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Abstract. A constitutive equation with a dilatation dependent reduced time is used to model the
mechanical response of solid amorphous polymers such as polycarbonate. Such constitutive equa-
tions have the property that stress relaxation occurs faster with increasing dilatation. In previous
work, it has been shown that this constitutive equation can account for yield in materials undergoing
uniaxial strain or stress control histories. In the present work, yield is discussed when materials
described by this constitutive equation undergo homogeneous biaxial and triaxial strain histories.
Four sets of conditions are considered: in-plane biaxial constant strain rate histories and in-plane
biaxial constant stress rate histories, for both plane stress and plane strain states. Yield is defined in
a manner analogous to that in the corresponding strain and stress control conditions in the uniaxial
case.
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1. Introduction

There has been a great deal of interest in a particular class of constitutive equa-
tions for the non-linear viscoelastic response of amorphous polymers, such as
polycarbonate. The dominant feature of this class of constitutive equations is a
reduced time variable by means of which stress relaxation occurs faster with in-
creasing strain. This variable defines a relation between a material time scale and
the laboratory time scale, and is often referred to as a strain ‘clock’.

Substantial experimental and theoretical effort is being directed at the evaluation
of constitutive equations based on the clock concept. Shay and Caruthers (1986)
and Knauss and Emri (1981, 1987) investigated forms of the constitutive equation
in which stress relaxation is accelerated by volumetric strain. McKenna and Zapas
(1979) obtained results which suggest that shear deformations also cause stress
relaxation to be accelerated.

There has been a parallel analytical effort in which the constitutive equation
is used to study the interaction of the acceleration of stress relaxation with strain
and the spatial variation of strain. This effort has been motivated by experiments
involving non-homogeneous deformations as well as by structural applications in
which polymeric materials may operate near yield. Most of the analytical work is
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restricted to conditions in which the strains and rotations are small while the mater-
ial response is non-linear. Moran and Knauss (1992) studied the stresses near crack
tips. Wineman and Waldron (1993) considered circumferential shear of a hollow
cylinder. Wineman and Kolberg (1995, 1997) provided an extensive discussion of
pure bending, Min (1995) extended the study to cantilever and simply supported
beams under time dependent concentrated forces and Wineman and Min (1996a,
1996b) discussed spherical and cylindrical containers under internal pressure.

An important consequence of the ‘strain clock’ is that there may not be a
monotonic increase in stress under constant strain rate conditions. Instead, the
stress can reach a local maximum, decrease to a local minimum and then increase.
In addition, under constant stress rate conditions, the strain will increase slowly
at first, and then at a finite time, approach a very rapid rate of increase. In both
cases, there is a time when the strain can begin to increase rapidly with respect to
the stress. In the context of the response of polymers, this is referred to as yield.
Shay and Caruthers (1986) and Knauss and Emri (1981, 1987) provided numerical
simulations which showed that their constitutive equation can simulate yield in
uniaxial constant strain rate tests. Wineman and Waldron (1993) presented a math-
ematical analysis which showed that a ‘strain clock’ based constitutive equation
can describe yield under both uniaxial strain control and stress control histories.

Most of the studies with ‘strain clock’ based constitutive equations have been
concerned with yield during uniaxial response. Shay and Caruthers (1987) used a
‘clock’ model to predict yield under multiaxial deformations, but presented very
few details of either their calculations or definition of yield. Moreover, their work
only discussed deformation control conditions. In the present work, the constitutive
equation with a ‘strain clock’ used by Knauss and Emri (1981, 1987), Wineman
and Waldron (1993), Wineman and Kolberg (1995, 1997) and Wineman and Min
(1996a, 1996b) is used to study yield under a variety of homogeneous deformations
involving triaxial extensional strain histories. In particular, yield is considered for
four sets of conditions: in-plane biaxial strain control and in-plane biaxial stress
control for both plane stress and plane strain states. Definitions of yield are given
which are generalizations of those used in uniaxial strain control and uniaxial stress
control tests. In each case, a mathematical analysis of the constitutive equations is
presented which indicates the expected yield behavior, which is then illustrated
with numerical simulations. The results show that yield strongly depends on which
of the four sets of conditions is applied. The constitutive equation is outlined in
Section 2. Section 3 contains a discussion of yield under biaxial strain control
conditions for plane strain and plane stress states. Stress based yield criteria are
discussed in Section 4. Section 5 contains a discussion of yield under biaxial
stress control conditions for plane strain and plane stress states. Conclusions are
presented in Section 6.
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2. Constitutive Equation, Triaxial Deformations

The deformation is assumed to be sufficiently small that the linearized strain mea-
sure is valid. Letσij and εij denote components of the stress and strain tensor,
respectively, with respect to a Cartesian coordinate system. The deviatoric part of
the stress tensor is denoted byσ̂ij = σij − (σkk/3)δij , δij is the Kronecker delta,
andσkk/3 denotes the hydrostatic part of the stress tensor. The deviatoric part of
the strain tensor is denoted byε̂ij = εij − (εkk/3)δij , andεkk = θ is the volumetric
strain or dilatation. It is assumed thatεij = σij = 0 for times less than zero.

The material is assumed to be isotropic.µ(t) is the shear relaxation function and
K(t) is the bulk relaxation function for linear viscoelastic response. As in Knauss
and Emri (1981, 1987), the constitutive equation used here has the form

σ̂ij = 2

t∫
0−

µ[ξ(t) − ξ(s)] dε̂ij (s)
ds

ds, (2.1)

σkk = 3

t∫
0−

K[ξ(t) − ξ(s)] dθ(s)
ds

ds. (2.2)

ξ(t) is defined in terms of the dilatation historyθ(x),0 ≤ x ≤ t , by

ξ(t) =
t∫

0

dx

a(θ(x))
. (2.3)

ξ(t) is a new variable which introduces non-linear dependence on strain into the
constitutive equation. The functiona(θ) has properties similar to those of the time-
temperature shift function, namely, it is a monotonically decreasing function ofθ

anda(0) = 1.
The variableξ(t) is called a material time (also referred to as pseudo, intrinsic,

or reduced time) and is related by Equation (2.3) to the physical or laboratory
time t . ξ(t) is often described as the time according to a material clock, in this
case a ‘strain clock’. The material clock can run at different speeds relative to
the physical or laboratory clock in a manner which depends on the volumetric
strain history. In deformation histories for whichθ(s) = εkk(s) increases with
time, ξ(t) increases faster than physical time. This results in an acceleration of
stress relaxation. Wineman and Waldron (1993) have shown that if the function
a(θ) can become sufficiently small, the constitutive equation can describe yield
phenomena observed in polymers in uniaxial response.

In this study, attention is restricted to strain histories in which there are
only extensional strains along the coordinate axes. Two sets of conditions are
considered:



40 A. WINEMAN AND J. H. MIN

(1) Biaxial strain control in which strain historiesε11(t), ε22(t), t ≥ 0 are
specified and stress historiesσ11(t), σ22(t), t ≥ 0 are studied;

(2) Biaxial stress control in which stress historiesσ11(t), σ22(t), t ≥ 0 are
specified and strain historiesε11(t), ε22(t), t ≥ 0 are studied.

In each case,ε33(t) andσ33(t), t ≥ 0 are determined by specifying either plane
strain or plane stress. There are no jump discontinuities in the stress or strain
histories att = 0.

For such deformation histories, the constitutive equation in (2.1) and (2.2) can
be restated as

σii = 2

t∫
0

µ[ξ(t)− ξ(s)]ε̇ii (s) ds +
t∫

0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)]θ̇ (s) ds, (2.4)

in which there is no summation over repeated indices andii = 11,22,33. The
notation for the coefficient oḟθ(s) is defined by(K−2µ/3)[x] = K[x]−2µ[x]/3.

The discussion of yield in later sections will make use of an expression for the
time derivative of the stress. This expression, obtained by applying Leibniz’ rule
Kaplan (1962)

d

dt

t∫
0

g(t, u) du = g(t, t) +
t∫

0

∂g(t, u)

∂t
du (2.5)

to Equations (2.3) and (2.4), forii = 11,22,33, is given by

σ̇ii = 2µ(0)ε̇ii (t)+ 2

a(θ(t))

t∫
0

µ̇[ξ(t)− ξ(s)]ε̇ii (s) ds

+
(
K − 2

3
µ

)
(0)θ̇(t)+ 1

a(θ(t))

t∫
0

(
K̇ − 2

3
µ̇

)
× [ξ(t)− ξ(s)]θ̇ (s) ds. (2.6)

It is convenient for later use to rewrite Equation (2.6) in the form

σ̇ii = 2µ(0)ε̇ii (t)+
[
K(0)− 2

3
µ(0)

]
θ̇ (t)

+ 1

a(θ(t))

2

t∫
0

µ̇[ξ(t)− ξ(s)]ε̇ij (s) ds

+
t∫

0

(
K̇ − 2

3
µ̇

)
[ξ(t)− ξ(s)]θ̇ (s) ds

 . (2.7)
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3. Yield Under Biaxial Strain Control

For uniaxial extension carried out under strain control at a constant strain rate,
yield is associated with the occurrence of a local maximum in the stress-time
plot, or equivalently, a local maximum in the stress-strain plot. In this section, we
consider yield under biaxial strain control, for histories of the formε11(t) = α1t

andε22(t) = α2t , with α1 > 0, α2 > 0. A corresponding definition of yield would
be to associate it with local maxima in both theσ11− t andσ22− t plots.

3.1. PLANE STRAIN

For biaxial strain control under plane strain,ε33(t) = 0 andθ(t) = (α1+ α2)t. By
Equation (2.4), the in-plane stresses are given by

σ11 = α1

t∫
0

(
K + 4

3
µ

)
[ξ(t)− ξ(s)] ds

+ α2

t∫
0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)] ds (3.1)

and

σ22 = α2

t∫
0

(
K + 4

3
µ

)
[ξ(t)− ξ(s)] ds

+ α1

t∫
0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)] ds, (3.2)

in which the notationK + 4/3 is defined by(
K + 4

3
µ

)
[ξ(t)− ξ(s)] = K[ξ(t)− ξ(s)] + 4

3
µ[ξ(t) − ξ(s)]. (3.3)

The stress required to maintain the constraintε33(t) = 0, t ≥ 0 is given by

σ33(t) = (α1+ α2)

t∫
0

(
K − 2

3
µ

)
[ξ(t)− ξ(s) ds. (3.4)

By Equation (2.7), the time derivatives of the in-plane stresses are

σ̇11 = α1

[
K(0)+ 4

3
µ(0)

]
+ α2

[
K(0)− 2

3
µ(0)

]
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+ 1

a(θ(t))

α1

t∫
0

(
K̇ + 4

3
µ̇

)
[ξ(t)− ξ(s)] ds

+ α2

t∫
0

(
K̇ − 2

3
µ̇

)
[ξ(t)− ξ(s)] ds

 , (3.5)

σ̇22 = α2

[
K(0)+ 4

3
µ(0)

]
+ α1

[
K(0)− 2

3
µ(0)

]

+ 1

a(θ(t))

α2

t∫
0

(
K̇ + 4

3
µ̇

)
[ξ(t)− ξ(s)] ds

+ α1

t∫
0

(
K̇ − 2

3
µ̇

)
[ξ(t)− ξ(s)] ds

 . (3.6)

Consider first the case of equal biaxial strain histories, for whichα1 = α2. Then,
according to Equations (3.1) and (3.2),

σ11= σ22= 2α1

t∫
0

(
K + 1

3
µ

)
[ξ(t)− ξ(s)] ds, (3.7)

and by Equations (3.5) and (3.6),

σ̇11 = σ̇22

= 2α1

K(0)+ 1

3
µ(0)+ 1

a(θ(t))

t∫
0

(
K̇ + 1

3
µ̇

)
[ξ(t)− ξ(s)]ds

. (3.8)

In Equation (3.8), the first two terms in the square brackets are positive. The in-
tegrand is negative sincėµ(t) < 0 andK̇(t) < 0 due to shear and bulk stress
relaxation. Moreover, asθ(t) increases,a(θ(t)) decreases. Expressions fora(θ(t))
used in ‘clock’ models (e.g. see (Knauss and Emri, 1981, 1997; Wineman and
Waldron, 1993)) can decrease by several orders of magnitude. Consequently, it is
possible that there is a timet∗ such thatσ̇11(t

∗) = 0. As in uniaxial extension, this
indicates the occurrence of yield in equal biaxial extension.

Next, consider unequal biaxial extension. Letα2 = α1 + α̂ and rewrite
Equations (3.1) and (3.2) as

σ11 = 2α1

t∫
0

(
K + 1

3
µ

)
[ξ(t)− ξ(s)] ds
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+ α̂
t∫

0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)] ds (3.9)

and

σ22 = 2α1

t∫
0

(
K + 1

3
µ

)
[ξ(t)− ξ(s)] ds

+ α̂
t∫

0

(
K + 4

3
µ

)
[ξ(t)− ξ(s)] ds. (3.10)

Also, rewrite Equation (3.5) and (3.6) as

σ̇11 = 2α1

[
K(0)+ 1

3
µ(0)

]
+ α̂

[
K(0)− 2

3
µ(0)

]

+ 1

a(θ(t))

2α1

t∫
0

(
K̇ + 1

3
µ̇

)
[ξ(t)− ξ(s)] ds

+ α̂
t∫

0

(
K̇ − 2

3
µ̇

)
[ξ(t)− ξ(s)] ds

 (3.11)

σ̇22 = 2α1

[
K(0)+ 1

3
µ(0)

]
+ α̂

[
K(0)+ 4

3
µ(0)

]

+ 1

a(θ(t))

2α1

t∫
0

(
K̇ + 1

3
µ̇

)
[ξ(t)− ξ(s)] ds

+ α̂
t∫

0

(
K̇ + 4

3
µ̇

)
[ξ(t)− ξ(s)] ds

 . (3.12)

Although K̇ + µ̇/3 < 0 andK̇ + 4µ̇/3 < 0, the sign ofK̇ − 2µ̇/3 is uncer-
tain. However, if|α̂| is sufficiently small, a discussion similar to that applied to
Equation (3.8) suggests that there are timest∗1 and t∗2 such thatσ̇11(t

∗
1) = 0 and

σ̇22(t
∗
2 ) = 0.

From Equations (3.11) and (3.12), it can be seen that

σ̇22(t)− σ̇11(t) = 2α̂

µ(0)+ 1

a(θ(t))

t∫
0

µ̇[ξ(t)− ξ(s)] ds
 . (3.13)
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According to the above discussion the quantity in square brackets may equal zero
at some timẽt . It is clear from Equations (3.11) and (3.12) that this time will be
different from the timest∗1 and t∗2 when the individual stress rates vanish. It then
follows that σ̇22 − σ̇11 6= 0 at eithert∗1 or t∗2 and hence thaṫσ22(t

∗
1 ) 6= 0 and

σ̇11(t
∗
2 ) 6= 0. In other words, a local maximum in theσ11 − t plot occurs at a

different time than a local maximum in theσ22− t plot.
An exception to this result can arise in the special case when the bulk relaxation

function is proportional to the shear relaxation function, i.e.K(t) = C0µ(t) for
some constantC0. Thenσ̇11(t) andσ̇22(t) are each proportional to the expression

µ(0)+ 1

a(θ(t))

t∫
0

µ̇[ξ(t)− ξ(s)] ds. (3.14)

If this expression vanishes at some timet̃ , thenσ̇22(t̃) = σ̇11(t̃) = 0.

3.2. PLANE STRESS

Now σ33(t) = 0 andθ(t) = (α1 + α2)t + ε33(t). The expressions for the in-plane
stresses become

σ11 = 2α1

t∫
0

(
K + 1

3
µ

)
[ξ(t)− ξ(s)] ds

+ α̂
t∫

0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)] ds

+
t∫

0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)]ε̇33(s) ds (3.15)

and

σ22 = 2α1

t∫
0

(
K + 1

3
µ

)
[ξ(t)− ξ(s)] ds

+ α̂
t∫

0

(
K + 4

3
µ

)
[ξ)t)− ξ(s)] ds

+
t∫

0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)]ε̇33(s) ds. (3.16)
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An equation forε33 is obtained from Equation (2.4) withii = 33 andσ33(t) = 0:

0 = 2

t∫
0

µ[ξ(t) − ξ(s)]ε̇33(s) ds

+
t∫

0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)](α1 + α2+ ε̇33(s)) ds (3.17)

or

0 =
t∫

0

(
K + 4

3
µ

)
[ξ(t)− ξ(s)]ε̇33(s) ds

+ (α1+ α2)

t∫
0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)] ds. (3.18)

It can be shown thatK(s) − 2µ(s)/3 > 0 for s = 0 and in the limit ass → ∞.
Let it be assumed that this inequality holds for all 0≤ s. Sinceα1 + α2 > 0,
Equation (3.18) implies thaṫε33(s) < 0,0 ≤ s, which is consistent with physical
intuition. It then follows from Equation (3.17) thatθ̇ (s) = α1+α2+ε̇33(s) > 0,0≤
s. This argument shows that the dilatation under plane stress increases slower than
the dilatation under plane strain.

The expressions for the time derivatives of the in-plane stresses become

σ̇11 = 2α1

[
K(0)+ 1

3
µ(0)

]
+ (α̂ + ε̇33(t))

[
K(0)− 2

3
µ(0)

]

+ 1

a(θ(t))

2α1

t∫
0

(
K̇ + 1

3
µ̇

)
[ξ(t)− ξ(s)] ds

+
t∫

0

(
K̇ − 2

3
µ̇

)
[ξ(t)− ξ(s)](α̂ + ε̇33(s)) ds

 , (3.19)

σ̇22 = 2α1

[
K(0)+ 1

3
µ(0)

]
+ α̂

[
K(0)+ 4

3
µ(0)

]
+ ε̇33(t)

[
K(0)− 2

3
µ(0)

]

+ 1

a(θ(t))

2α1

t∫
0

(
K̇ + 1

3
µ̇

)
[ξ(t)− ξ(s)] ds
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+ α̂
t∫

0

(
K̇ + 4

3
µ̇

)
[ξ(t)− ξ(s)] ds

+
t∫

0

(
K̇ − 2

3
µ̇

)
[ξ(t)− ξ(s)]ε̇33(s) ds

 . (3.20)

Suppose|α̂| and|ε̇33(s)| are sufficiently small. A discussion similar to that applied
in the case of plane strain suggests that there are again timest ′1 and t ′2 such that
σ̇11(t

′
1) = 0 andσ̇22(t

′
2) = 0. Moreover, Equation (3.13) holds for plane stress and

it may again be concluded that a local maximum in theσ11 − t plot occurs at a
different time than a local maximum in theσ22− t .

Numerical simulations were carried out to illustrate these qualitative conclu-
sions using the following forms for the material properties:
Shear Relaxation Function

µ(t) = µ0+ (µ∞ − µ0)
(
1− e−t/aµ), (3.21)

Bulk Relaxation Function

K(t) = K0 + (K∞ −K0)
(
1− e−t/ak), (3.22)

Shift Function

loga = b

2.303

(
1

f0+ cθ −
1

f0

)
. (3.23)

The values of the parameters in Equations (3.21), (3.22) and (3.23) were taken
from Knauss and Emri (1981, 1987). For the shear and bulk relaxation functions,
K0 = 3350.0 MPa,K∞ = 1340.0 MPa,µ0 = 635.0 MPa,µ∞ = 0.2 MPa and
ak/aµ = 20. For the shift functionb = 0.16, c = 1.0 andf0 = 0.01. Note
that settingc = 0 givesa = 1 and the constitutive equations reduce to those
for linear viscoelasticity. Non-dimensional quantities are defined as follows:σ̄ii =
σii/µ0, τ = t/aµ, α′1 = α1aµ, α

′
2 = α2aµ. The constant strain rate histories then

becomeε11 = α′1τ andε22 = α′2τ .
It is useful to briefly comment on the numerical method which was used to ob-

tain the results presented below. For plane strain conditions, the stress components
are directly evaluated using Equations (3.1) and (3.2). In the case of plane stress,ε33

is obtained by solving the non-linear Volterra integral equation (3.17) and the stress
components are evaluated using Equations (3.1) and (3.2). The integrals in Equa-
tions (2.3), (3.1), (3.2) and (3.17) were approximated on a set of equally spaced
times using the trapezoidal rule and the derivatives were approximated with simple
finite differences. Equations (2.3), (3.1), (3.2) and (3.17) provided equations for the
stresses andε33 at each new time in terms of their values determined at previous
times. The use of equal time increments and material properties with exponentials
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Figure 1. Histories ofσ̄11 and σ̄22 corresponding to the biaxial strain historyε11 = 0.5τ ,
ε22 = 0.2τ under plane stress conditions. Comparison for linear (c = 0.0) and non-linear
(c = 1.0) viscoelastic response.

Figure 2. Dilatation histories corresponding to various biaxial constant strain rate histories,
under plane stress conditions.
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Figure 3. Histories ofσ̄11 corresponding to various biaxial constant strain rate histories, under
plane stress conditions.

Figure 4. Histories ofσ̄22 corresponding to various biaxial constant strain rate histories, under
plane stress conditions.
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enabled recurrence relations to be established which facilitated the calculation of
the integrals at each new time. Calculations were carried out with a time increment
1τ = 0.00001, which corresponded to a relative error of less than 0.5% in the
stresses orε33 at the largest solution time.

Figures 1, 2, 3 and 4 show results for plane stress conditions. Figure 1 compares
stress histories̄σ11 and σ̄22 for both linear viscoelastic (c = 0) and non-linear
viscoelastic response (c = 1.0) whenε11 = 0.5τ and ε22 = 0.2τ . The stress
histories coincide for very small times when the dilatation is so small thata(θ) ≈ 1
and ξ(t) ≈ t . As the dilatation increases with time, the material time increases
faster than physical time. The stresses continue to increase for linear viscoelastic
reponse, while for non-linear viscoelastic response each component reaches a local
maximum and then begins to decrease. Note thatσ̄11 has a maximum at about
t∗1/aµ = 0.03 andσ̄22 has a maximum at aboutt∗2/aµ = 0.035. Figure 2 shows
the dilatation history for several values of strain rateα′1 andα′2 = 0.2. After an
initial rapid rise, the dilatation remains nearly constant at a value which depends
onα′1 andα′2. This occurs becauseK∞/µ∞ is very large and the material becomes
nearly incompressible. Figures 3 and 4 show the historiesσ̄11 andσ̄22 for the same
combinations ofα′1 and α′2 as in Figure 2. Note that the history of each stress
component has a local maximum, and that its value and time of occurrence depend
on the choice ofα′1 andα′2. The responses under plane strain and plane stress are
compared in Figures 5, 6 and 7 forε11 = 0.5τ andε22 = 0.2τ . Figure 5 shows
that while the dilatation history in plane strain increases linearly according to the
imposed relationθ = (α′1+ α′2)τ , the dilatation history in plane stress is bounded.
Figures 6 and 7 show that this difference in the dilatation histories for plane strain
and plane stress has a pronounced effect on the corresponding histories of stresses
σ̄11 and σ̄22. Local maxima occur for both plane strain and plane stress, however
the peak occurs earlier and is more distinct for plane strain. Moreover, the stress
histories for plane strain reach minima and then approach a linear increase for
τ > 0.03. This latter increase occurs because, as the dilatation increases linearly
with time, the reduced time becomes very large compared to the characteristic
shear or bulk relaxation time. Stress relaxation then occurs very rapidly, and for
τ > 0.03 the material responds as if it were elastic with constant moduliK∞ and
µ∞.

4. Stress Based Yield Criteria

As mentioned in Section 1, Shay and Caruthers (1986) considered a constitutive
equation similar to that presented in Equations (2.1) and (2.2), but with a different
definition of the functiona(θ) in Equation (2.3). In (1987), they compared predic-
tions of stress at yield in biaxial extension using their constitutive equation with the
von Mises yield criterion. A definition of yield under biaxial deformations was not
presented. In this section, we discuss some issues concerning such comparisons.
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Figure 5. Dilatation histories corresponding to the biaxial strain historyε11 = 0.5τ ,
ε22= 0.2τ . Comparison for plane strain and plane stress conditions.

Figure 6. Histories ofσ̄11 corresponding to the biaxial strain historyε11= 0.5τ , ε22= 0.2τ .
Comparison for plane strain and plane stress conditions.
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Figure 7. Histories ofσ̄22 corresponding to the biaxial strain historyε11= 0.5τ , ε22= 0.2τ .
Comparison for plane strain and plane stress conditions.

The von Mises yield criterion is defined in terms of an equivalent stressT by

T = [σ 2
1 − σ1σ2+ σ 2

2 ]1/2. (4.1)

Consider also a generalized equivalent stressT ′ defined by

T ′ = [aσ 2
1 + bσ1σ2+ cσ 2

2 ]1/2, (4.2)

in whicha, b, c are constants. Note that

T ′ Ṫ ′ = aσ1σ̇1+ b(σ̇1σ2+ σ1σ̇2)+ cσ2σ̇2. (4.3)

It was shown in Section 3 thaṫσ1 = 0 at some timet∗1 and σ̇2 = 0 at a different
time t∗2 . Accordingly, Ṫ = 0 at some timetT which is such thattT 6= t∗1 and
tT 6= t∗2 . Thus, if yield is defined to occur when the von Mises equivalent stress
has a local maximum, then this time will be different from the times when the
individual stress components have their local maxima. Furthermore, it can be seen
that a local maximum in the generalized equivalent stressT ′ occurs at a time which
depends on the choice of constantsa, b, c. Thus, if a stress based yield criterion is
to be associated with the current constitutive equation, there is no unique definition
of yield.

5. Yield Under Biaxial Stress Control

For uniaxial extension carried out under stress control at a constant stress rate,
yield is associated with a strain-time plot which rapidly approaches a nearly vertical
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slope at a finite time. This corresponds to a stress-strain plot which rapidly becomes
nearly horizontal at a finite stress. In this section, we consider yield under biaxial
stress control, for in-plane stress histories of the formσ11(t) = β1t, σ22(t) = β2t

with β1 > 0, β2 > 0. A corresponding definition of yield would be to associate it
with ε11− t andε22− t plots which rapidly approach nearly vertical slopes at finite
times.

5.1. PLANE STRESS

In this case,σ33(t) = 0 andσkk(t) = (β1 + β2)t. Consider first the response in
dilatation determined by Equation (2.2):

(β1+ β2)t = 3

t∫
0

K[ξ(t) − ξ(s)]θ̇ (s) ds. (5.1)

Taking the derivative of Equation (5.1) with respect to time, and rearranging terms,
gives

K(0)θ̇ (t) = (β1+ β2)/3− 1

a(θ(t))

t∫
0

K̇[ξ(t)− ξ(s)]θ̇ (s) ds. (5.2)

It is seen from Equation (5.2) thaṫθ(0) > 0. Hence,θ̇ (t) > 0 in some neigh-
borhood oft = 0. SinceK̇ < 1 because of bulk stress relaxation, the integral
is negative. It follows thaṫθ(t) > θ̇(0) near t = 0. As θ(t) increases,a(θ(t))
decreases and can become very small, as mentioned earlier. In this manner,θ̇ (t)

can grow rapidly and become very large in a finite time interval.
Now, according to Equation (2.1):

(2β1− β2)t/3= 2

t∫
0−

µ[ξ(t)− ξ(s)][ε̇11(s)− θ̇ (s)/3] ds, (5.3)

(2β2− β1)t/3= 2

t∫
0−

µ[ξ(t)− ξ(s)][ε̇22(s)− θ̇ (s)/3] ds. (5.4)

Taking the derivatives of Equations (5.3) and (5.4) with respect to time, and
rearranging terms, gives

2µ[0][ε̇11(t)− θ̇ (t)/3]

= (2β1− β2)/3− 2

a(θ(t))

t∫
0−

µ̇[ξ(t)− ξ(s)][ε̇11(s)− θ̇ (s)/3] ds, (5.5)
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2µ[0][ε̇22(t)− θ̇ (t)/3]

= (2β2− β1)/3− 2

a(θ(t))

t∫
0−

µ̇[ξ(t)− ξ(s)][ε̇22(s)− θ̇ (s)/3] ds. (5.6)

Consider biaxial stress control tests for which 2β1− β2 > 0 and 2β2− β1 > 0. An
argument similar to that following Equation (5.2) shows thatε̇11(t) − θ̇ (t)/3 > 0
andε̇22(t)−θ̇ (t)/3> 0 and can grow rapidly and become very large in a finite time
interval. In other terms, theε11− t andε22− t plots can rapidly approach nearly
vertical slopes at finite times. The rapid increase in slope corresponds to the rapid
decrease ina(θ(t)). As the factor 1/a(θ(t)) appears in both Equations (5.5) and
(5.6), theε11− t andε22− t plots become nearly vertical at about the same finite
time. In this case, yield is associated with a specific time. If either 2β1 − β2 < 0
or 2β2 − β1 < 0, a similar argument shows thatε̇11(t) − θ̇ (t)/3 < 0 or ε̇22(t) −
θ̇ (t)/3 < 0, and the magnitude can grow rapidly and become very large in a finite
time interval.

This strain response was observed by Carapellucci and Yee (1986) in experi-
ments on yield in thin walled tubes of polycarbonate which were subjected to axial
and circumferential constant stress rate histories. The stress state was equivalent
to that considered here. The axial and circumferential strain versus time plots
exhibited the features described above, namely, a slow increase followed by a
rapid steepening so that the plots became nearly vertical at about the same time.
Carapellucci and Yee observed that there is no well defined yield point on these
strain-time or, equivalently, stress-strain curves. They defined yield for one of the
strain-time curves by locating the intersection of the two lines drawn tangential to
the initial and final slopes. This defined a time, and the stresses corresponding to
this time were defined as the yield stresses.

5.2. PLANE STRAIN

In this case,ε33(t) = 0, θ(t) = ε11(t) + ε22(t) and σ33(t) 6= 0. The in-plane
response is given by the relations

σ11 = 2

t∫
0

µ[ξ(t)− ξ(s)]ε̇11(s) ds

+
t∫

0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)]θ̇ (s) ds (5.7)

σ22 = 2

t∫
0

µ[ξ(t)− ξ(s)]ε̇22(s) ds
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+
t∫

0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)]θ̇ (s) ds, (5.8)

andσ33(t) is given by

σ33(t) =
t∫

0

(
K − 2

3
µ

)
[ξ(t)− ξ(s)]θ̇ (s) ds. (5.9)

It follows from Equations (5.7) and (5.8) that

σ11(t)+ σ22(t) = (β1 + β2)t = 2

t∫
0

(
K + 1

3
µ

)
[ξ(t)− ξ(s)]θ̇ (s) ds. (5.10)

Equation (5.10) is similar in structure to Equation (5.1). By differentiating Equa-
tion (5.10) with respect to time, and recalling thatK̇ < 0 andµ̇ < 0, the same
arguments used in conjunction with Equation (5.2) lead to the conclusion thatθ̇ (t)

is positive and can grow rapidly and become very large in a finite time interval.
By subtracting Equations (5.7) and (5.8), it is seen that

σ11(t)− σ22(t) = (β1 − β2)t = 2

t∫
0

µ[ξ(t)− ξ(s)](ε̇11(s)− ε̇22(s)) ds. (5.11)

It can be assumed thatβ1 > β2 without any loss in generality. Equation (5.11) is
similar in structure to Equations (5.1) and (5.10). Sinceµ̇ < 0, it can be concluded
that ε̇11 − ε̇22 is positive and can grow rapidly and become very large in a finite
time interval. It follows that the same conclusion applies toε̇11. Finally, if β2 is
sufficiently close toβ1, thenε̇22 will behave in a manner similar tȯε11. In summary,
theε11− t andε22− t plots in plane strain have the same qualitative behavior as in
plane stress and can rapidly approach vertical slopes at about the same finite time.

Numerical simulations were carried out to illustrate these qualitative conclu-
sions using the same material properties and parameter values as in Section 3.
Figure 8 shows the histories ofε11 andε22 for both linear viscoelastic (c = 0) and
non-linear viscoelastic response (c = 1.0) under plane stress with̄σ11 = 300τ and
σ̄22 = 200τ . The strain histories for linear and non-linear response are very close
for short times whenξ(t) ≈ t . When the response is non-linear, a rapid steepening
in the strain-time plots begins at aboutτ = 0.8. Calculations were terminated at
τ = 1.0 when the maximum strain reached a value of about 0.065. Note that these
stress histories are such that 2β1 − β2 > 0 and 2β2 − β1 > 0 and, as shown
by the analysis, the corresponding strain histories have rapidly increasing positive
slopes. Figures 9, 10 and 11 show results for non-linear viscoelastic response under
plane strain and plane stress conditions whenσ̄11 = 300τ and σ̄22 = 100τ . The
dilatation for plane strain increases faster than for plane stress. This leads to a
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Figure 8. Histories ofε11 andε22 corresponding to the biaxial stress historyσ̄11 = 300τ ,
σ̄22 = 200τ under plane stress conditions. Comparison for linear (c = 0.0) and non-linear
(c = 1.0) viscoelastic response.

Figure 9. Dilatation histories corresponding to the biaxial stress historyσ̄11 = 300τ ,
σ̄22= 200τ . Comparison for plane strain and plane stress conditions.
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Figure 10. Histories of ε11 corresponding to the biaxial stress historyσ̄11 = 300τ ,
σ̄22= 100τ . Comparison for plane strain and plane stress conditions.

Figure 11. Histories of σ̄22 corresponding to the biaxial stress historyσ̄11 = 300τ ,
σ̄22= 100τ . Comparison for plane strain and plane stress conditions.



BIAXIAL YIELD FOR NONLINEARLY VISCOELASTIC MATERIALS 57

significant difference in the histories ofε11 andε22 for plane strain and plane stress
which is shown in Figures 10 and 11. There is a rapid steepening in the strain-time
plots for plane strain at aboutτ = 0.6 while that for plane stress appears to occur
much later. Finally, note that these stress histories are such that 2β1 − β2 > 0 and
2β2 − β1 < 0. As indicated by the analysis, theε11 versustime plot has a positive
slope and theε22 versustime plot has a negative slope, and the magnitudes of the
slopes increase with time.

Figures 8 and 10 show that the calculated strain increases to 10% which is
certainly at the limit of the linearized strain approximation. These results suggest
that, in a further study of strain growth under stress control conditions, the present
constitutive equation should be replaced by one which is properly frame invariant
and can therefore account for finite strains.

6. Concluding Comments

The analysis and numerical results show that yield under biaxial constant strain rate
conditions differs in several ways from yield under biaxial constant stress rate con-
ditions. At yield under biaxial constant strain rate conditions, the in-plane normal
stress-time plots have local maxima, but at different times. At yield under biaxial
constant stress rate conditions, the in-plane extensional strain-time plots approach
nearly vertical asymptotes at about the same time. In addition, these plots depend
on whether plane stress or plane strain conditions apply. This dependence arises
because the dilatation grows faster under plane strain conditions. In summary, yield
depends on which of the four combinations of conditions is present.

The results presented here are based on specific definitions of yield. It is pos-
sible that there are other definitions of yield which should be considered. It is
also possible that the above definition of yield could be satisfied for one stress
or strain component, but not the other. For example, under biaxial constant strain
rate conditions, a local maximum may occur in the stress-time plot for one stress
component but not the other. The question then arises as to whether this should be
regarded as yield. A discussion of this point is beyond the intended scope of this
study.
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