 
tions (a, b, c, d = 1, 2): 

(A | B),,b.,d = A,,,Bbd, (2.3) 

11.11 = q, R22.22 -~- - - q -  J~lZ,21 = R21.12 = 1, 
(2.4) 

~+ 1, ~+  R21,21 - ~  q --  q -  R ab,c d = 0 otherwise. 
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As in [12], L (+) and L ~-) are respectively taken to be upper- and lower-triangular 

2 x 2 matrices with operator entries 

L~,~ = 0, L~ j )=0 .  (2.5) 

It is easy to check that this is compatible with Equations (2.1) and (2.2). By 
straightforward calculation, it is easily seen that Equations (2.1) and (2.2) lead to 
the following relations. 

[L(• r(-+)l = 0, (2.6) - - a a  , ~ h h  J 

iT , ~ 1 2  - q  ~ l z  " ~ l J  , __ = - q  ~ 1 2  ~ 2 2  , ( 2 . 7 )  

U )r (  ) - . - J r ( - ) r (  ) L~;)L~.7) . - I r ( - ) r ~ - - )  II ~ 2 1  - 7  - ~ 2 J  ~ J l  , . _  = - ~  "~2J " ~ 2 2  , ( 2 . 8 )  

(L(+)) 2 O, ( L ~ ) )  '- O, (2.9) ]_ ~ 

L ( + ) r ~ - ) - . r ~ - ) r ( + )  C+)L~7~- . r ( - ) 1 ( + )  (2.10) II Jt~21 --~/~'21 L"I1 ' L22 _ -- --q,~,_l ,-~,~__ , 

L ] F ) L ] + ) = , r ( + ) r ( - )  L~; )L]  +)= - u ~ ] 2  ~22 , q~12 ~ l J  , __ . r ( + ) r ( - )  ( 2 . 1 1 )  

r (+)  r ( - n = ( q  . - h ~ r , - ) r ( + )  r (+~r (  )~ 
JL' I2  ' L ' 2 1  J - - i t  1~ ,1~22  ~L'I1 - - ~ 2 2  L~I I  I" (2.12) 

It is easy to verify that 

(L(V)r(+hr(+_) _ r,+_),r(  ~r(+h (2.13) 
a h  k . . . .  1~ 

(L]71L~+)~r(• (+ )L~)), ~ ~,,~ = L ~ ) ( L ] 7  (2.14) 

i.e. L~,,+.)I~(~)=_o,, _L~)I  r _,,o (no sum) commute with L ~• So we can choose 

L ~ 7 ) L ~ ) =  r ( + ) r ~ - ) - r ( ~  ~ - ~ , ~  )~ (+ )  = L (~?)L(~)  = ~ , ~  1. (2 .15 )  

Writing 

U+)  = = i , 
" ( q _ q  ])Y ~ -  

then we have the following relations 

X 2 = y2 = 0, (2.17) 

[k, ~] = 0, (2.18) 

k X k - ' = q X ,  ~X~ ' = - q - ~ X ,  (2.19) 

k Y k  l = q - ~ y ,  ~Y~ ~ = - q Y ,  (2.20) 

[ X , Y ] = ( k ~ - k - ' , ~  ' ) / ( q - q  '). (2.21) 

Denote by Xu(2) the algebras generated by the elements 1, k -+~, ~ - +~, X and Y. One 
can introduce a coproduct in Xu(2) by 

A(k+l) = k _ + l |  A(~+l) = ~ + 1 |  

A ( X ) = X |  + ~  ~ |  

A(Y) = Y |  + k - m |  Y. 

(2.22) 

(2.23) 

(2.24) 
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One thus easily verifies, for example, 

[a(S) ,  A( Y)] = A([X, Y]), (a(X))  2 = a ( S  2) = 0. (2.25) 

Furthermore, one can define a counit g and antipode S as follows 

e ( x )  = ~ ( r )  = 0, ~(k) = ~(r = l ,  

S(k) = k - ' ,  S(O = ~ - ' ,  

S ( X ) = - ~ X k  ', S ( Y ) = - k Y ~ - ' .  

(2.26) 

(2.27) 

e is an algebra homomorphism and S an anti-homomorphism. Therefore, the 
algebra Xq(2) becomes a Hopf  algebra. 

The question of  what is the quantum group (or Hopf  algebra) associated with the 
/~-matrix (1.1) has also been studied in [13]; there, a different Hopf  algebra is 
proposed. Here, our Hopf  algebra is derived from the more systematic and 
constructive method given in [12]. In particular, we have relations X2=  y 2 =  0, 
which does not appear in the Hopf  algebra proposed in [13]. As we will see below, 
these relations are necessary for the dual of our Xq(2) algebra to have a coproduct. 
Also, we note that if we remove the relation X e =  y 2 =  0, we still get a Hopf  
algebra. Denote it by Xq(2). A theorem, which is going to be proved in the 
Appendix, tells us that in any nontrivial irreducible representation of  )?q(2) that has 
both highest and lowest weight vectors, one must have X2=  y 2 =  0. 

Although X 2 =  y 2 =  0 looks like fermionic (or Grasssmannian) relations, the 
classical limit of Xq(2) is not a Lie superalgebra. For we have a commutation 
(rather than anti-commutation) relation (2.19-2.20) for X and Y with k, 3. 

3. Dual of Xq(2) 

Now let us determine the dual of the Hopf  algebra X'q(2) obtained in the last 
section. A rigorous way is to view it as a quantized formal series Hopf  algebra [ 1], 
realized as the dual of  Xu(2). 

Consider the fundamental representation Vo of Xq(2) on C 2 given by 

o') :) 
k = ( q o  2 qO_m), r = ( q ; 3 / 2  _qO_,/2)" 

(3.1) 

The matrix elements x,s of V 0, i.e. a( e Xq(2)) ~ (x,j(a)) s End (C2), are complex 
linear functionals on X,(2). The natural product on Xq(2)* is defined via 

(3.2) f " g(a) = ( f |  o (A(a)), 

where f, g e Xu(2 ), a e Xq(2). 
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It is an easy exercise to verify the following relations 

X l l X l 2  ~ q X l 2 X l l  , X l I X 2 1  = q x 2 1 X l l ,  

X22 Xl  2 ~ - -  qxl 2 X22,  X22 X21 ~--- - -  qx21 x 2 2 ,  

Xl2X21 ~ x 2 1 x 1 2  , 

x~tx22 - x22-v~2 = (q - q ~)xux2~. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

One can add 1 into Xq(2)* by 

l(a) = e(a), a ~ Xq(2). (3.7) 

So far, this is good, even for the algebra ){q(2). However, we are only interested in 
the dual Hopf algebra of Xq(2). Denote by )7u(2) the algebra generated by the 
elements 1, x,j, x~ ~, x ~  ~ subject to the relations in Equations (3.3)-(3.6) plus 
x,,x,7~ = x ,  ~x,, = 1. We equip it with a Hopf algebra structure by the induced 
coproduct A: 

2 

A(x,fl = Y, x,t |  (3.8) 
/ = 1  

which has the following property 

(ab)(x)  = (a | b)( A(x)) .  (3.9) 

Having done this, we find out that we have to add more relations to the algebra 
structure of )?q(2). To see this point, we calculate that, for example, 

A(x12x22 ) -k q IA(X22XI2 ) = (1 + q - 2 ) x ~ x j 2  | (xl2) 2. (3.10) 

Thus, to make the Hopf algebra structure )?,(2) work, we are forced to add the 
following relations 

(xl2)  2 = (x~l)  2 = 0. (3.11) 

The relation (3.11) is implicitly connected to the similar relations Xu(2). As 
X2= y 2 =  0 are bounded by the other relations of the algebra in representations, 
the relation (3.11) are restricted by the coproduct and the various relations in the 
algebra structure of )?~(2). The later relations are actually determined by the same 
relations in the algebra Xq(2) that govern the relations X 2 = y2 __ 0 (cf. Appendix). 

The algebra .gu(2) has the antipode 7 induced from that of Xu(2) in the following 
manner. For a e Xu(2) we define 7 by 

?(x,/)(a) = x i , (S (a) )  (3.12) 

and extend 

I' to Y~q(2) by y ( a b ) = 7 ( b ) 7 ( a ) .  (3.13) 
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It is easy to see that*, 

~)( Xll xl2)= ( X~)(l q- qXI2(Xll X22) - IX21 ) 

\X2) X22// --q(XllX22) 1X21 
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q(x22Xll) IX12 
X ~ l ( l  -- qx21(X22Xll)-IXl 2))" 

(3.14) 

Another way of obtaining )?q(2) is to solve the following equations, h la [12], 

R(x | x) = (x | x)R, (3.15) 

where x = ( X u ) ~ w ~  - and /~ = P R  = P R + P .  Here, P is the transposition in 
End(C 2 | C2), i,e. P(u | v) = v | u. 

It is straightforward to check that Equation (3.15) gives the same relations as 
Equations (3.3)-(3.6) and (3.1 I). 

We remark that the same algebra )?u(2) without antipode is obtained in [14] from 
a different context. 

4. Representations of  Xq(2) 

Now we proceed to study the representation theory of the Hopf algebra X~(2) we 
defined in Section 2. The fundamental representation Vo of X~(2) is given by 
Equation (3.1), and the corresponding R-matrix is 

I q 0 0 0 1 0 1 0 0 = k + p "  (4.1) 
R = 0 q - q - )  1 0 

0 0 0 _ q - t  

Let us consider the tensor product Vo | Vo, which is a four-dimensional representa- 
tion of Xq(2) via the coproduct 

Va e Xu(2), it(a) = (rCo| (4.2) 

For example, in V o Q Vo, the generator X is represented by 

x(X) = xo(X) |  + ~Zo(~ l) |  

= (: __lo)(~ (q;/2q 01/2).,[ - (qo 2 0ql/2)(~)(00 __l 0;. (4.3) 

It is easy to see that this four-dimensional representation is reducible and can be 
decomposed into two inequivalent two-dimensional irreducible representations: 

vo|  v ) |  

* We are grateful to Prof. T. A. Springer for helping us on this formula. 
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Suppose {el,e2} is the basis of V0 as C 2, then the bases in Vl and V2 are, 
respectively, given by 

VI: e j | 1 7 4  (4.4) 

V2: e l | 1 7 4 1 7 4  

The matrix representations of the generators are given by 

0 ' q I / .  , 

(0 ~ ( 0 :) 
V2: n z ( X ) =  0 J' 7t2(Y)= _ ( q - l / Z + q 3 , Z )  ' 

0 q-I  " 

The three two-dimensional representations Vo, V 1 , V 2 are inequivalent, since the 
tr k (or tr 4) in them are not the same. If we keep going on by taking the tensor 
product with more V~s, we will get infinitely many two-dimensional irreducible 
representations. 

In general, we have the following theorems in the representation theory of Xu(2): 

THEOREM 1. An irreducible finite-dimensional representation V o f  the Hop f  alge- 
bra Xq (2) is either one- or two-dimensional. Only two-dimensional representations are 

nontrivial. 

Proof  Since X 2 = 0, null(X) = {v e V I Xv = 0} r 0. Note that null(X) is invari- 
ant under the action of both k and 4. Similar statements are true for null(Y). 

Case 1: null(X) n null(Y) :~ 0. 
Pick a vector v~ ~ null (X)c~ null (Y) which is a simultaneous eigenvector of k and 
4 : kt'l = kl UI, 4Vl = 41Z'I" Since {vl } forms a one-dimensional invariant subspace of 
V, by the irreducibility of V we see that V = {Vl }. Namely V is one-dimensional. 
[X, Y]v = 0 implies that (kl41)2 = 1. 

Case 2: null(X) c~ null(Y) = 0. 
Pick a vector vl ~null(X) which is a simultaneous eigenvector of k and 
4 : kVl = k lv l ,  4vl = 4jr1. Consider ul - Yvl,  then 

Xuj =[X,  Y ] v l = ( k 1 4 1 - k l l ~ m - 1 ) v l / ( q - q  1) ~ 0 ,  

otherwise ul ~ null(X) c~null(Y). So k141 #(k1~1) i. Thus, the subspace spanned 
by vl and ul = Yt,~ is invariant under the algebra Xq(2). The irreducibility of V tells 
us that V is just this two-dimensional space spanned by •1 and Y v  1. [] 



200 NAIHUAN JING ET AL. 

From the proof of this theorem, we see that all one-dimensional representations 
have the form 

= (k,r  = 1). (4.5) X = ( 0 ) ,  Y=(0) ,  k=(k~) ,  ~ (~ )  2 2 

Any two-dimensional representation V, is equivalent to the following form 

with 

k=(ko, q Ok,) ' 0q ,) (4.6) 

T H E O R E M  3. V(k,.~l ) (~ V(k2.~2 ) = V(kl.k2.~,r ~ V(q -lklk2_q~l~2).  
Proof. Denote the basis on the left-hand side by v~ 1) | 2) (i,j = 1, 2). Then the 

basis for the right-hand side is 

{t,]') | v] 2), vii)| v~2) + k, ~2yly f lv(gl) | v]2)}, 

__ --I x , , (1) |  ' V(22) | V(22)} [~ {v~)| ~ k~ '~C ~x, 2~  

In this notation the fundamental representation given in Equation (4.4) is denoted 
by V(q 1,2q 3r The decomposition of its tensor product can be inferred from the 
following Corollary. 

COROLLARY. 

V(k.~) : V(kn q -I.( l)l~nqt). 
/=0 l 

We note that the multiplicities of the irreducible representations occurring in the 
decomposition V~k.r174 form the Yang Hui-Pascal triangle. 

x , y , ( q - q - ~ )  = k , ~ , - k F t ~ F  ~ # 0 ,  

where x,,  y, ,  k,, ~, e C • Variance of x, and y, subject to Equation (4.6) does not 
change the equivalence of V,. In particular, we can choose 

k , ~ , -  k l - l ~ 7  1 
Yz = l ,  Xt = - l  q - q  

THEOREM 2. Two representations Vl and V2 are equivalent to each other iff 
trv,(k) = trv2(k) and trv,(r = trv2(~). 

Proof. Observe that in V, we have tr v,(k) = k, ( 1 + q l) and 
trv,(~) = ~,(1 - q) [:3 

Thus, each two-dimensional representation V, can be labelled by two numbers, 
(k,,~,), k, =tr(k) / ( l  + q - ~ )  and ~ , = t r ( ~ ) / ( l - q ) ,  and denoted by V(k,.r The 
fusion rules of these two-dimensional representations are given by the following 
theorem. 
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An interesting question is whether the two-dimensional representations other 

than the fundamental one would give rise to new braid group representations or 

not. The answer is no. This follows from Theorem 4. 

T H E O R E M  4. The intertwining operator R =(a,j)  between V , |  V2 and V2| Vi 

(with V,, V2 any two two-dimensional representations) satisfying R o A ( a ) =  
A'(A) o R, or 

A(a) 
VI (~ V 2 , Vl (X~ V 2 

1 1 ~(2) R R V a  f f . . q  , 

V2(~) V 1 ) V2(~) V I 
A'(a) 

must be of  the form 

~ all 0 0 

R = ] 0 a22 all -- Ba22 

L o o 
all -- Aa22 ABa22 

0 0 

with 

0 

0 

0 

all -- (A + B)a22 

(4.7) 

A =Gkzx l / x2 ,  B = k ( ' r  
Proof. Take a = k, ~, X and Y. [] 

COROLLARY.  The R-matrix satisfying the Yang-Baxter  equations in 
End( | V~k,.r ~) is given by Equation (4.7) with a22/all = ~,k, = A = B - l  or the same 

R-matrix given in Equation (4.1) with q replaced by k ~  ~. 

To conclude, we note that if the last diagonal element of the R-matrix (1.1) or 
the R-matrix (4.1) is changed from - q - l  to q, then we recover the standard Jones 
BGR and the associated quantum group Uq(Sl(2)). For a generic q, the representa- 

tions of the latter are in 1 �9 1 correspondence to those of  sl(2). In contrast, the 
representation theory of our X~(2) is quite distinct. 

However, there are still some common features shared by the two cases. First, the 
characteristic polynomial of Jones' BGR and ours are, respectively, 

(R - q)3(R + q 1) = 0 (Jones), (4.8) 

(R - q)2(R + q-1)2 = 0 (ours). 

The power of each factor in both cases corresponds to the fusion rule of the 

fundamental representation 

2 @ 2 =  3 G 1  (slq(2)), (4.9) 

2 | 1 7 4  (Xq(2)). (4.10) 

Here the numbers stand for the dimensionality of representations. Secondly, the 
/~-matrix for Xq(2) can be written as 

2 
k = q p l - - q - l p ~  = _ ~ p,P,, (4.11) 

t=l  
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where PI and P2 are projectors corresponding to the decomposition (4.10). (This 
follows from the fact that [/~, A(a)] = 0, Va e Xq(2) and that Vo| Vo is completely 
reducible.) A similar expression is known to be true for slq(2) [2]. Because of this 
similarity, the same Yang-Baxterization rule suggested before [10] works for both 
cases. It is given by 

R ( x ) = x k + - x  I(R+) J, (4.12) 

where x is the spectral parameter. 

Appendix 

Let )(q(2) be the Hopf algebra obtained by removing the relations ~[,-2 _.~_ y 2 =  0 
from Xu(2). In this Appendix, we study representations of )(q(2). We restrict 
ourselves to the so-called highest weight representations, i.e. there exists a Vo ~ V 
satisfying 

Xvo=0, kvo=kovo, CVo=~oV0 . (A1) 

Let V be an irreducible finite-dimensional representation. Consider t,~ = Yu and 
suppose {Vo, vl . . . . .  Vm} is the maximal linearly independent set from v~. Then 
Vm+ I = ETko crY1. Since k~Yl= ( - 1)tYtk~, 

1--1 

Xvl= XYlvo = ~ YJ[X, y]y1 j IVo 
1 = 0  

l 1 = ~ ( _ l ) t _ j _ l y t _ l k ~ _  k 1~- -1  

1 
j=o q - q  

V0 

[ q _ q - 1  V / -  1 , 

l - 0 (mod 2), 

l --- 1 (mod 2). 
(A2) 

So, by its irreducibility, V must be the space spanned by {v0, vi . . . . .  v,~ }. Assume 
that ko~o~koi~o  1. (Otherwise, X = 0  in this representation.) Applying X to 
v,, +1=  ',77'= o clvt, the resulting equation is consistent only if m is odd. Namely, V 
has to be even-dimensional. It is clear from Equation (A2) that X2vt = 0 for any l. 
So X 2= 0 in a nontrivial irreducible representation V. (By nontriviality of a 
representation, we mean the basis elements of )?q(2) act injectively.) Hence, we have 
proved the following theorem. 

THEOREM. In any nontrivial irreducible representation V of )(q(2) having both 
highest and lowest weight vectors, one always has X 2 = y2 = 0 in End(V). Moreover, 
dim V = 2. 
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