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Abstract. We give new realizations of the maximal Satake compactifications of Riemannian

symmetric spaces of noncompact type as orbit closures inside Grassmannians and orthogonal
groups. Our constructions are partially motivated by Poisson geometry.
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1. Introduction and the Main Results

Let X ¼ G=K be a Riemannian symmetric space of noncompact type, where G is a

connected real semi-simple Lie group with trivial center, and K is a maximal compact

subgroup of G. The maximal Satake compactification X
S

max of X was constructed by

Satake [5] using any finite-dimensional faithful irreducible projective representation

of G with generic highest weight (see Remark 5.3). Let m ¼ dim K, and let g be the

Lie algebra of G. In this note, we first show that X
S

max can also be obtained as a G-

orbit closure inside the Grassmannian Grðm; gÞ of m-dimensional subspaces of g.

More precisely, G acts on Grðm; gÞ via the adjoint action of G on g. Let k be the Lie

algebra of K and regard k as a point in Grðm; gÞ. Then the map

l : X ¼ G=K �! Grðm; gÞ : gK#Adgk

is a G-equivariant embedding of X into Grðm; gÞ.

THEOREM 1.1. The closure lðXÞ of lðXÞ in Grðm; gÞ is G-isomorphic to the max-

imal Satake compactification X
S

max of X.

Theorem 1.1 gives rise to other realizations of X
S

max, three of which will be pre-

sented in this note. Consider first the complex symmetric variety XC :¼ Ĝ=KC, where

Ĝ is the adjoint group of the complexification ĝ ¼ g� C of g and KC is the connected
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subgroup of Ĝ with Lie algebra kC ¼ k� C. In [1], De Concini and Procesi

constructed a ‘wonderful’ compactification of XC which is a smooth Ĝ-variety.

Embed X into XC via the inclusion G ,! Ĝ. We have

COROLLARY 1.2. The closure of X in the wonderful compactification of XC with

respect to the regular topology is G-isomorphic to the maximal Satake compactification

X
S

max of X.

Let n ¼ dim g, and consider now the Grassmannian Grðn; ĝÞ of n-dimensional real

subspaces in ĝ ¼ g� C. Then again G acts on Grðn; ĝÞ via its adjoint action on ĝ. Let

g ¼ kþ p be the Cartan decomposition of g. Then u :¼ kþ ip is a compact real form

of g. By regarding u as a point in Grðn; ĝÞ, we have a G-equivariant embedding

l̂ : X ¼ G=K �! Grðn; ĝÞ : gK#Adgu: ð1Þ

COROLLARY 1.3. The closure l̂ðXÞ of l̂ðXÞ in Grðn; ĝÞ is G-isomorphic to the

maximal Satake compactification X
S

max of X.

Let OðuÞ be the orthogonal group of u defined by the Killing form of u. We will

regard OðuÞ as a subgroup of GLðĝÞ by complex linear extensions. For g 2 Ĝ and

/ 2 OðuÞ, let

g � / :¼ iðAdgð/þ iÞ þAdĥðgÞð/� iÞÞðAdgð/þ iÞ�

�AdĥðgÞð/� iÞÞ�1 2 GLðĝÞ; ð2Þ

where ĥ denotes the complex conjugation on ĝ defined by u as well as its lifting to Ĝ. In

Proposition 5.1, we will show that (2) defines a left action of Ĝ on OðuÞ. Further study
of the embedding l̂ : X ! Grðn; ĝÞ shows that the image l̂ðXÞ in fact lies in a certain

Ĝ-invariant closed subvariety I of Grðn; ĝÞ which can be Ĝ-equivariantly identified

with OðuÞ. Consequently, we have aG-equivariant embedding ofX into OðuÞ given by

m : X ¼ G=K �! OðuÞ : gK#
iAdghðgÞ�1 þ 1

iþAdghðgÞ�1

;

where G, as a subgroup of Ĝ, acts on OðuÞ by (2).

COROLLARY 1.4. The closure mðXÞ of mðXÞ in OðuÞ is G-isomorphic to the maximal

Satake compactification X
S

max of X.

The constructions of X
S

max in this note all fit into the general framework as in the

Satake and Furstenberg compactifications: embed X into a compact G-space

equivariantly and take the closure of the embedding. The construction in Theorem

1.1 is similar to the intrinsic construction of X
S

max in [4, Ch. IX]. The construction in

Corollary 1.4 resembles Satake’s original construction of X
S

max in the sense that we

obtain X
S

max by first using the adjoint representation of G to embed X (as a totally
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geodesic submanifold) into the symmetric space OðĝÞ=OðuÞ which is compactified by

using the Cayley transform

S#
iSþ 1

iþ S
:

Here OðĝÞ is the (complex) orthogonal group of ĝ defined by the Killing form of ĝ.

(See Remark 5.3 for more detail.)

The closure l̂ðXÞ of l̂ðXÞ in Grðn; ĝÞ as in Corollary 1.3 appeared in [2] on our study

of certain ‘moduli space’ of Poisson homogeneous spaces, which was in turn moti-

vated by the theory of quantum groups. One can show (see [3, Section 3]) that there is a

natural Poisson structure p on X ¼ G=K which extends to l̂ðXÞ. Corollary 1.3 will

enable us to use the structure theory ofX
S

max to study the boundary behavior of p onX.
We will carry out this study in a future paper, and we refer to [3] and [2] for the related

background on Poisson geometry. As is explained in [4], there are characterizations of

X
S

max from various points of view, such as that of Riemannian geometry, of the theory

of randomwalks, and of harmonic analysis onX, each of which has its own advantage

and sheds lights on the others. Our characterization ofX
S

max in Corollary 1.3 is suitable

for the study of Poisson structures on X, and it is the first step in our work on

establishing connections between Poisson geometry and harmonic analysis on X.

In the rest of the Letter, we give proofs for Theorem 1.1 and Corollaries 1.2, 1.3,

and 1.4.

2. Proof of Theorem 1.1

We will use Satake’s characterization of X
S

max as stated in [4, Proposition 4.42]. We

will mostly follow the notation used in [4].

Fix the Cartan decomposition g ¼ kþ p of g, and let h be the corresponding

Cartan involution. Fix a maximal abelian subspace a of p. Let R be the set of roots of

a in g, and let Rþ be a choice of positive roots in R. Let

cðaþÞ ¼ fk 2 a : aðkÞP 0; 8a 2 Rþg
be the closed positive Weyl chamber defined by Rþ, and let cðAþÞ ¼ exp cðaþÞ. Then
we know from the Cartan Decomposition G ¼ KcðAþÞK that for any topological G-

compactification X of X, we have X ¼ K � cðAþÞ, where � denotes the K-action on X.

Thus X is determined by the topology of the closure cðAþÞ of cðAþÞ in X and the G-

action onX. A characterization ofX
S

max in these terms is given in [4, Proposition 4.42].

We first determine the topology of lðcðAþÞÞ, the closure of lðcðAþÞÞ in Grðm; gÞ.
Let D be the set of all simple roots in Rþ. For each subset I � D, let

aI ¼ fk 2 a : aðkÞ ¼ 0; 8a 2 Ig;
and let aI be the orthogonal complement of aI in a with respect to the Killing form of

g. Let

cðaI;þÞ ¼ fk 2 aI : aðkÞP 0 8a 2 Ig;
and let cðAI;þÞ ¼ expðcðaI;þÞÞ. We will use ½I� to denote the set of roots that are linear

combinations of elements in I. Let nI ¼
P

a2Rþn½I� ga, where ga is the root space of a.
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Let gI be the derived subalgebra of the centralizer of aI in g [4, Proposition 2.10] and

let kI ¼ gI \ k. Set dI ¼ mþ kI þ nI, where m is the centralizer of a in k. We will

describe the space lðcðAþÞÞ in terms of the cðAI;þÞ’s and the dI’s.

Assume now that l 2 lðcðAþÞÞ. Then there exists a sequence kn 2 cðaþÞ such that

l ¼ lim
n!1

lðexpðknÞÞ ¼ AdexpðknÞk:

For each a 2 Rþ, let ka ¼ fXþ hðXÞ : X 2 gag. Then we have k ¼ mþ
P

a2Rþ
ka as a

direct sum. Since aðknÞP 0 for all a 2 Rþ and all n, there exists a subsequence k0n
such that faðk0nÞg either converges or diverges to þ1 for each simple root a. Let I be
the set of all simple roots a such that faðk0nÞg converges. Note that l is in the

boundary of lðcðAþÞÞ if and only if I ¼ D. Let k0 2 cðaI;þÞ be such that

aðk0Þ ¼ limn!1 aðk0nÞ for all a 2 I. Now choose nonzero vectors Ym 2 ^dim mm and

Ya 2 ^dimðkaÞka for each a 2 Rþ. Then,

v ¼ R Ym ^
^
a2Rþ

Ya

 !
2 Pð^mgÞ

represents the point k 2 Grðm; gÞ under the Plucker embedding of Grðm; gÞ into the

projective space Pð^mgÞ. Since m centralizes a, we have Adexpðk0nÞYm ¼ Ym for all n.

For a 2 Rþ and X 2 ga, we have, for all n,

Adexpðk0nÞðXþ hðXÞÞ ¼ eaðk
0
nÞXþ e�aðk0nÞhðXÞ ¼ eaðk

0
nÞðXþ e�2aðk0nÞhðXÞÞ:

Since limn!1 aðk0nÞ ¼ þ1 for a 2 Rþn½I� and since limn!1 aðk0nÞ ¼ aðk0Þ for

a 2 Rþ \ ½I�, we see that the limit of Adexpðk0nÞv in Pð^mgÞ as n ! 1 corresponds to

l ¼ mþAdexpðk0Þ
X

a2Rþ\½I�
ka

0
@

1
Aþ nI ¼ Adexpðk0Þðmþ kI þ nIÞ ¼ Adexpðk0Þd

I ð3Þ

in Grðm; gÞ under the Plucker embedding. Using ‘�’ to denote the action of G on

Grðm; gÞ, we see that l 2 cðAI;þÞ � dI. Conversely, for any subset I of D, let k 2 a be

such that aðkÞ ¼ 0 for all a 2 I and aðkÞ > 0 for a 62 I, where a is a simple root. Then

it is easy to see that

dI ¼ lim
n!1

AdexpðnkÞk 2 lðcðAþÞÞ:

Thus we have

lðcðAþÞÞ ¼
[
I�D

cðAI;þÞ � dI: ð4Þ

It is easy to prove that (4) is a disjoint union, and cðAI;þÞ � dI ffi cðAI;þÞ for each I.

Moreover, a computation similar to the one that leads to (3) shows that a sequence

expðknÞ � dI1 2 cðAI1;þÞ � dI1 converges to expðkÞ � dI2 2 cðAI2;þÞ � dI2 if and only if

I2 � I1, limn!1 aðknÞ ¼ aðkÞ for all a 2 I2 and limn!1 aðknÞ ¼ þ1 for a 2 I1nI2.
Thus the closure lðcðAþÞÞ of lðcðAþÞÞ in Grðm; gÞ is homeomorphic to the closure of

cðAþÞ in X
S

max (see [4, Proposition 4.42]).

It follows from (4) that the closure lðXÞ of lðXÞ in Grðm; gÞ is the union
S

I2D G � dI.
By [4, Corollary 9.15], this is a disjoint union, and it follows from [4, Lemma 9.13] that
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each G-orbit G � dI fibers over the flag manifold G=PI whose fiber is isomorphic to the

symmetric space XI (see notation in [4, Ch. IX]). Thus we know by [4, Proposition

4.42] that lðXÞ is G-isomorphic to X
S

max. (

3. Proof of Corollary 1.2

Let GrCðm; ĝÞ be the Grassmannian of complex m-dimensional subspaces of ĝ.

Recall from [1, Section 6] that the map

j: XC ¼ Ĝ=KC �! GrCðm; ĝÞ : gKC #AdgkC

is an embedding and that the closure of jðXCÞ in GrCðm; ĝÞ is isomorphic to De

Concini and Procesi’s wonderful compactification of XC. By considering the

G-equivariant embedding of Grðm; gÞ into GrCðm; ĝÞ which maps l 2 Grðm; gÞ to its

complexification, we see that Corollary 1.2 follows immediately from Theorem 1.1.(

4. Proof of Corollary 1.3

Let i: Ĝ ! PSLðVÞ be any faithful irreducible projective representation of Ĝ with

generic highest weight. Then the restriction of i to G is such a representation for G.

Let U be the connected subgroup of Ĝ with Lie algebra u, and let X̂ ¼ Ĝ=U. Then we

have the embedding X ,! X̂ induced from the inclusion G ,! Ĝ. It follows by Satake’s

definition of X
S

max and X̂
S

max that X
S

max is the closure of X ,! X̂ inside X̂
S

max. Thus

Theorem 1.3 follows from applying Theorem 1.1 to X̂. (

5. Proof of Corollary 1.4

Let h ; i be the imaginary part of the Killing form � ; � of ĝ. Denote by I the set of

all maximal isotropic subspaces of ĝ with respect to h ; i. By Witt’s theorem, the

dimensions of such subspaces are n, so I is an algebraic subvariety of Grðn; ĝÞ. It is
clear that I is Ĝ-invariant, and u 2 I . Thus the l̂ðXÞ � I and so we can regard l̂ as

an embedding of X into I and X
S

max is then the closure of l̂ðXÞ inside I .
Recall that OðuÞ is the orthogonal group of u defined by the Killing form of u. We

can regard OðuÞ as a subgroup of GLðĝÞ by complex linearly extending an element

/ 2 OðuÞ to a linear map from ĝ to ĝ using the decomposition ĝ ¼ uþ iu. Let ĥ be

the complex conjugate linear involution on ĝ determined by u as well as its lifting to

Ĝ. We will now describe an identification of OðuÞ and I .

PROPOSITION 5.1. The map,

U: OðuÞ �! I :/# l/ :¼ fð1þ iÞxþ ð1� iÞ/ðxÞ : x 2 ug ð5Þ

is a diffeomorphism. Under U, the action of Ĝ on I becomes the following action of Ĝ

on OðuÞ: for g 2 Ĝ and / 2 OðuÞ:

g � / :¼ iðAdgð/þ iÞ þAdĥðgÞð/� iÞÞðAdgð/þ iÞ �AdĥðgÞð/� iÞÞ�1: ð6Þ
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In particular, Uð1Þ ¼ u, and

g � 1 ¼
iAdgĥðgÞ�1 þ 1

iþAdgĥðgÞ�1

2 OðuÞ; 8g 2 Ĝ: ð7Þ

Proof. It is easy to check that l/ is in I for every / 2 OðuÞ. Conversely, set

Vþ ¼ ð1� iÞu and V� ¼ ð1þ iÞu. Then h; i is respectively positive and negative

definite on Vþ and V�, and hVþ;V�i ¼ 0. Thus if l is a maximal isotropic subspace of

ĝ, we must have l \ Vþ ¼ 0 and l \ V� ¼ 0. Hence, there exists / 2 GLðuÞ such that

l ¼ fð1þ iÞxþ ð1� iÞ/ðxÞ : x 2 ug:
The fact that l is isotropic implies that / 2 OðuÞ. Thus U : OðuÞ ! I is a bijection.

Let OðĝÞ be the complex orthogonal group of ĝ defined by � ; �. Then OðĝÞ
preserves h; i, so OðĝÞ acts on I . It is straightforward to check that the action of OðĝÞ
on OðuÞ obtained by the identification U is given by (6), with Adg replaced by any

T 2 OðĝÞ and AdĥðgÞ by ĥTĥ. It then induces an action of Ĝ on OðuÞ by the group

homomorphism Ad : Ĝ ! OðĝÞ: g#Adg. It is easy to check that action of g 2 Ĝ on

1 2 OðuÞ is as given. (

Remark 5.2. For an integer nP2, let � ; � be the symmetric inner product on C
n

given by � u; v �¼ u1v1 þ u2v2 þ � � � þ unvn, and let h ; i be the imaginary part of

� ; �. Denote by I the set of all maximal isotropic subspaces of Cn with respect to

h ; i. Then the complex orthogonal group Oðn;CÞ acts on I since it preserves h ; i. On

the other hand, we can identify I with OðnÞ as in Proposition 5.1, so we get an action

of Oðn;CÞ on OðnÞ, which, one can easily check, is given by

Oðn;CÞ 	OðnÞ �! OðnÞ : ðg;/Þ 7!Reðgð/þ iÞÞðImðgð/þ iÞÞÞ�1: ð8Þ
The action of Ĝ on OðuÞ in (6) is then a special case of (8) if we identify ðg;� ; �Þ

with ðCn;� ; �Þ. We also remark that if Pn is the set of all matrices in Oðn;CÞ that
are Hermitian symmetric and positive definite so that Oðn;CÞ ¼ OðnÞPn is a Cartan

decomposition of Oðn;CÞ, and if we let C be the following Cayley transform

C:Pn �! OðnÞ:CðSÞ ¼ iSþ 1

iþ S
; ð9Þ

then the action of Oðn;CÞ on OðnÞ given by (8) is a continuous extension via the

Cayley transform of the natural action of Oðn;CÞ on Pn given by ðg;SÞ ! g � S
:¼ gS�g�1 for g 2 Oðn;CÞ and S 2 Pn.

Proof of Corollary 1.4. Corollary 1.4 follows immediately from Proposition 5.1

and Corollary 1.3. (

Remark 5.3. Recall [4, Ch. IV] that in the original definition of X
S

max by Satake,

one first compactifies the most basic symmetric space SLðm;CÞ=SUðmÞ by embed-

ding it into the projectivization of the space of all Hermitian symmetric m by m

matrices and taking its closure therein. One then obtains X
S

max by embedding X into

SLðm;CÞ=SUðmÞ via an m-dimensional projective representation of G with generic
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highest weight. The image of X into SLðm;CÞ=SUðmÞ is a totally geodesic sub-

manifold. Our construction of X
S

max is similar. Namely, we first compactify the

symmetric space Oðn;CÞ=OðnÞ by embedding it into OðnÞ via the Cayley transform

and taking its closure in OðnÞ. Then by identifying OðĝÞ with Oðn;CÞ as in Remark

5.2, the map

X ¼ G=K �! Oðn;CÞ=OðnÞ: gK 7!AdghðgÞ�1

is an embedding of X into Oðn;CÞ=OðnÞ as a totally geodesic submanifold. The

compactification X
S

max is then the closure of X inside the above compactification of

Oðn;CÞ=OðnÞ.

When g has a complex structure, we can combine Theorem 1.1 and Proposition 5.1

to get the following characterization of X
S

max using the Cayley transform and the

adjoint representation of G on g (without having to complexify g).

PROPOSITION 5.4. Assume that g is a complex semi-simple Lie algebra. Let G be

the adjoint group of g, let K be a maximal compact subgroup of G, and let h be the

Cartan involution on G defined by K. Set

m:X ¼ G=K �! GLðgÞ: gK 7!
iAdghðgÞ�1 þ 1

iþAdghðgÞ�1

:

Then the closure of mðXÞ in GLðgÞ is a G-compactification of X that is G-isomorphic

to the maximal Satake compactification X
S

max of X.
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