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Abstract. The equations of motion for the major components in an internal combustion engine are
developed herein using a recursive formulation. These components include the (rigid) engine block,
pistons, connecting rods, (flexible) crankshaft, balance shafts, main bearings, and engine mounts.
Relative coordinates are employed that automatically satisfy all constraints and therefore lead to the
minimum set of ordinary differential equations of motion. The derivation of the equations of motion
is automated through the use of computer algebra as the precursor to automatically generating the
computational (C or Fortran) subroutines for numerical integration. The entire automated procedure
forms the basis for an engine modeling template that may be used to support the up-front design
of engines for noise and vibration targets. This procedure is demonstrated on an example engine
under free (idealized) and firing conditions and the predicted engine responses are compared with
results from an ADAMS model. Results obtained by using different bearing models, including linear,
nonlinear, and hydrodynamic bearing models, are discussed in detail.

Key words: engine modeling, recursive algorithm, symbolic programming, journal bearing, flexible
MBD.

1. Introduction

Finite element techniques are frequently employed in evaluating the dynamic re-
sponse of well-defined engine designs; see, for example, [1-9]. The finite element
models require detailed geometric and material data of the engine components,
as well loading data defined by engine combustion forces (and possible coupling
with the remainder of the powertrain). At the start of an engine design, this in-
formation is simply unavailable. Nevertheless, the need exists at the start of the
engine design cycle to estimate the dynamics of an engine and to a degree needed
to verify performance targets. To this end, simplified engine models have been
proposed for estimating some performance measures. For instance, a rigid body
engine block model may be used for designing engine mounting systems (e.g., 10—
13]). These models, however all ignore the dynamic coupling with the crankshaft.
More recent models [14—16] include one-way coupling of the crankshaft motion
on the engine block, but then ignore the crankshaft and bearing flexibility that is
needed to estimate bearing reaction loads. By contrast, models that incorporate
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crankshaft and bearing flexibility [17-19], typically ignore the engine mounting
system, and consider the motion of the pistons and connecting rods as prescribed
functions. Thus, the coupling effects of the crankshaft flexibility with the engine
mounting system and with the piston-rod motion are ignored. Two recent studies
[20, 21] stress the importance of developing complete and fully coupled engine
models.

Fully coupled engine models can be constructed through the use of commercial
multibody dynamics codes, such as ADAMS and DADS; see, for example [22-25].
These commercial codes provide a modeling platform for very general mechanical
systems and the time and effort required to learn how to use these codes may
preclude their use for the non-expert who also desire quick estimates for differing
engine designs at the very start of the design cycle.

In this paper, an alternative and specialized modeling platform is developed
that functions as a ‘template’ for engine design. Relative to commercial codes,
this engine design template leads directly to the minimum number of equations of
motion describing the dynamic response of the engine by a priori satisfaction of
kinematic constraints. This is achieved by employing relative coordinates in lieu of
the absolute coordinates adopted in commercial multibody dynamics codes. This
engine modeling tool requires only minimum information for the input data. As
a further benefit, the engine models herein, are cast purely as a (minimum) set
of ordinary differential equations of motion in lieu of the differential-algebraic
equations that result from using commercial multibody dynamics codes. These
differences lead to engine models that may be built with minimum inputs and also
integrated with greater efficiency.

The objective of this paper is to review the basic formulation that forms the
core of the engine modeling template (EngTmp) for the up-front design of engines
for noise and vibration targets. This paper begins by describing engine kinematics,
the relative coordinates, and the independent coordinates used for the recursive
formulation. Next, D’ Alembert’s principle is employed to automatically generate
the equations of motion using symbolic-computation. Computational code is then
developed from this result for use in EngTmp. This procedure significantly reduces
the cost involved in developing the recursive model and also reduces the possibility
of coding errors. Three critical modeling issues are addressed in this formulation;
namely the engine mounts, the journal bearings, and the flexible crankshaft. The
EngTmp is then used to evaluate the response of an example engine under free
(idealized) and firing conditions and the predicted engine responses are compared
with results from an ADAMS model. Results obtained by using different bear-
ing models, including linear, nonlinear, and hydrodynamic bearing models, are
discussed in detail. We begin by describing the kinematical quantities.
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Figure 1. An example V-6 engine model.

2. Engine Kinematics

The kinematical quantities to describe the engine dynamics are key issue to the
modeling approach developed in this paper. We employ relative coordinates as
generalized coordinates. Figure 1 shows the structure of an example engine (Ford
2.5L-V6). The critical components to be modeled include the engine block with six
cylinders (7¢ylinder = 6), a crankshaft supporting six pairs of pistons and connecting
rods, a balance shaft, four main journal bearings (7joumar = 4), and four engine
mounts (Myoune = 4). A traditional approach in modeling a multi-body system
such as this engine is to assign six degrees-of-freedom (dof) to each individual
rigid body and then to satisfy the kinematic constraint equations and the equations
of motion simultaneously during integration. In this example, composed of 15
individual bodies, this approach produces a model with 90 degrees of freedom
subject to 78 constraints. The remaining 12 dof are required to uniquely describe
the position and orientation of the engine block (6 dof), and the position and ori-
entation of the rigid crankshaft relative to the engine block (6 dof). (Note that the
crankshaft is presently considered rigid for the purpose of this discussion.) The
use of the constraint equations in this traditional formulation results in a set of
differential-algebraic equations that is generally more difficult to integrate than
ordinary differential equations alone. It is also possible to formulate this engine
model in terms of just 12 ordinary differential equations provided one satisfies
the constraints a priori. The key to doing so is to employ relative coordinates as
described in the following section.
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Figure 2. Relative coordinate systems.

2.1. RELATIVE COORDINATE SYSTEMS AND GENERALIZED COORDINATES

Seven coordinate systems, o; —x;y;z; (i = 1,2,...,7), are defined in the Appendix
for use in the engine model as illustrated in Figure 2. Let of 0o; — x1y;z; denote
the vehicle coordinate system, 0, — x,y,2» the engine block coordinate system,
03 — x3y323 the crankshaft floating coordinate system, o4 — X4V4z4 the crankshaft
fixed coordinate system, os — x5Yysz5 the crankshaft throw coordinate system, og —
X6 Y6z the connecting-rod coordinate system, and 0; — x7y7z7 the piston coordinate
system.

The components of a position vector in a coordinate system o; — x; y;z; defined
by

ri=1 i (D
Zi

can be transformed into components in the coordinate system 0;_| — X;_1Yy;i_1Zi—1
through

ri_p =d;_ + A1, ()

where d;_; denotes the position vector of the origin of of o; — x;y;z; relative
to 0;—1 — X;—1Yi—1Zi—1, and A;_;; is the rotation matrix of o; — x;y;z; with re-
spect to 0;_; — X;—1Y;—1Z;—1. Explicit expressions for d;,_; and A,;_; ; (where i =
2,3,...,7) are provided in the Appendix.

Note that this formulation allows crankshaft flexibility to be captured. Here, the
crankshaft is considered as a linear elastic body with small displacement at the
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crankshaft-fixed coordinate system (04 — x4y424). In particular, the displacement in
the x4—y4 plane, which is perpendicular to the axis of the crankshaft, is considered
to have appreciable influence on the motion of the pistons and connecting rods. The
effect of longitudinal deformation of the crankshaft along the crankshaft axis has
negligible influence on the motion of pistons and connecting rods, and therefore is
ignored in this model.

Crankshaft deformations are described using a modal representation. Let
(® = [¢1.¢2, ..., P, ..] Tepresent a set of the selected crankshaft vibration
mode shapes (describing bending and torsional modes of the crankshaft) and
P = {P1, P2 -+ Py} @ set of corresponding modal coordinates, where p;’s
are independent each other, and np04es denotes the number of modes selected.
Then the position of a point on the crankshaft at the crankshaft coordinate system
(04 — x4Y424) can be described by the vector

Nnodes

Iy = l‘irigid) + Z ®i Di»s 3)
i=1

where rffigid) denotes the position vector of the point with no crankshaft vibration

(measured at the crankshaft fixed coordinate system).

Let y, denote the torsional deformation (angle) of the crankshaft at the nth
crankshaft throw, which is the deformation angle occurred between axes yé") and
y4 in Figure 14 due to the crankshaft torsional deformation. Let ¢, denote the radial
displacement of the center of the nth pin joint at the crankshaft, which is measured
along axis y." direction shown in Figure 14. These quantities can be written as the
functions of the modal coordinates using Equation (3), and then used in kinematic
relationships of the relative coordinate systems as detailed in the Appendix.

A minimal set of the general coordinates for the engine model is then chosen
as:

q = {qi} = {up, Vb, Wh, A, Bis Voo Ues Ves We, ey Bes Pis Pos - -+ s Primogess 015 (4
where u;, vy, w, denote the coordinates of the origin of the engine block frame
with respect to the vehicle body, «;, 85, ¥» denote the Euler angles of the engine
block with respect to the vehicle body, u., v., w. denote the coordinates of the
origin of the crankshaft frame (namely 03 — x3y3z3) with respect to the vehicle
body, «., B., y. denote the Euler angles of the crankshaft axis with respect to the
vehicle body, p; (i = 1,2, ..., nmodes) denote the modal coordinates for the se-
lected 7m04es NUmMber of crankshaft vibration modes, and 6 denotes the crankshaft
rotation angle from top dead center (TDC). Note that y, = y,, as the relative rigid
body rotation between the crankshaft and the block about the z axis is determined
by the crankshaft angle 6. Also note that the Euler angles, oy, By, ¥p, ¢, Bc, are
assumed to be sufficiently small so that subsequent nonlinear terms in these angles
can be ignored. The total number of generalized coordinates in the engine model
is therefore

Ndof = 11+ Nmodes O Hgof = 12 + Nmodes (5)
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depending on whether the crankshaft angle 6 is prescribed (as in a steady-state
analysis) or treated as an independent degree of freedom (as in a transient analysis).

2.2. DISPLACEMENTS, VELOCITIES, AND ACCELERATIONS IN TERMS OF THE
GENERALIZED COORDINATES

Equation (2) can be rewritten in a more compact form by using the 4 x 4 transform
matrix,

R =GR, (6)
where
_ T A dig
R,-_{l} and C,_l,,—|: 0 ) } @)
The inverse relation between vectors r; and R; therefore is
1000
r,=DR;, where D= 0100 ()
0010

Using Equations (6-8), the displacements in any local coordinate system o —
X yrzx can be transformed to the vehicle coordinate system o; — x;y;z; which
serves as the global coordinate system. Thus,

ry = DCl’k Rk, (9)
where k =2,3,...,0or7, and
Ciir=C12Cps ... o1k =C -1 Croiie (10)

Using results from the Appendix, Equation (9) yields an explicit relationship
between the displacements in a local coordinate system and the generalized
coordinates introduced in Equation (4).

By differentiating Equation (9) we obtain

r =D(C R; + Cl,k Ry), (11)
where
Ciu=Cii 1 Cix+Crii G (12)

Therefore, the velocity components in any local coordinate system oy — X yx 2 can
be transformed to these in the global coordinate system by using Equation (11).
Equation (11) defines an explicit relationship between the velocity components
in a local coordinate system with the generalized coordinates  and their first
derivatives (.
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Figure 3. (a) Block diagram of typical V-6 engine structure, and (b) a closed kinematic loop
of engine modeling chain.

By differentiating Equation (11) again, we obtain

r =D(C R, + 2C1,k R, + Cl,k Ry), (13)
where
Cii=Crici Coorx +2C14c1 Croik + Crpet Crorr - (14)

Therefore, the acceleration components in any local coordinate system o — xi V2
can be transformed to those in the global coordinate system by using Equa-
tion (13). Equation (13) defines an explicit relationship of the accelerations in a
local coordinate system with ¢, q, and q.

2.3. VIRTUAL DISPLACEMENTS IN TERMS OF THE GENERALIZED
COORDINATES

By taking the variation of Equation (9), the virtual displacements in any local
coordinate system oy — X; yxZx become

dr; =D(Cy ; SRy + Ry +6C & Ry), (15)
where
8C1x =8C k-1 Crorp + Cr -1 6C—1 i - (16)

Equation (15) defines an explicit relationship of the virtual displacements in a local
coordinate system with q and q.
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Figure 4. Piston-connecting rod system.

2.4. CONNECTING-ROD OBLIQUE ANGLE IN TERMS OF THE GENERALIZED
COORDINATES

Figure 3a shows a block diagram of the example engine structure. Inspection of
Figure 3a, reveals six modeling chains that form closed kinematic loops, as shown
in Figure 3b. To derive the equations in terms of only the independent coordinates,
one needs to cut the modeling chain to form an open loop. Figure 3b shows the
modeling chain cut at the link between the piston and the engine block. Next, we
will discuss how this can be done without adding additional constraints.

Figure 4 illustrates the structure of the piston-connecting rod system for the
nth cylinder, where 6, is the rotation angle of the center line of the crankshaft
throw measured from the center line of the cylinder. Note that 6,, in general, is a
function of the crankshaft angle, the firing angle of the nth cylinder, and the angular
deformation due to torsional vibration of the crankshaft at the nth crankshaft throw.
¢, stands for the connecting-rod oblique angle of the nth piston-connecting rod
system. In the development above, ¢, (n =1, 2, ..., n¢ylinger) are used but they are
also dependent on the generalized coordinates as shown next.

Refer to Figure 4 and let L be the length of the connecting rod, r the radius of
the crankshaft throw, and /4 the piston offset. Then,

sing, = ry sinf, — hy, (17
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or
¢, = asin (r sin6, — hy), (18)

where r;, = r/L and h; = h/L. Differentiating Equation (18), once and then again
yields

¢n = a19n and ¢n = 6110,1 + a29na (19)
where
rp cos 6, r? cos’ 0, sing, rpsin6,
a; = and a, = 3 — .
Cos @, cos® @, cos ¢y,

Also we have
8¢, = a,86,. (20)

Equations (18-20) are used to calculate the angle, angular velocity, angular ac-
celeration, and virtual displacement of the connecting-rod oblique angle in term
of 6,, where 6, is a function of the generalized coordinates. As a result, the
constraint equations for the pistons and the cylinders are eliminated by using
Equations (18-20).

3. Use of D’Alembert’s Principle

D’ Alembert’s principle (e.g., [26, 27]) is written here in a form that is convenient
for automatically deriving the equations of motion of a multi-body system through
a symbolic calculation code, e.g., Maple or Matlab. Assume that q = {g;(¢)}
(wherei = 1,2, ..., n40r) is a set of ngor generalized coordinates, that describes
the configuration of the multibody system. Then, let ¢ = {¢;},q = {g;}, and
dq = {8q;} denote the generalized speeds, generalized accelerations, and vir-
tual displacements, respectively. D’ Alembert’s principle provides the equations of
motion from

W =0; Vdq, 21

where §W = §W(dq, q, q, q) denotes the total virtual work done by all forces in
the system at time ¢, including inertia forces, gravity, conservative forces, dissi-
pative forces, and combustion forces, and where dq satisfies all of the kinematic
constraints.

We select the generalized coordinates for the engine model so that they are
independent. In this case, Equation (21) gives a set of n4. independent ODEs,
which can be written in the form

W)sq, =0 (=1,2,...,n4f), (22)
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where , = d/0x. Equation (22) can be further rewritten as

Mg = Q, (23)
where M = (M;j)n;xnq denotes the generalized mass matrix of the engine
system, and Q = (Q )1 denotes the generalized force vector given by

Mij = _(SW),(Sq,ﬁj (lv ./ = la 2a D) ndof)a (24)

Ndof
Qi =(OW)sg + > MyG; (=12, 1. (25)

j=1

Note that Q; = Q;(q, q) is a function of the generalized coordinates q and gen-
eralized speeds . The terms containing ¢; in the left side of Equation (25) will
be canceled by the same terms (with the opposite signs) from (§W) 5, (by the
symbolic calculation).

Equation (23) can be cast in standard form for first order ODEs and then solved
by a standard ODE solver. Equations (24) and (25) can be used to calculate the
generalized mass matrix and generalized force vector by a symbolic calculation
code such as Maple or Matlab provided the virtual work § W is known as an explicit
function of the generalized coordinates q. The critical step in this approach is to
derive the explicit form of the virtual work defined in Equation (21), and this will
be described in the following section.

4. Virtual Work

The total virtual work of the engine system can be decomposed into the following
contributions

W = SVVinertia + SWgravily + SWcombustion + 4 Wmounl
+ 8Wbearing + 8Wdeformalion + 8Wload . (26)

Here, § Wipenia denotes the virtual work done by all inertia forces in the system
including those acting upon the engine block, crankshaft, connecting rods, pistons,
balance shafts, counterweights, etc. § Wity denotes the virtual work done by grav-
ity on these same components, § Weompustion denotes the virtual work done by the
combustion forces and friction forces on the pistons, § Wyoune denotes the virtual
work done by the elastic and dissipative forces at the engine mounts, § Wyearing
denotes the virtual work done by the main bearings, § Wetormation denotes the virtual
work due to flexible crankshaft deformation, and 8 Wj,,q is the virtual work due to
all other external loads.
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4.1. VIRTUAL WORK OF INERTIA FORCES

The virtual work of the inertia forces are obtained by superposing their contribu-
tions from each individual body, i.e.,

Npody
8Winertia = Z Swi(r?gma’ (27)
n=1
where the index n(n = 1,2, ..., nyoqy) identifies each body in the engine system,
Npody denotes the total number of bodies. Here,
8w$;m=1/8ﬁ“-(—p“>ﬁ”>d9, (28)
Q)l

where Sr(ln) denotes the virtual displacement (vector) of a differential element of
mass p™ dQ2 in body n, i‘g") denotes the acceleration of the same differential ele-
ment, p™ denotes the mass density of body 7, (note that the material density will,
in general, vary from body to body) and €2,, denotes the volume (domain of integra-
tion) of body n. Note that both & r(ln) and E(I”) are measured in the global coordinate
system 0; — x1y;z;1. As a result, 81’5") is a function of the generalized coordinates,
q, and the virtual displacements, dq while ijg") is a function of the generalized
coordinates q, velocities ¢ and accelerations . These functions are constructed
using the kinematical relations for the engine as discussed in the previous section.

Only the inertia forces contribute to the generalized mass matrix M in Equa-
tion (23), and therefore substituting Equation (28) into Equation (24), yields

Npody

My = (=8widid sai; (=12, ... ngop). (29)
n=1

Inspection of Equation (29) reveals that the generalized mass matrix can be con-
structed by simply superposing the contributions from each body in the engine
system, i.e.,

Npody

M= Z M®™ (30)
n=1

Wh.ere Mi(;) = (—.8 wi(:e)ma)-,éqiiij (i,j = 1,2,...,nq) are related to body n oply.
This feature provides a natural way to decompose the overall engine system into
subsystems and components and to assemble the subsystems’ matrices to form the

system’s matrix.
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4.2. VIRTUAL WORK OF GRAVITY

In an analogous manner, the virtual work done by gravity forces is obtained by
superposing the virtual work done by gravity on each individual body in the system,
ie.,

Npody
()
SWgravity = Z Swgravily’ (31)
n=1
where
SWyravity = f 5rl - (pg) A, (32)
Qo

where (Srﬁn) denotes the same virtual displacement vector as defined in Equa-
tion (28), and g denotes gravity (vector).

4.3. VIRTUAL WORK OF COMBUSTION FORCES AND FRICTION FORCES

The virtual work of combustion force and friction force acting between the nth
piston and the engine block is written as
(n) — 5™ g

combustion — piston “combustion’

Sw (33)

(n)
where Srpiston

the engine block at the point where the combustion force is applied, and fi’;inbumon
denotes the summation of the combustion and friction forces acting between the
nth piston and the engine block. Both § r;’fgton and ré’éinbumon can be measured in the
engine block coordinate system. Note that the friction force represents the resis-
tance caused by the friction between the piston and cylinder wall. It is assumed that
the friction force (after lumping) is acting at the some point where the combustion
force is applied, though this assumption can be relaxed if the actual distribution of
the friction force is known.

Let ncyjinger be the number of the cylinders and the virtual work contributed by

all piston combustion/friction forces becomes

denotes the relative virtual displacement between the nth piston and

Ncylinder

SWcombuStiOH = Z Sngnbustion' (34)

n=1
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4.4. VIRTUAL WORK OF ENGINE MOUNT FORCES

The engine mounts generate forces as functions of the relative displacement and the
relative velocity between the engine block and the vehicle at the mounting point,
ie.,

) ) (n) = (1)
f<rrlllount = f(111110unt (rn’:ounta rn’:ount ’ (35)

where rf{fgum is the relative displacement at the nth mount, and ff;;gum is the relative

velocity at the same mount. rﬁ,’fgum and i‘ﬁ,’fgum can be calculated in terms of the

generalized coordinates and the velocities of the generalized coordinates, i.e.,

Fown = dy + (") @, and  Eun = dp + &™) O, (36)
where 5™ is the position vector of the nth mount measured in the block

coordinate system.

In general, ffr'fgum is a nonlinear function of the generalized coordinates and it
depends on the stiffness and damping characteristics of the engine mount. For
the examples in this paper, a linear elastic bushing model is used for the engine
mounts for comparison with an ADAMS engine model, that employs the same
bushing model. A nonlinear viscoelastic bushing model such as one proposed in
[28] could also be employed in the current engine model. Note that the effects of
the rotational stiffness and rotational damping of the engine mounts are presently
ignored, although they may also be added in a straight-forward manner if known.

The virtual work of the engine mount forces in the nth engine mount is

Swr(r’:czunt = Srf:())unt : f(rr?gunt’ (37)
where Sl = 8d, + (F°"™)78@,, denotes the virtual displacement of the
engine block at the location of the nth engine mount relative to the vehicle body.
Let nmount be the total number of the engine mounts and the total virtual work done
by all engine mounts is

Nmount

§Wanount = Y SWinounc (38)

n=1

4.5. VIRTUAL WORK OF MAIN BEARING FORCES

The journal bearings produce forces as functions of the relative displacement and
relative velocity between the crankshaft and the engine block at the main journals,
i.e.,

(0 g e (39)

bearing — “bearing \" journal® ~journal
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is the relative displacement at the nth main journal, and i)

journal is the
r®

()
where rj ournal

. . . . . (n) .
relative velocity at the same main journal. 1y, and ¥, can be calculated in

terms of the generalized coordinates and their derivatives, i.e.,
Forma = de — &y + &™) (O, - ©)), (40)

journal

Ema = de — 4 + &™) (O, — ©)), @l
where r];umal(") is the position vector of the nth main journal measured in the block
coordinate system.

The bearing models employed in this paper include: (1) a linear spring-damper
model (that is also used by commercial multibody dynamics codes), (2) a nonlin-
ear spring-damper model, and (3) a hydrodynamic model based on the Reynold’s
equation.

4.5.1. Linear Spring-Damper Bearing Model

The linear spring-damper bearing model is defined by a linear force-eccentricity
relationship

f=—ke—ce, (42)

where f denotes the bearing force vector, e and € denote the vectors of eccentricity
and eccentricity rate, and k and ¢ denote the stiffness and damping coefficients of
the bearing.

4.5.2. Nonlinear Spring-Damper Bearing Model

The nonlinear spring-damper bearing model is defined by the force-eccentricity
relationship

k P P
f= —k() (—1) 1 € — (o (C_l) l s (43)
ko Co

where ki and c( denote the stiffness and damping of the bearing at e = |e| = 0, k;
and c; denote the stiffness and damping of the bearing at ¢ = e, and e is a given
reference value of the eccentricity.

4.5.3. Hydrodynamic Bearing Models

The hydrodynamic bearing models employed herein are based on the special so-
lutions of the Reynold’s equation (refer to [29, 30]). For example, in the so-called
‘short bearing’ case, we have

o
WRL3V, [ 1
= | = cos(f + a) cos(@ + B) do, (44)
01
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Figure 5. Variables of a main journal bearing.

o

ERLYV, [y sin® 4 ) 45

= ﬁcos( + ) sin(6 + B) d6, (45)
0

where f = {f,, f,}7., i denotes the fluid viscosity, R denotes the journal radius,
L denotes the length of the journal, C denotes the journal clearance, V is termed
the journal’s ‘pure-squeeze-velocity’, « is the angle between the journal’s pure-
squeeze-velocity vector and the eccentricity vector (Figure 5), % is the normalized
film thickness defined by

h=1+c¢ecosh, (46)

where ¢ is the eccentricity ratio of the journal measured in the polar-cylindrical co-
ordinate system, ¢ = ¢/C, 6 denotes the angle of the polar-cylindrical coordinates
as shown in Figure 5, and 8 is the angle between the eccentricity vector and the X
axis of O — XY as shown in Figure 5.

Note that the integration domain of Equations (44) and (45) can lead to either a
7 or 2t model for the short bearing. For the short-r bearing model, the limits of
integration are 8 = 7 /2 — o and 6, = 37 /2 — «, and for the short-27 bearing
model, these limits become 6, = 0 and 6, = 2.

The virtual work done by the forces in the nth main journal bearing is

(n) ()] n)
waearing - Srjournal ’ fl()earing’ (47)
where rjy) = 8d, — 8d, + E™NT (5@, — §©,) denotes the relative virtual

displacement between the crankshaft and the engine block at the location of this
bearing. Let njouma be the total number of main journals, and therefore the virtual
work done by all bearing forces becomes

Njournal

SWbearing == Z Swt()Z;ring’ (48)

n=1
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In the next section, we will give an example that compares results obtained
using these three different bearing models, i.e., linear spring-damper, nonlinear
spring-damper, and hydrodynamic (typically, short-7).

4.6. VIRTUAL WORK ASSOCIATE WITH FLEXIBLE CRANKSHAFT
DEFORMATION

The crankshaft is considered as a flexible body, that may deform during engine
operation. Crankshaft vibration is known to influence engine dynamics, a fact re-
ported in many studies; see, for example, [17, 18, 25]. To this end, we employ
a modal representation for crankshaft flexibility as shown in Equation (3). From
Equation (3) and Equations (6—8) we have

Nmodes

rics) _ rics—rigid) F AL Z i i 49)

i=1

where r?s) denotes the position vector of a point on the crankshaft after the crank-

shaft deformation, rics_rigid) denotes the position vector of the same point before

crankshaft deformation and A; 4 = A, As3 As4. Both rics) and rics_rigid) are
measured in the global coordinate system o; — x;y,z;. Here,

r'“ — pCy 4 R (50)

By taking the variation of Equation (49), the virtual displacement of any point
on the crankshaft can be obtained as

Nmodes

ori = 8T 4 3" (5AL4 pipi + Ava $idp0). 51)

i=1

By differentiating Equation (49) twice, we obtain the acceleration of the same
point on the crankshaft

Nmodes

R Z (A1 4 ipi +2A14 ¢ pi + Ars §i ). (52)

i=1

where p;, p;, §p; denote the velocity, acceleration, and virtual displacement asso-
ciated with p;.

Equations (51) and (52) are substituted into Equation (28) (where n = cs)
to calculate the virtual work of the crankshaft inertia forces. As shown in Equa-
tion (49), if nmeges = 0, rffs) = rffs_ngld), and the crankshaft model reduces to that
of a rigid body. On the other hand, crankshaft models of increasing fidelity can be

constructed by adding selected higher order crankshaft modes in sequence.
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The virtual work done by the internal stresses of the crankshaft can be written
as

Swdeformation = - / deec dQ’ (53)

QCS

where e denotes the strain tensor due to the virtual deformation, o is the stress
tensor due to the same virtual deformation, and e denotes a tensor product. The
domain of integration in Equation (53) is the domain (volume) of the crankshaft
Q. If modal coordinates are used as the generalized coordinates, then this virtual
work can be recast as
Timodes
S Weformation = — Z 51?1 (wlzpt + 2%-1'601' 151'), (54)
i=1
where w; are the natural frequencies of the crankshaft, and &; denotes the compan-
ion modal damping ratios. Note that the virtual work contributed by dissipation
within the crankshaft is captured in Equation (54) by the use of modal damping.

The mode shapes above are defined by prescribing the relative displacement at
selected points along the crankshaft. For instance, the relative displacements at the
main bearings, at the connecting rod bearing points, and/or at the locations of the
counterweights are required. Thus, it is not necessary to have a full (functional)
representation of the crankshaft mode shapes, only a discretized representation at
these selected points. This feature makes this model attractive for upfront engine
design since a detailed design of the crankshaft may not be available.

Finally, note that the crankshaft vibration modes, natural frequencies and damp-
ing ratios can also be obtained from analytical crankshaft models, finite element
models, experimental measurements, or estimates based on similar designs. The
modal parameters could also be prescribed as requirements for crankshaft design
in support of target cascading.

5. Example Results

The primary purpose of this paper is to summarize the formulation of a general
engine model. Preliminary results will now be described pertaining to an example
engine already in production. The first results describe the free (idealized) motion
of this engine system. This is followed by results that describe forced motion due
to engine combustion forces.

5.1. FREE MOTION

In the first example, eleven rigid body modes of a Ford V-6 engine are predicted
using the engine model developed in this paper. Figure 6 illustrates how the natural
frequencies of these eleven modes vary with the rotation (position) of the crank-
shaft. Here, the first six modes govern the free vibration of the engine block which
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Figure 6. Natural frequencies of engine modes vs. crankshaft angle.

rests on four engine mounts. The last five modes govern the free vibration of the
(rigid) crankshaft which is captured by the four main bearings. Both the engine
mount and bearing models are linearized for the purpose of this calculation. As
shown in Figure 6, the rotation of the crankshaft influences the motion of the
pistons, connecting rods and other engine components and hence alters the system
mass distribution to a modest degree as reflected in the results of Figure 6. Note
that at most, this effect produces a 2 Hz change in the natural frequencies of the
eighth and ninth modes which correspond to the lateral and yaw vibrations of the
crankshaft, respectively.

5.2. FORCED MOTION

We now consider three different cases of forced response. In the two of these
cases, the crankshaft is driven at a constant speed of 600 rpm. In the first case,
the main bearings are considered rigid, and in the second case, the main bearings
are represented by a linear springdamper model. Both results are obtained using
the engine model developed in this paper, and also compared to an equivalent
model constructed using ADAMS. The third case extends the calculation to include
different bearing models. To this end, we will compare three different bearing mod-
els, including the linear, nonlinear, and hydrodynamic (short-7) bearing models
described herein.

Figure 7 provides a comparison of the predicted mount forces on the rear-right
engine mount with the results obtained from an ADAMS simulation for the first
case (rigid bearings). The three force components, F,, F) and F, in Figure 7,
describe respectively the mount force components along the global x, y, and z
directions at the rear-right engine mount. As shown in Figure 7, the engine mount
responds nearly harmonically at the frequency of crankshaft rotation, and both
models predict almost the same results (aside from a different starting transient).
(The differences in the starting transient derive from the fact that the ADAMS
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Figure 7. Comparison of mount forces predicted by the engine model template (EngTmp)
with results obtained using an ADAMS model for the case of rigid bearings.

model cannot start instantaneously from a non-zero value of crankshaft rotation
speed.)

Note that in the ADAMS model, there are 15 rigid bodies possessing 90 gener-
alized coordinates to describe the configuration of the example engine. Since there
are only 6 independent coordinates in this engine model (the rigid body coordi-
nates of the engine block), the ADAMS model requires 84 kinematic constraints
in the form of algebraic equations. The new formulation developed in this paper
employs only six independent generalized coordinates in the form of ODEs, which
in general can be integrated more efficiently and with greater numerical stability.

Also note that in the engine model developed in this paper, the second and
higher order terms in terms of the engine block rotations have been ignored in the
engine kinematics. Those terms however are not ignored in the ADAMS model.
As shown by the Figure 7, the loss of these higher order terms has no appreciable
effect on accuracy in this example.

Consider now results obtained using the linear spring-damper bearing model.
Figure 8 shows a comparison with results obtained by ADAMS for the amplitude
of the predicted bearing force in the first main bearing. In this figure, the solid
line represents results obtained by the engine template while the dashed line shows
the results obtained by ADAMS. These results are in very close agreement with
maximum difference in the peak values of less than 2%. This small difference
derives mainly from the fact that the ADAMS model can not drive the crankshaft
at the constant speed about the crankshaft axis (i.e., z3 axis of 03 —x3y323), but only
at the constant speed about the longitudinal axis of the global coordinate system
(i.e., z; axis of 0o; — x;y1z;1). This difference generates slightly different driving
torques on the crankshaft, and leads to the small differences shown in Figure 7.

The last case of this example provides a comparison of the bearing force com-
ponent, F, (i.e., lateral bearing force in the engine block coordinate system),
as predicted by three different bearing models, namely, the linear spring-damper
bearing model, the nonlinear spring-damper bearing model, and the hydrodynamic
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Figure 8. Comparison of bearing force predicted by the engine model template (EngTmp)
with results obtained using an ADAMS model for the case of the linear spring-damper bearing

model.
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Figure 9. Comparisons of bearing force for different bearing models.

bearing model (short-w model, see Equations (44-46)). Figure 9a illustrates this
comparison for the crankshaft is driven at 600 rpm, while Figure 9b shows results
for the crankshaft is driven at 6,000 rpm. As shown in Figure 9a, the maximum
difference in predicted peak bearing force between the linear and the hydrodynamic
models is about 17%, while the difference between the nonlinear and the hydrody-
namic models is less than 2%. Therefore, in this case, the nonlinear model more
closely predicts the bearing forces predicted by the hydrodynamic bearing model.
However, this conclusion is reversed when evaluating the results for the higher
crankshaft speed. Figure 9b shows that, at this higher crankshaft rotation speed, the
nonlinear bearing model predicts a large amplitude, high-frequency oscillation in
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Figure 10. Orbit plots of crankshaft: (a—c) crankshaft is driven at 600 rpm, (d—f) crankshaft
is driven at 6,000 rpm; (a) and (d) linear spring-damper bearing model, (b) and (e) nonlinear
spring-damper model, (c) and (f) hydrodynamic bearing model (short-).

the bearing force that is not apparent in either the linear and hydrodynamic bearing
models which are also in close agreement.

Figure 10 provides a further comparison of these three results by illustrating
the orbits of the journal center for the cases discussed above. Figures 10a—10c
show the orbits for the case of 600 rpm, while Figure 10d-10f correspond to
the case of 6,000 rpm. Figure 10a and 10d show the results obtained by using
the linear bearing model, Figure 10b and 10e the results obtained by using the
nonlinear bearing model, and Figures 10c and 10f the results obtained by using the
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hydrodynamic bearing model. As shown in Figure 10, the use of different bearing
model predict very different behaviors of these orbits despite the relatively good
agreement achieved for the predicted bearing forces. Also, Figure 10 shows that
the linear and nonlinear bearing models predict very different behaviors at the two
different speeds of the crankshaft rotation, while the hydrodynamic bearing model
predicts qualitatively similar behavior. Finally, note that comparisons for different
hydrodynamic bearing models can be found in [30].

6. Summary

This paper summarizes an engine model that can be used to support ‘up-front’
(i.e., early) engine design. This engine model captures the dynamic response of an
engine at frequencies commensurate with the rigid body modes of the engine and
crankshaft, as well as the low order vibration modes of the crankshaft. A recursive
formulation is proposed to formulate the engine multi-body dynamics model. The
use of the relative coordinates as the generalized coordinates results in a minimal
set of ordinary differential equations governing engine dynamics. D’ Alembert’s
principle is used to derive the equations of motion. These equations are expressed
in terms of a generalized mass matrix and generalized force vector by using a sym-
bolic calculation code, such as Maple or Matlab, and then reduced automatically
to computational code (C or Fortran) for numerical integration. The engine model
follows from the kinematical relations needed to represent the engine dynamics
in terms of the selected generalized coordinates and the systematic analysis of the
virtual work done by all forces acting in the engine system. Initial results obtained
from this engine model are presented for a production engine including both free
and forced engine motion.

These results of this paper represent the first step towards the future devel-
opment of an engine modeling template to support up-front engine design. The
EngTmp will take the form of menu-driven software that will allow an engine
designer to automatically build a model for engine dynamics from relatively gen-
eral design information. The menu will also permit the designer to automatically
evaluate engine noise and vibration targets. By automating this process, the engine
designer will be free to explore widely differing design concepts at the start of
the design cycle and to check critical engine performance metrics in an efficient
manner.

Appendix: Definitions of Coordinate Systems

Seven coordinate systems, o; —x;y;z; (i = 1,2, ...,7), are defined in Figures 11 to
18 for the engine model, where o) — x;y;z; (Figure 11) is called vehicle coordinate
system and is fixed at the vehicle body and assumes the role of the global coordinate
system. 0, —x, y»z» (Figure 11) is called the block coordinate system and is fixed at
the engine block. 03 —x3 y3z3 (Figure 12) is called the crankshaft floating coordinate
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Figure 12. Crankshaft floating coordinate system.

system and is attached to the axis of the crankshaft, but not rotating about this axis
with the crankshaft. Note that the coordinate systems of o; — x;y;z;(i = 1, 2, 3)
initially have the same origins at the first main bearing of the crankshaft, and the
same orientation as shown in Figures 11 and 12. 04 — x4y4z4 (Figure 13) is called
the crankshaft fixed coordinate system and is fixed on the crankshaft and rotates
fully with it. As shown in Figure 13, 04 — x4y424 has the same origin as 03 — x3y323
, but is initially rotated by -8 about the z3 axis of 03 — x3y3z3, where B denotes
the half bank angle as illustrated in Figure 13. Thus, the y, axis of 04 — x4y424
is parallel to the axis of the first cylinder. 05 — xsyszs (Figure 14) is called the
crankshaft throw coordinate system and is attached to a crankshaft throw as shown
in Figure 14. Since there are a total number of n¢yijnder crankshaft throws, an addi-
tional superscript n is used to identify that the coordinate system is associated with



386 Z.-D. MA AND N.C. PERKINS

Bank 2 (LH) Bank 1 (RH)

X3

Figure 13. Crankshaft fixed coordinate system.
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Figure 14. Crankshaft throw coordinate system.

the nth crankshaft throw. og — x¢yez6 (Figures 15 and 16) is called the connecting-
rod coordinate system and is fixed to a connecting rod. The additional superscript
n indicates that the coordinate system is associated with the nth connecting rod.
Figure 15 shows the connecting rod coordinate system that belongs to the first bank
of the engine; Figure 16 shows the connecting rod coordinate system that belongs
to the second bank of the engine. Finally, 0; — x7y,z7 (Figures 17 and 18) is called
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the piston coordinate system and is fixed to a piston. The additional superscript n
indicates that the coordinate system is associated with the nth piston. Figure 17
shows the piston coordinate system that belongs to BANK 1; Figure 18 shows the
piston coordinate system that belongs to BANK 2. Note that for an I-type engine,
the bank angle is zero, and all the definitions remain unaltered. For a V-type engine
BANK 1 and BANK 2 refer to the piston groups on the right-hand side and the
left-hand side of the engine as shown in Figure 13.
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Let the notation i — i — 1 denote the transformation from coordinate system i
to coordinate system i — 1. Then, for Equation (2) we have:

up L —=v B
2—>1: di=qv ¢, A= w 1 —ay |,
wp B ap 1
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Ue — Up
3 — 2 . d2 = Ve — Up 9
We — Wp
1 —(Ye—v) (Be— Bp)
Aos=1| (Ye— W) 1 —(oe —ap) |,

_(ﬂc - ﬂb) (ac - ab) 1
4—3: d3=0, As4=A®0),

0
554: dY = [ 0 ¢, Al=AMw,
Iy
0
6—>5: a¥ ={r ., AL =A@,
0
0
7—-6: de=1L ;. AP =A@,
0

where uy, vy, Wy, &, By, ¥» denote the displacements (angles) of the engine block
measured in the vehicle coordinate system, u., v., We, &, Be, Ve (Ve = Yp) de-
note the displacements (angles) of the crankshaft axis measured in the vehicle
coordinate system, [, denotes the z coordinate of the nth crankshaft throw in the
crankshaft coordinate system, r,, denotes the distance between the center of the nth
pin journal and the z-axis of the crankshaft coordinate system, L is the length of
the connecting rod, and

6, =60 — B,
Yin = Vn — ©¥n,
rn =71+ &,

¢2n = _(¢n + 0}1)’
9}1 :9+yn_§0n’

where f denotes the half bank angle, @, denotes the firing angle of the nth cylinder,
¥, denotes the torsional deformation angle of the crankshaft at the nth crankshaft
throw (which is a function of modal coordinates), r denotes the radius of the
crankshaft, ¢, denotes the radial displacement of the center of the nth pin journal
measured at the crankshaft-fixed coordinate system (which is also a function of the
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modal coordinates), and ¢, denotes the oblique angle of the nth connecting rod
(which is a function of generalized coordinates as shown in Equation (18)). We
also introduce the following definition:

cos) —sin6 0
A@)=| sinf cos6 O for any angle 6.
0 0 1
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