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Non-Adiabatic Motion of Charged Particles Traversing a Weak
Magnetic Field: Pitch Angle Scattering

By Sypney Caapman?) and PETER C. KENDALL?)

Summary — A charged particle moves with velocity v in a constant non-uniform magnetic
field H, spiralling with Larmor radius R. If R is small compared with the scale length L of the
field, the magnetic moment associated with the Larmor motion of the particle is nearly constant.
Consequently 6, the (‘pitch’) angle between v and H, varies as arcsin H1/2, Hence § in such adi-
abatic motion is approximately the same at points on the path where H has the same value. But
the magnetic moment and the pitch angle may differ materially at two such points, each in the
region where R/L is small, if between them the particle traverses a region where R/L is not small.
This region of non-adiabatic motion ‘scatters’ the pitch angles.

Such scattering is investigated for regions of weak field (R large), with and without the pre-
sence of a neutral line along which H = 0. Either type of region, it is found, can scatter the pitch
angles. This gives support to the theory proposed by Axasoru and CHAPMAN to explain why
auroral arcs and bands are very thin.

The scattering here examined is of interest also in connection with magnetic mirror devices
for nuclear energy transformation. It may also have applications to phenomena of solar and
stellar atmospheres.

1. Introduction

A particle of mass m and charge e (in e.m. units) moving with velocity » in a con-
stant magnetic field H maintains a constant speed ». If the field is uniform, the path
is a helix with mean motion in the direction 4 H, with a (‘Larmor’} radius R given
by muv sinb/| e | H, where 0 denotes the (‘pitch’) angle between v and H; a magnetic
moment w, given by [(m v?/2)/H ] sin20, is associated with the circular part of the
motion. If the field is non-uniform, with scale length L, the particle spirals in approxi-
mately Larmorian manner, and y is almost constant, provided that R/L is small [1]3),
the ‘guiding’ or Alfvén centre of the circular part of the motion moves nearly along a
field line, though with a slight drift transverse to the lines. Hence sinf) varies along
the path approximately as H%/2, and 6 has nearly equal values at two points P, P’ if
H has the same value at each. If Hy is the minimum value of H along the path of the
particle, and if 0o is the pitch angle there (its minimum value), then g = [(m v2/2)/Ho]
sin%fy. The particle moves nearly along the field line in one direction until it reaches
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a point at which sinfl = 1; there H = (m 12/2)/u = Ho/sin%0y; at such a (‘mirror’)
point the motion along the line is reduced to zero, and the particle then returns nearly
along the field line in the reverse direction.

The aurora polaris is caused by the entry of high speed electrons and protons into
the atmosphere. They spiral downwards along the geomagnetic field lines, which in
the usual auroral latitudes are nearly vertical. Overcoming atmospheric retardation
they descend to about 100 km above the earth’s surface. Extrapolating back along
the field lines, from the latitudes of entry, one can estimate the distance fa (¢ = the
earth’s radius) at which they cross the (magnetic) equatorial plane. In so doing, to a
first approximation the field lines may be taken as those of the dipole component of
the field; a closer approximation is obtained by taking account of the non-dipole parts
of the field; but allowance should also be made for possible distortion of the lines by
electric currents in the region of the Van Allen belts {2, 3]. It seems that during ordi-
nary auroral occurrences f is about 6; during great magnetic storms it may decrease
to around 3. The normal minimum value of A along the path is approximately 0.3/f3
gauss. In the auroral zone H is about 0.6 gauss. Particles that can reach to this field
strength from f = 6 must cross the equatorial plane with a very small pitch angle,
less than 3°.

Such particles, entering the atmosphere, do not return therefrom; they are lost
from the belts. All such particles with very small pitch angles would disappear from
the belts in a few seconds unless the supply were maintained in some way. Quiet
auroras at times continue in the same position for minutes on end. This implies a
continuing supply of particles of small pitch angle. AKASOFU and CHAPMAN [4] linked
this supply with pitch-angle scattering, which they considered would occur in a long
laterally restricted region of low field strength in or near the equatorial plane at the
distance fa. The supply would be drawn from the main distribution of particles, with
pitch angles too large, at or near the equatorial plane, to enable them to enter the
atmosphere, were it not that in traversing the said region their pitch angles are
reduced.

The present study of pitch angle scattering was undertaken in order to check their
supposition that a region of weak equatorial field would be an effective scatterer of
pitch angles. They proposed that the scattering region is associated with a neutral line
in the field, where H = 0; they took this line to be one border of a thin strip in the
equatorial plane, within which the ring current reverses the normal field direction.
It is not certain that such reversal does or can occur. Gorp [5] and PARKER [6] sug-
gested that the postulated scattering might occur in a region of reduced field strength
without a reversal (CHAPMAN [7]). Hence we have considered both types of weak
field, with and without a neutral line. We find that either can produce the required
scattering.

Our results also bear on the motion of charged particles in the magnetic mirror
devices used in studies of nuclear energy transformation.

In general the paths cannot be expressed in any convenient analytical form; hence
our investigation is necessarily a numerical one.

We have, however, been able to treat analytically [8] an analogous problem of
scattering, in a type of field in which the particle motion is non-adiabatic and R/L is
large, not because of the weakness of the field, but because L becomes small, indeed
zero, at certain field descontinuilies.
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In both investigations our main interest is in the production of small pitch angles.
As the motion is reversible, it is convenient and suitable to consider paths with small
instial pitch angle, and to study how the pitch angle and magnetic moment are
changed by traversing the scattering region.

The present study may be called topological as opposed to statistical; it is con-
cerned with the nature and space distribution of paths of particles that after traver-
sing the region where R/L is large have small pitch angles. A statistical investigation
is desirable that would give the rate of supply of particles of small pitch angle in terms
of the space and velocity distribution of the particles incident on the region of large
R|L. Such an investigation would be much more extensive than the one here de-
scribed, and we have not yet attempted it.

2. Pitch angle scattering by field discontinuities

In our earlier paper [8] we considered the field indicated in Figure 1, associated
with orthogonal right-handed Cartesian coordinates x, v, z measured along the direc-
tions of a triad 4, j, k of unit vectors. The field strength H is everywhere the same, and
H is uniform in each of the four regions marked as Y, Z, — Y, — Z in Figure 1, but
the directions are different, being respectively along — j, k, j and — k. Thus the

Region
-Y

Figure 1
A discontinuous field model of the magnetic intensity near a straight neutral line, together with
the definition of azimuthal angle in the four regions
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field is discontinuous at the planes y = -+ z. In each region the Larmor radius, the
magnetic moment and the pitch angle of a moving charged particle are all strictly
constant; but they may change discontinuously on crossing from one region to an-
other. The speed v, however, is constant throughout.

It is convenient to take units Lo and 7 of length and time such that the speed,
and the Larmor radius for transverse motion with this speed, are each unity. In terms
of the measures initially used,

L iy (2.1)

"= el H

where the charge ¢ of the particle is expressed in e.m.u; and

w
T°:|e|H' (2.2)
In terms of these units, the Larmor radius for a particle with pitch angle § is sinf}, and
the magnetic moment is given by
. 2
o= po sin2f, o = % = —2% (2.3)
In each region the mean motion w of a particle is along the field direction, in one
or other sense, so that w = - j cosfl in the regions Y and — Y, and w = 4 k cosf
in the regions Z and — Z,

2a Particles with zero initial pitch angle

All types of phenomena are illustrated by considering particles initially moving
leftward in the upper half (z > 0) of region Y with z-coordinate z. We found that if
the pitch anglein Y is zero, the paths are of three distinct types, for three ranges of 2;
N (near), I (intermediate) and F (far). They may be classified thus:

Region of exit

zo range N, continuing orbits; for 0 < 20 <C 0.474 —Y (2.4)
zo range I, deflected orbits; for 0.474 < 20 < 0.5 — 7 (2.5)
zo range F, returned orbits;  for z > 0.5 Y (2.6)

The simplest orbit is that for zo = 0; in this case the particle moves uniformly along
the y-axis, passing from Y to — Y through the x-axis. For 2 > 0, on crossing from
Y to Z, the pitch angle suddenly changes from 0 to 90°, and in region Z the path is a
circular arc of unit radius in the plane z = 2. If 2 > 0.5 the particle returns to Y
after describing a semicircular arc; then it moves with reversed motion to infinity
along a line displaced by two units of length from its original path. The displacement
is in the direction (¢/| ¢|) B X j, that is — (¢/| ¢ ) 1, opposite for charges of different

signs.
If, however, 2z << 0.5 the path in Z meets the other boundary of the region, the
plane y = — z, in the plane z = 2. There it enters the region — Y, with a pitch angle

that depends on 2. It is 90° for zo = 0.5, and less for smaller values of z.
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Our calculations showed that if 20 > 0.474 the helical path in — Y will meet the
other boundary of — Y, where the particle will cross into the region — Z. Figure 2
shows the limiting path of this type for zo = 0.5; the pitch angle is 90°in Z and in - Y,
and zero in — Z. For zo <C 0.5 the pitch angle in — Y is arcsin (2 zo). If 20 <C 0.474 the
helical path in — Y does not meet the boundary of — Z. In that case the final mean
motion of the particle is along the original direction, — j, but the path is changed by
the passage of the particle through Z from being a straight line to a helix, with dis-
placement of the helix axis from the original path, in both the i and k directions.
For 2y = 0.474, the helix touches the boundary between — Y and — Z, and the path
may continue in either region; in — Z the pitch angle will be less than 90°. The paths
for 2 range I enter — Z, and the mean motion is deflected though 90°.

It is convenient to represent v [expressed in the units (2.1), (2.2), so that v = 1]
by a velocity point Q on a sphere of unit radius in an auxiliary ‘velocity’ space. For
the paths with zero initial pitch angle here considered, the initial position (Qqo) of Q
has the position vector — j relative to the centre of the sphere. After the particle has
crossed into Z, Q) moves uniformly from Qo along the great circle in the plane normal
to k. If the particle moves into — Y, when Q has the position Q' on this circle, the
subsequent path of Q is along a small circle with pole Q. If the particle later moves
into — Z, when Q has the position Q”, the further locus of Q is a small circle with its
pole at k or — k on the unit sphere.

s

)

8]

¢ AR

Figure 2
The limiting path for zo = 0.5 in the model field of Figure 1
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2b Particles with small initial pitch angle G,

When the particle moves in Y with a small pitch angle 6 (in circular measure),
different from zero, the direction of v involves an azimuthal angle ¢ as well as the
magnitude §. This azimuth is measured by the angle between two half planes each
bordered by the tangent to the field line through P, the point occupied by the particle
at the instant. One of the half planes contains », the other may be chosen at will.
Figure 1 shows suitable choices for the four regions. To the first orderin§, v = —j 46,
where § has the azimuth ¢, so long as the particle is in Y. The velocity points for the
particles with initial pitch angles ranging up to some small value 0o lie within a small
circular area of radius 8y on the unit velocity sphere, centred on the point - j. Each
velocity point rotates round this centre with uniform angular speed | e | H/m. The
circular area has the approximate magnitude 7 63.

In zo range F (20 > 0.5) the path for 6 = 0 returns to Y from Z, and so do the
adjacent paths of particles with small initial pitch angle. Finally their velocity points
lie in a small area 7z 63 centred on j. In z range N (z << 0.474) the path for 6, = 0
extends from Y through Z and — Y into — Z, and so do almost all the paths for
particles with small initial pitch angle. Finally the velocity points describe circles
round the point — k on the unit velocity sphere. The radius of this circle depends on
zo. For a fixed value of 2 the velocity points for the paths where they cross any chosen
plane z = constant (negative) in — Z will lie within a small area surrounding the velo-
city point for the particle with zero initial pitch angle where its path crosses this plane.
The boundary of this area will be nearly circular. In our former paper [8] we found
that the ratio of its area to x 0 is of order unity.

The study of the paths in this very simple field distribution is helpful as a step
towards consideration of the paths in a continuous field distribution near a region of
low intensity, where R/L becomes large. The paths in the present simple model field
much resemble those in the continuous model field, and the similarity provides useful
guidance for the classification of the paths in the continuous field.

3. Scatiering to low pitch angles in the field around a neutral line

We next consider the hyperbolic field defined, relative to axes like those of Figure 1,
by

v

H .
H:Hh:(Tl) (—yj+zk). (3.1)
This field is illustrated by Figure 3. The x-axis is a neutral line (H = 0). Elsewhere

H:Hly, 72:X2+y2, (32)

a

so that H; is the field strength anywhere on the cylinder » = a. The field lines are
the rectangular hyperbolas

vz = C (constant) . (3.3}

They include as special cases the rectilinear field lines C = 0.
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As curl H = 0, the field (3.1) is free from electric current flow. Its scale length L,
as defined by CrAPMAN [9], is given by

L= 3.
5 (34)
The equation of motion of a charged particle subject only to the magnetic field,
mv=cv X H, (3.5)
has the Cartesian components
T H . . . .
(x,y,z):(;;)(yz-zy,——xz,—xy). (3.6)

We define new units of length and time, Lo, T, in terms of the measures initially
used, by

L
Lo = (Rl a)l/Z) To = - R = |—:/|L‘vl‘.ﬁ R (37)

so that R is the Larmor radius for such a particle moving transverse to a uwniform
field of strength Hi. In terms of these units

v=1, (3.8)
and the equations (3.6) for a positively charged particle become:
X=yz—2y, y=—Xx2 Z=—%x%y. (3.9)

If the charge is negative, a minus sign must be added on one side of each equation
(3.9); this can be removed by reversing the direction of the x-axis (so that the axes
become left handed). The paths for a negative particle are the mirror images, in any
plane x = constant, of those of a positively charged particle of the same charge/mass
ratio. Hence it suffices to consider only the path of positively charged particles.

Figure 3
The hyperbolic magnetic field near a straight neutral line
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The first integrals of (3.9) are
v=1,x=yz— A4, (38.10)

where 4 denotes a constant of integration. These equations can be solved analyti-
cally [10] for particles initially moving in either of the planes y == -+ z; the paths
lie wholly in the plane, with pitch angle everywhere 90°. The paths may be either
wavy or looped; the mean motion is parallel to Ox. The motions are unstable; a small
impulse given to the particle, perpendicular to the plane, leads to acceleration away
from the plane.

In the general case (3.10) gives

Pl (z—Ap=(—yz+A) (I fyz—4). (31

As the left-hand side is positive or zero, the path for a given value of A4 must lie be~
tween the hyperbolic cylinders

yz=A4+1. (3.12)

The allowed regions are of two types, shown in Figure 4 for the cases 4 > 1 and
4 <1 [10].

Here, as in § 2, we consider the paths of a particle that is initially in the upper
half of the region Y (defined as in Figure 1), spiralling leftward about a field line (3.3)
for which C is small. The Larmor radius R is now not constant, as it was in § 2; here
it is given by

R= (%) sinf = (f;lj) sinf . (319
Hence, using the units (8.7), -
R= (}7—) sinf (3.14)
and
X —oup S0 (3.15)
a) z 5)

A>1

Figure 4
-Allowed regions for particles moving in either of the planes y = 4+ z in the magnetic field of
Figure 3 (AstroM [10])
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Thus when 7, expressed in the length unit (3.7), is large, R/L is small and the motion
of the particle is adiabatic; it can be adequately described in the way originated by
A1LFVEN (1], as Larmorian motion about a guiding or Alfvén centre that moves nearly
along a field line.

To be definite, we consider the motion of particles only within the region bounded
by the four planes

y=ra, z=+a, a=3|/2=423 a2=18. (3.16)
(This choice of ap is somewhat arbitrary, and slightly affects the limits of the various.

zo range intervals later discussed.) This will be called the NA (non-adiabatic) region;
outside it,

R .

there the motion can be considered adequately adiabatic, and conforming closely to-
the Alfvén description. Of course the non-adiabaticity within the NA region increases
towards the x-axis, and tends to effective adiabaticity near the boundary. There is.
no loss of generality in taking the point Py of entry of a particle to be from the upper
parts of region Y in the plane x = 0; thus at entry ¥ = ao. We consider only small.
values of zp, the z-coordinate of Py. Thus Py is the point (0, 4o, 20). For small values
of zo the path traverses the region where the field is weak and R/L is large, so that the
motion is non-adiabatic. Such paths, of course, lie in the ‘allowed’ region shown in
Figure 4b.

Outside the NA region, where the field strength tends to infinity with increasing
distance from the x-axis, any particle emerging from within the NA region must move
into stronger field and must have a mirror point there; hence it will return; similarly
any particle entering the NA region must come from a region of stronger field. The
paths that enter the NA region with a value of 2y nearly equal to ao will be of spiral.
form between mirror points (0, y1, z1) and (0, z1, ¥1) on one of the outermost field
lines that traverse the NA region.

3a The nature of the non-adiabatic paths with zero pitch angle at v = ao

The fields illustrated in Figures 1 and 3 are in some respects similar. Both have:
four quadrantal regions, separated by the planes y = 0, z = 0; in each quadrant all
the lines of force are similar in character and separate from those in the other quad-
rants. In each quadrant they turn through 90°, from the direction of the y-axis to
that of the z-axis. One great difference, however, is that the field of Figure 1 is of
finite intensity everywhere, and the paths in it have no mirror points; they all come-
from and go to infinity. In the field of Figure 3 all the paths except those with direc-
tions -+ j in the plane z = 0, or with the directions 4 k in the plane y = 0, lie at
finite distance from Ox, because of the unlimited outward increase of field intensity..
The paths in the field of Figure 1 can be treated analytically; those in the field of
Figure 3 have to be computed numerically.

Let Po, P1, at (0, a0, 20) and (x1, y1, 21) respectively, be the points of entry and.
exit of the paths that traverse the NA region, and that have zero pitch angle at Py..
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At Py the sign of 7 is negative, at Py it is positive; thus there must be at least one
reversal of sign of  within the NA region; there may be more than one. The exit may
be across the boundary in the — Y region, in which case y1 = — ao; if the exit is into
the Z region, 21 = a, and if into the — Z region, 21 = — 4. The simplest path is that
for which 20 = 0; it lies wholly along the y-axis, and the exit is into the region — Y
the time of passage through the NA region is 2 4o, in terms of the time unit defined
by (3.7).

We find that the paths have somewhat the same character is those of § 2. The
chief difference is that in § 2 all paths of particles projected inwards with zero initial
pitch angle in the upper part of region Y eventually continue to infinity in one of the
regions Y, — Y, — Z. For the continuous field the motion of particles is from one
mirror point to another, and a particle may not emerge from the NA region until it
has suffered many reflections. For small pitch angles these multiply reflected paths
are confined to two ranges of 20, My and Mz, separating modified z ranges N (near),
I (intermediate) and F (far) in which the paths are similar to those in the correspond-
ing ranges (2.4), (2.5) and (2.6). The various ranges of zo and the behaviour of particle
paths are as follows.

{i) zorange N; for 0 <20 < Zo, Zo = 0.0475 . (3.18)

The exit region is — Y, and as z increases from 0 to Z, the exit pitch angle steadily
increases to 90°; the time of passage also increases steadily. The paths diverge more
and more from the straight path for 2 = 0, as 2z increases up to the value Zo. The
precise numerical value of Z must, of course, depend on the arbitrary choice of the
number ao. In this small initial range of 2, the paths remain rather simple.

(i) zorange Mi; Zo<z<<Zy, Zi1 = 0.0975. (3.19)

The radial velocity 7 is negative as the path initially crosses the boundary of the NA
region, but 7 changes sign many times before the path again crosses the boundary.
We refer to this 20 range as one of muitiple veflection, and to this type of path as multi-
ply reflected.

(iii) wrange l; Z1 <z < Za, Zp = 0.1085. (3.20)
These paths through the NA region are simple and r changes sign once. The direction
of mean motion is turned through a right angle and the exit is always into the — Z
region. For zo = Z; the exit pitch angle is 90°. As zo increases, the exit pitch angle

decreases monotonically to the value zero at zo = 0.104. As 2z, increases further, the
exit pitch angle increases to 90° at 2 = Zs.

{iv) zorange Mo; Za <20 < Z3, Zz = 0.245. (3.21)
The paths are multiply reflected.
{v) zorange F; Zs <z < oo (3.22)

These paths through the NA region are simple and # changes sign once. The direction
of mean motion is turned through a right angle and the exit is always into the Z
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region. For z = Z3 the exit pitch angle is 90°, and as z; increases the exit pitch angle
decreases monotonically, becoming nearly zero for even moderately large values of zp.
These paths follow the curvature of the lines of force, and for large z the motion is
adequately described by the Alfvén approximation.

90°
80°1 L
o
0
60°

50°r

40°F

30°F
20°H

15°

0 L 1 I i I

0 07 02 03 0. 05 06 07 08 09 10z

Figure 5
The variation of exit pitch angle §' with respect to 2z, for simple paths

Figure 5 illustrates the variation of exit pitch angle ' with z for simple paths.
No entry appears for the z ranges of multiple reflection, on whose boundaries 6’
approaches 90°. Figure 6 shows the magnetic moment, (sin2f)/r, in dimensionless
variables, after ten units of time, as a function of z. In this time the non-multiply
reflected paths emerge from the NA region. In the z ranges of multiple reflection the
curve is shown as a broken line. Two points are worth noting about Figure 6, in which
the zo scale is magnified tenfold compared with Figure 5. First, in the zp range I
(Z1 < 2o < Z5) there is near-symmetry about z == 0.104. Second, the magnetic
moment in the zp region My of multiple reflection varies rapidly, and the broken curve
merely connects the calculated points, and elsewhere may not show the true value of u.

Table 1 records the exit value of the number of reflections, the region of exit, the
exit pitch angle §' and azimuth ¢’, and the exit time, for various values of z.

This table illustrates one of the little understood results obtained by workers who
calculate the paths of charged particles in magnetic mirror machines. Even though
multiply reflected paths are very complicated there is sometimes a tendency for a
certain apparent regularity in the type of path to appear. This is shown particularly
in the entries for z = 0.11, 0.15 and 0.2. The corresponding paths are looped in
various degrees, but the exit region is always the same. The reason for this is unknown;
the change from AsTROM’s [10] paths of Figure 4a to the different type of Figure 4b
is expected at 2o = 0.24. Table 1 also shows clearly the different types of simple path
obtained.
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Table 1
Results for paths with zevo initial pitch angle

20 In zo Number of Region [/ ¢ Time
range reflections of exit (degrees) (degrees)
015 N 0 - Y 18.89 — 59.99 8.60
.025 N 0 —-Y 32.07 260.35 8.84
.035 N 0 - Y 48.61 170.11 9.36
.05 M, 6 —Z 23.39 42.53 61.69
075 My 7 ~Y 23.07 — 31.52 47.76
.095 M; 8 —Z 58.28 — 69.15 79.28
.0975 My 1 —Z 79.62 — 34.57 13.82
1 I 0 —Z 40.04 54.02 11.60
104 I 0 -~ Z 0.61 83.46 11.18
1075 1 0 —Z 41.93 — 132.89 11.95
11 Mg 1 Z 36.44 20.92 22.81
15 M. 5 Z 36.97 58.69 39.05
2 Mo 3 VA 50.95 219.53 26.01
3 F 0 VA 50.11 — 27.42 7.82
4 ) 0 Z 28.77 207.36 6.74
5 F 0 Z 17.86 175.72 6.26
1.0 15 0 zZ 4.04 48.71 4.97

A numerical approximation to the exit pitch angle for Z1 < 2 < Zs is

0" = 2.9 x 106 (z0 — 0.10371)2 (3.23)

accurate to 4 1°.

36 The nature of the non-adiabatic paths with initial pitch angles of one degvee at v = ag

For these paths the pitch angle & and azimuth ¢’ at exit may depend greatly on
the initial azimuth ¢. However, the region of exit for simple paths is the same as for
zero initial pitch angle, except for small intervals close to z = Zo, Z1, Z2 and Zs.

Consider first the multiply reflected paths. These were investigated for 8 different
lines of force or values of z (Table 2), and the variation of the exit time, the number
of reflections and the region of exit were noted for various values of the initial azi-
muth ¢. Paths that did not depart from the NA region after 100 units of time were
classified as ue {unknown emergence). The accuracy of the numerical integration was
periodically tested by the computer, and inaccurate paths were ignored; they are
marked inacc in Table 2. The results obtained are sumimarized in Table 2. Of the 164
paths calculated, six are marked ue and two were inaccurate (these two were not
recomputed). Table 8 shows the number of paths emerging into each region for differ-
ent lines of force. It is clear that a much finer lattice of values of z would be needed to
exhibit the average behaviour of these multiply reflected paths.
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Table 2

Times of exit of multiply veflected paths with initial pitch angles of 1°.
Above the value of the time of exit the exit vegion and number of veflections ave given

q — qg\ZO 0.05 0.075 0.095 0.0975 0.1075 0.11 0.15 0.2
0° Y 1 Y 3 Y 5 -Y 6 -2 0 -Y 5§ —-Y 1 Y 3
24.17 25.88 42.87 49.97 11.61 46.58 16.15 17.74
20° -Y 9 —-YI18 —-Y 3 —-Z 1 -7 0 -Y 3 —7Z 86 Z 3
65.80 66.25 22.64 14.07 11.88 24.28 56.85 29.01
40° Z 1 Y 1 z 2 —-Z 1 —-Z 0 Y 6 -2 3 —Z 9
26.80 16.70 23.85 12.77 12.33 49.07 22.76 75.27
60° - Y 8 Y 1 Z 10 —Z 0 —-Z 1 Y 4 —Z 3 Z 6
66.61 15.17 96.02 12.24 13.10 33.12 20.63 48.47
80° —Y 10 Y 1 Z 3 -7 0 Z 1 Y 3 Z 2
73.07 15.19 41.78 12.00 inacc 18.51 21.05 22.35
100° Y 1 Y 1 —Y 4 -7 0 Z 2 Z 4 Z 3 —Y 4
22.46 15.41 41.34 11.89 27.67 29.55 24.43 38.90
120° Y 1 Y 1 Z 6 —Z 0 —-Z 2 Z 3 —7Z 9 13
22.51 15.40 58.74 11.88 32.78 28.11 83.42 ue
140° —-Y 5 Y 1 10 —-Z7Z 0 Z 8 Y 6 Y 8 Y 2
38.00 15.18 ue 11.97 62.44 46.06 46.50 23.95
160° Z 2 Y 1 Z 2 -7 0 -7 1 Y 83 —Y 5 Y 8
29.13 15.20 25.32 12 17 13.59 27.70 43.14 56.44
180° 12 Y 2 —-Y 5 —-Z 0 —-7Z 1 Z 4 Y 6 —Z 5
ue 17.15 39.05 12.60 12.61 34.24 43.04 38.55
200° —Z 7 Z 1 —Z7Z 6 —Z 2 —-7Z 0 -7 2 Z 4 zZ 2
52.75 84.19 54.94 13.63 12.04 28.22 24 .88 22.40
220° —Z 3 Z 4 —-7 4 Y183 -2 0 -Y 4 —Z 2 —7Z 11
33.13 40.48 29.50 99.97 11.71 39.32 24.83 77.14
240° 14 Z 4 —Y 4 —-Y 4 —Z 0 Y 3 —-Y 2
ue 35.90 33.39 51.92 11.51 40.49 17.04 inacc
260° Y 1 14 —Y 3 -7z 9 -7 0 —-7Z 1 —-Y 1 Z 3
26.12 ue 19.47 73.90 11.40 13.16 15.91 29.23
280° 9 —7Z 2 —7 4 Z 11 —-7Z 0 —-Z 1 —-Y 1 Y 3
ue 16.99 23.73 88.28 11.35 12.72 16.11 17.71
300° Z 4 —-7Z 2 —1Z 3 Z 4 —-7 0 —-Z 1 —-Y 2 Y 1
56.54 17.04 22.64 40.56 11.34 12.65 16.55 16.83
320° -2 3 —-7Z 3 —-Y 3 —-7Z 2 -7 0 —-Z 1 —-Y 2 Y 1
42.78 48.10 20.49 26.03 11.37 12.91 16.35 16.66
340° Z 4 -2 7 —Y 3 —7Z 6 ~7 0 —-7Z 1 —-Y 1 Y 1
39.17 46.27 29.15 42.81 11.45 13.78 15.92 16.84
Table 3

The number of paths with initial pitch angle 1° leading into each vegion

Exit region\zﬂ 0.05 0.075 0.095 0.0975 0.1075 0.11 0.15 0.2
Y 4 9 1 1 0 5 3 7
Z 4 3 5 2 2 4 2 5

—Y 4 1 7 2 0 3 8 1

— 7 3 4 4 13 15 6 5 3
ue or inacc 3 1 1 0 1 0 0 2
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Table 4
Emergent pitch §' in degrees for paths enteving with 1° piich angle.
The entries ave vecovded velative to the vesults fov zevo piich
20 0.015 0.025 0.035 0.1 0.104 0.1075 0.3 0.4 0.5 1.0
zp range N N N I I I F F F F
Results
for zero
pitch 18.89 32.07 48.61 40.04 0.61 41.93 50.11 28.77 17.86 4.04
¢ = 0° 0.67 0.72 1.09 6.69 6.20 — - 139 —096 — 089 — 055
20° 1.43 1.52 2.31 11.63 11.85 — — 153 — 106 —099 — 081
40° 2.01 2.14 3.24 15.22 16.04 — — 149 — 101 —097 — 096
60° 2.35 2.49 3.78 16.97 18.08 — — 128 —084 -—-082 —0596
80° 2.40 2.55 3.85 16.65 17.60 — — 092 — 057 —0.57 - 081
100° 2.16 2.29 3.47 14.3 14.71 — — 044 —023 — 026 — 054
120° 1.66 1.75 2.67 10.29 9.93 — 0.11 0.14 0.09 — 0.21
140° 0.96 1.01 1.54 5.11 4.00 9.89 0.67 0.48 0.38 0.14
160° 0.16 0.16 0.24 0.88 1.10 — 2.00 1.17 0.77 0.71 0.45
180° — 066 — 070 — 1.06 7.91 7.09 — 10.24 1.53 0.97 0.91 0.71
200° — 139 — 147 -—2.22 14.88 12,18 — 16.74 1.71 1.05 1.00 0.89
220° — 195 —207 - 3.09 19.33 1581 — 21.17 1.68 1.01 0.98 0.98
240° — 228 — 241 —3.59 21.48 17.56 — 23.21 1.44 0.85 0.85 0.98
260° — 235 — 247 — 3.67 21.14 17.23 — 2274 1.02 0.59 0.61 0.88
280° —2.13 - 223 - 333 18.48 1484 — 19.76 0.49 0.26 0.31 0.69
300° — 165 — 172 -— 2.60 13.26 10.66 — 14.44 - 009 —011 —0.04 0.43
320° - 097 —100 - 153 595 515 — 7.18 — 064 — 046 — 0.38 0.12
340° - 016 — 015 — 025 0.86 — 0.08 2.21 — 108 —076 - 068 — 022
i
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Figure 6

The magnetic moment after ten units of time, as a function of z
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Table 5
Emergent azimuth ¢' in degrees fov paths enteving with 1° piich angle.
The entries ave vecovded velative to the vesulls for zevo pitch
29 0.015  0.025 0.035 0.1 0.104 0.1075 0.3 0.4 0.5 1.0
zprange N N N I I 1 F F F F
Results
for zero
pitch — 59.99  260.35 170.11 54.02 63.46 — 132.89 — 27.42 207,36 175.72 48.71
¢=0° 063 — 173 - 6.17 33.56 — 88.33 — — 1115 — 227 — 044 — 1232
20° — 043 - 487 — 13.98 53.05 — 94.08 — — 1294 328 — 180 — 841
40° -~ 149 -—753 — 20.32 63.63 — 100.32 — — 1322 —-389 295 — 267
60° — 233 —9.24 — 24.18 68.02 104.04 — — 1196 — 4.03 — 3.72 3.77
80° — 281 —974 -~ 2490 67.33 — 103.19 — — 926 —3.66 — 4.00 9.34
100° — 289 — 896 — 2238 61.34 — 98.34 - — 537 — 284 - 3.77 12.92
120 — 211 —7.05 —17.10 48.72 — 92.23 — — 071 — 166 - 3.07 13.46
140° —2.09 — 440 — 995 27.08 — 88.00 -— 64.33 419 — 028 —1.99 13.69
1860°  — 149 - 142 — 201 — 501 93.83 12.01 8.70 1.14 — 0.70 11.66
i80° —0.88 1.49 5.78 — 47.36 90.04 52.13 12.21 2.42 0.66 8.64
200° — 0.31 4.00 12.41 — 93.98 84.41 72.55 14.23 3.40 1.92 5.01
220° 0.24 5.94 17.44 — 119.27 78.71 82.44 14.48 3.98 2.95 1.09
240° 0.80 7.08 20.40 — 272.19 75.40 86.05 12.94 4.08 3.84 — 287
260° 1.35 7.46 21.08 — 266.95 75.96 85.32 9.85 3.70 393 — 6.62
280° 1.82 7.18 19.39 — 128.65 80.12 79.73 5.63 2.99 3.77 — 9.11
300° 2.07 6.03 15.41 — 82.10 85.88 66.35 0.85 1.75 3.18 — 1249
320° 1.97 4.09 9.43 — 385.58 90.41 38.97 — 3.88 0.40 2.21 — 14,02
340° 1.48 1.40 1.97 479 — 17575 — 13.80 — 8.03 —0.99 0.96 — 14.10
80° r
\
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Figure 7

Variations of the exit pitch angle §’ with respect to the initial azimuth ¢, for initial pitch angles of
1° and for three values of z¢ in the I range (Z; < zp < Zs)
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Tables 4 and 5 show for the simpler paths the emergent pitch angles 6’ and azi-
muthal angles at the exit point for various lines of force. For each value of z the
results for zero initial pitch angle and azimuth are given at the head of the column.
Three values of z in the z range N{0 < 2z < Zo) were chosen, three in the zo range
HZy <% < Z3) and four in the 2o range F(Zs < 20 <C 00). In the case z = 0.1075
some of the paths are of the multiply reflected type, and for such paths no value of 6/
is recorded. Figures 7 and 8 show the variation of §’ and ¢’ for three values of z in
the zo range 1(Z1 < 2o < Zs). The variation of ¢’ is very rapid for certain values of
the initial azimuth ¢ for the paths for 2o = 0.104. There is a corresponding near-cusp
on the §' curve. On the velocity sphere the corresponding points trace out a curve that
passes near the pole. As the curve passes the pole, ¢’ alters by 180°. We note also, as
indicated in Figure 6, that near z = 0.104 there exists a symmetric orbit whose
initial pitch angle is zero and whose exit pitch angle is also zero.

3¢ The widih of a particle beam at its point of exit from the NA region

We are interested in the change in density of a narrow beam of particles injected
at # = 2o with pitch angles of less than one degree, when the beam reaches the edge
of the NA region. This may be evaluated by comparing the solid angles filled by the
velocity vectors initially and at exit. Denote by P the point on the velocity sphere
corresponding to the initial state and by P’ the point corresponding to the state at
exit from the NA region. As P describes a small circle corresponding to 6 = 1°, P’
describes some closed curve C on the velocity sphere. The point O corresponding to
zero initial pitch angle will lie somewhere within C. For example, Figure 9 shows the
curve C and the point O for zo = 0.015. The curve is drawn in the (§', ¢') plane, be-
cause its dimensions are small on the velocity sphere. The point 4 corresponds to
¢ = 0. As ¢ increases from 0 to 360° in steps of 20°, the points (§', ¢') move round the
curve in the direction of the arrow.

180°
& I (T ~—— ,4

120° ‘ i
/ ?za=?\ /
60° \ /, ;

I L N L b L
0 60° 120° | 18 2%0° 30177 360°®

-60° 7 \/\
NERAWAN
" . Zo=0.llf75 / \

Figure 8
Variations of the exit azimuthal angle ¢' with respect to the initial azimuth ¢, for initial pitch
angles of 1°, ans for three values of zo in the I range (Z; < 5 < Z5)
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The solid angle ratio R is defined by
3 ! !

where S denotes the interior of C. This is proportional to the area in the (cosf’, ¢')
plane. If the values of 6’ deviate only a little from a fixed value 6, (the value of §’ for
zero initial pitch) we may approximate, giving

(%gz) R — l sin6) 5// &' i’

The above areas were found in all cases possible. The case zp = 0.035 illustrates one
difficulty encountered. The contour C, as given by Tables 4 and 5, is 500 times longer
than its own width. The (cos’, ¢') diagram was therefore drawn, but magnified by
using various coordinate transformations. It was necessary to treat the cases 2o = 0.035,
0.8 in this way. It was not possible to deal in this way with paths in region I (Z; <2
< Z,) because the area was too long and thin. In the case of the 2 ranges of multiple
reflection My and Ma not enough detail was available. Table 6 shows the only values
of N calculated. These are for 2 ranges N (0 <20 < Zo) and F (Z3 < 20 << o0). We
may conjecture, by comparison with the discontinuous field model of § 2, that R =
near % = 0.104, where there is a symmetric path. Figure 10 shows the interesting
shape of the narrow curve C for 2o = 0.104. The curve is shown as if viewed from above
the pole of the unit velocity sphere. Note the lateral magnification which is needed to
exhibit the features of the curve.

» (3.24)
i

. (3.25)

Table 6
The solid angle vatio R for various vvalues of zg

Zp 0.015 0.025 0.035 0.3 0.4 0.5 1.0
R 1.04 1.15 1.44 2.02 1.12 1.01 1.00

2y c
20°(
19°r
18°F

7°r

—58" -59° -60° -61° -62° -63°¢¥

16°

Figure 9
The closed curve C on the velocity sphere for zp = 0.015. The point O corresponds to zero initial
pitch angle. The curve C corresponds to an initial pitch angle of 1°, for different initial azimuthal
angles
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Figure 10
The curve C for zg = 0.104

4. The case when the magnetic field is veduced nearly to zero

A less extensive investigation has been carried out for the case when the magnetic
field does not vanish, but decreases nearly to zero. The magnetic field considered was

H=(0,Dz E + Fy?. (4.1)

Figure 11 shows some of the field lines for the values D=1, E =1, F = 3. We
assume that £ > 0. The configuration is then known as a minimum B configuration
[11]. As E approaches zero the curvature of the lines of force at the origin becomes
smaller, until for £ = 0 the field line that passes through the origin has a cusp there.
For E << 0 there would be two neutral lines of different types, as indicated by
McDonaLrp [12].

4da. The paths of charged particles

The z-range of the non-adiabatic (NA) region in this case is taken to be | z| < 3.
Consider the motion of particles projected with zero pitch angle into the NA region
from the plane z = — 3. The velocity of projection is taken to be one unit. A quali-
tative estimate of the non-adiabaticity of a path is the time v (in units of e/m)
taken for | z| to return to its initial value 3. Adiabatic paths give values of 7 close to 6.
Figure 12 shows 7 as a function of v, for values E = 0.0, 0.2, 0.4, with D = 1, F = 3.
It is clear that much pitch angle scattering is occurring. Further values of E were
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investigated up to £ = 1 without much change in the scattering effect. For interest,
the path shown in Figure 13 was calculated in great detail for F = 1, 99 = 1.8. The
path does not emerge from the NA region within 123 units of time. This is 20 times
longer than the corresponding time for an adiabatic path. Figure 13 shows only the
first part of the path. Eventually the particle emerges from the NA region with a
velocity antiparallel to its initial velocity. The position of the particle was, however,
some distance along the x-axis from its initial position. Note also that the path remains
on one side of the y-axis and never crosses over. The magnetic intensity along a field
line has minimum values on either side of the equator, and the path remains in the
neighborhood of one of these minima. This single path suggests that a particle may
only enter or leave the NA region through a small ‘hole” on the velocity sphere.

40r
T
20¢

-y

P_U | | SRt
N

16 0 11315 2 ‘ Figure 12
The time 7 for a path to emerge from the
Figure 11 non-adiabatic region as a function of yg for
The magnetic field lines of a minimum B three different minimum B fields
configuration (@E=00 (bE=02 (c) E=04

5. Conclusion

Magnetic field configurations of the type shown in Figure 3 have been considered
many times in astrophysical and geophysical contexts, and also in connection with
the possibility of plasma containment in magnetic mirror devices. Some of the the-
ories consider acceleration of the ambient electrons to suprathermal energies, and in-
volve non-stationary processes outside the scope of the present work (GiovaneLr1 [13],
DunGEY [14, 15, 16], PARKER [17, 18] and Arasoru and CHAPMAN [4]). We may,
however, consider the relevance of our results to the theory of quiet auroral arcs,
and comment upon the motion of charged particles in steady magnetic fields.
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5a Piich angle scattering in the magnetosphere

Quiet auroral arcs are produced by the entry into the earth’s atmosphere of elec-
trons that can penetrate to auroral levels. This requires that their equivalent equatorial
pitch angles are only a few degrees. According to the theory of AkAsorU and CHAP-
MAN [4], a continuing supply of such electrons is provided by scattering during their
passage through a non-adiabatic field region near the plane of the dipole equator.
The model non-adiabatic field region here considered is an idealization of the sup-
posed actual non-adiabatic field region associated with quiet auroral arcs.

Figure 14 illustrates the present discussion of scattering into orbits of small exit
pitch angle in the non-adiabatic field region of Figure 3. It shows a hemisphere in the
velocity space, with a small central circular area EX representing the area of exit
velocities of pitch angle up to 1°. The curve C; shows for the zo range N[0 < 20 < Zp
{= 0.0385)] the locus of the centres of the entry velocity areas corresponding to the
exit area EX. For three values of z (cf. Tables 1, 4 and 5) the shapes and orientations
of the entry areas are shown, and also, to correct scale, the lengths of greatest exten-
sion of these areas; but the thickness (actually very small on this scale) is shown
exaggerated; it can be inferred from the curve 4, of Figure 15, which for this range
of zo shows R, the ratio of the entry area to the area EX. The curves Cz in Figure 14
and 4, in Figure 15 similarly illustrate the entry areas corresponding to the exit area
EX, for 2z range Flzo > Zs (= 0.8)]. It should be noted that in all cases the ratio to
the entry area EX is never less than unity; but it is not large (~ 2 at most). The
curve Cs shows the locus of the centres of the entry areas for the I range Z1 < 20 < Zs.

Figure 13
A highly complicated path which remained in the non-adiabatic region of Figure 11 for a long time
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The entry areas are long and thin. Their extent may be estimated from Tables 4 and 5,
and their shape visualized from Figure 10. (Note that the point on Cs corresponding
t0 20 = 0.104 is omitted from Figure 14. It lies very near EX.)

Tigure 15 shows by curves 4; and A2, for the respective 2 ranges N and F, how
R varies with zo; note that the 2o scales are different for the two curves. The curve 4,
with its zo scale increased tenfold (so that z would range up to 0.4) would fit the
variation of 2 for the discontinuous field model of § 2 remarkably well.

The direction of increasing % in Figure 14 is shown on curves C1, Ca, C3 by arrows.
Along (i the entry area and its polar angle increase with 29, and its shape becomes
more elongated along the azimuthal direction; along curve Cs these changes are re-
versed, and the orbit becomes adiabatic beyond about zp = 1.

In the magnetosphere the occurrence of an equatorial non-adiabatic field region
NA is the result not of local causes, but of development in the distribution of ener-
getic particles over a great volume. Initially the equatorial pitch angle distribution
of the particles in the field tubes passing through the region NA may be isotropic or
not very far removed from isotropy. The particles with small equatorial pitch angles
that are moving earthward will enter the atmosphere and create some auroral light.
The particles moving towards the equator in the entry areas (or with the velocity
directions in these areas) for different values of the magnetospheric parameter corre-
sponding to 2, will leave the NA region with small pitch angles corresponding to the
area EX in Figure 14. These particles will pass onward into the polar atmosphere,
and prolong the emission of auroral light. The other particles in these field tubes,
which leave the region NA, will travel on towards mirror points above the atmosphere,
and then return equatorwards with perhaps the same polar angle (in Figure 14) as
before, but with a different azimuth. Part of their entry areas are likely to overlap
the special entry areas shown for various values of 2 in Figure 14; to the extent that

180°

a0° 270°

Figure 14
The locus on the unit sphere of the ends of the velocity vectors when the particle emerges from the
non-adiabatic region of Figure 3. The region EX surrounds the centre of this diagram
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this happens, there will be a renewed supply of exit particles with small pitch angles
able in their turn to contribute to the auroral light.

We estimate that pitch angle scattering of the type here considered could prolong
the lifetime of a quiet auroral arc by a factor of order (180/7)2 = 3600 at most, namely
from one or two seconds to one or two hours; such a duration of a quiet arc is excep-
tional. The decay of the supply would, of course, be exponential, for if # denotes the
total number of particles and 7 denotes the time of passage across the system

G- lwm) s 1)

The calculations therefore indicate that a non-adiabatic region along a neutral line
could contribute greatly to the number of auroral particles accessible to the atmos-
pheric loss cone. Changes spread throughout the Van Allen belt region will slowly
change the location of the NA region. A brief examination of the case when the mag-

netic field decreases nearly but not exactly to zero shows that scattering of pitch
angles occurs then also.

586 Magnetic mirvor devices

In the present problem there is apparently a field line z = 0.104 for which a
particle injected with zero pitch angle on entry into the NA region leaves it with zero
pitch angle. It follows that on this field line no path can enter the loss cone, and
plasma loss through pitch angle scattering will be minimized. However, it is unlikely
that ideal conditions could be obtained such as are assumed here.
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Figure 15
The ratio R of the entry areas for Figure 14 to the exit area EX. The solid curve corresponds to
the solid carve on Figure 14, and is referred to the lower scale of z9. The broken curve corresponds
to the broken curve in Figure 14 and is referred to the upper scale of z
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