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Abstract. The improved performance and capacity of networks has made the combined processing
power of workstation clusters a potentially promising avenue for solving computationally intensive
problems across such distributed environments. Moreover, networks provide an ideal platform to
employ heterogeneous hardware and software to solve multibody dynamics problems. One fun-
damental difficulty with distributed simulation is the requirement to couple and synchronize the
distributed simulations. This paper focuses on the algorithms necessary to couple together separately
developed multibody dynamics modules so that they can perform integrated system simulation. To
identify a useful coupling strategy, candidate numerical algorithms in the literature are reviewed
briefly — namely, stiff time integration, local parameterization, waveform relaxation, stabilized con-
straint and perturbation. An unobtrusive algorithm that may well serve this ‘gluing’ role is presented.
Results from numerical experiments are presented and the performance of the gluing algorithm is
investigated.
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1. Introduction

With the ongoing improvements in computer hardware and in modeling software,
it has become common practice to perform high-fidelity dynamics simulations
of complex systems to evaluate their overall performance. For example, in the
case of the ground vehicles, high-fidelity models and simulations are available for
engines, powertrains and vehicle dynamics. Despite the availability of such high-
fidelity component models and simulations, it has been difficult to combine these
resources to produce an integrated, complete vehicle simulation capability. Few
efforts [1, 2] have gone beyond the common practice of treating simulation and
analysis packages as stand-alone tools and simplifying the interactions amongst
the disparate models and codes. This lack of system integration has inhibited the
ability to design complex systems beyond the subsystem level.

Instead of employing a traditional partitioning mindset, we address system in-
tegration in the context of distributed computing [3] and the new notion of ‘gluing’.
The distribution of resources is not seen as a way to achieve goals such as massively
parallel, high-speed computing. Rather it is viewed as the operating environment
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imposed on the analyst because of the existing overriding situations [4]. In our
scenario, we are exposed naturally to a distributed environment: components are
designed by different engineering groups, employing various CAD/CAE tools that
are dispersed over many locations. The goal is to execute coupled system simu-
lation without sacrificing the integrity of subsystem modeling and solution and to
maintain the efficacy of the overall results. Thus, the ideal role of such system
algorithms is to ‘glue’ all the modules together, coordinating the modules without
excessive intrusions into the subsystem modules.

To attain this ultimate plug-and-play framework, four attributes of an effective
gluing algorithm are proposed as guidelines:

(I) Sticky: The inter-connection relations between subdomains should be well
satisfied, i.e. coupling between subdomains should be resolved and captured.

(I) Green: It should not contaminate subdomain solution strategy. The integrity of
the individual model and solution methods should be maintained. Minimum
modification of the original solution scheme is desired.

(IIT) Inexpensive: The overhead should be minimized.

(IV) Pretty: The results should be pretty; that is, the overall solution should be
numerically correct within the bounds of the desired accuracy.

With proper glue, individual modules are naturally encapsulated as black boxes
with consistent interfaces defined by the respective algorithms. Then, network
deployment is simplified to the tasks of distributed computing. The Common Ob-
ject Request Broker Architecture (CORBA) [5] was chosen for building the dis-
tributed simulation environment, using the commercial Orbix implementation [6].
CORBA is an industry standard for distributed, heterogeneous, object-oriented ap-
plications; it is open, robust, interoperable, and is supported across multiplatforms
and multivendors.

We shall consider, in particular, a system composed of n;, multiple subdomains
that can be modeled as a multibody system. The system joints characterize the
interconnections of such a multibody system. When the multibody system is dis-
connected at the joints, the system is naturally decomposed into separate parts that
represent a mapping to the individual engineering units responsible for develop-
ing the specific parts. Concisely, this framework defines a constrained mechanical
system that can be described by the semi-discrete DAEs

Mg+ ¥A =Q,
Vq+ ¢y =0, (1)

where q, q,  : t — R” represent the generalized position, velocity and acceler-
ation vectors; M : q x t — R™" is the symmetric positive-definite generalized
inertia matrix of the system; Q : q x ¢ x t — R" is the generalized force vector;

A :t — R™ is the vector of the Lagrange multipliers; ¥ : q x t — R”*" is the
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constraint Jacobian matrix with rank (V) = m; ¢ : qx¢t — R” is the kinematic ex-
citation. (In the following, where we need to make reference to a specific equation
line in a set of equations, the equation line number will be denoted by an appended
lower case alphabetic letter. For example, in (1) above, the dynamical equation is
referred to as (1a) while the Pfaffian constraint form is denoted by (1b).) Here the
constraints are assumed to be of Pfaffian form, (1b). If the Pfaffian constraints can
be integrated to the form, ® = 0, ® : q x ¢+ — R™, the constraints are holonomic
and the system is governed by the well-known index-3 DAEs

M + @, 1 = Q,

® =0, 2)
with

&, = (0®/0q) : q x t — R™"

assumed to be of full row rank. In what follows, we shall focus on this specific
type of system model. The inertia matrix and the generalized forcing vector can be
visualized as being decomposed across the subdomains as

FM®D 0 0 0
0 M@ 0 0
M= 0 0 @)
0 0 Mm=b 0
L0 0 0 Mm |
Q=M. Q¥ ... Q" Q™'Y 4)

where the superscripts identify each subdomain. The subdomain mass matrix,
M® i =1, np, is assumed to be invertible.

In the context of network-distributed simulation, the system of Equations (2—4),
is considered to be distributed across multiple simulations. In particular, the inertia
matrix, (3), is never assembled completely; instead it is distributed across as many
as ny, processors/simulations. The goal of a gluing algorithm is to satisfy (2—4)
while maintaining this distributed equation structure. Of particular importance is
the satisfaction of the constraint relations and the appropriate communication of
the generalized constraint forces across the subdomains such that the constraint
relations and system dynamics are computed accurately and stably.

Section 2 gives a brief overview of the numerical methods for DAEs. Section 3
presents the gluing algorithm with numerical examples that highlight their per-
formance. Conclusions are drawn and directions for future work are provided in
Section 4.
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2. Classification of DAE Algorithms

Numerical approaches for the solution of differential equations defined on a mani-
fold have attracted wide attention over the past several years. It is logical to evaluate
these existing algorithms in the context of their efficacy as a gluing algorithm. To
assist with this evaluation, in this section we classify numerical algorithms based
upon their underlying intrinsic structure, and we present some representative al-
gorithms within each category. The intent of this classification is not to review the
body of literature on numerical solution of DAESs, but rather to illuminate the con-
struction of gluing algorithms presented in the subsequent section. In particular, we
classify algorithms that have been developed to address the complexities associated
with constraint equations and constraint forces.

2.1. STIFF NUMERICAL TIME-INTEGRATION APPROACH

Orlandea et al. [7, 8], first took advantage of the sparse structure of (2) and dir-
ectly applied stiff time-integration algorithms. The well-known computer software
ADAMS employs this technique for simulating constrained mechanical systems.

Extending the work of Cardona and Géradin [9], Farhat et al. [10] presented a
spectral stability theory for the incomplete field formulation. They showed that the
linear constraints associated the incomplete field formulations introduce a destabil-
izing effect in linear dynamical systems that can be analyzed by investigating
the behavior of time-integration algorithms at infinite and/or zero frequencies. In
particular, they showed the Newmark method, having no numerical dissipation,
engenders a weak instability that is excited for any time step size. Numerical
simulations of multibody systems with nonlinear constraints also show this weak
instability that rapidly destabilizes the acceleration field and corrupts the displace-
ment solution as well. On the other hand numerical experiments with dissipative
algorithms, like the generalized-o method [11], show stable results. Their work
indicates that the success of stiff time-integration algorithms on high index DAEs
relies on the numerical dissipation introduced by the algorithms.

Stiff integrators, like backward difference formula (BDF), often do not attain the
same order of accuracy in some variables for higher index systems. It is particularly
difficult to obtain an accurate solution for the algebraic variables, A. Often, the
acceleration, velocity and the Lagrange multipliers suffer from an order reduction
that causes the step size control to break down [12]. Thus, they are often removed
from the error estimates in standard BDF-based routines such as DASSL [13].

2.2. LOCAL PARAMETERIZATION APPROACH

The m constraint equations (2b) define an n—m dimension manifold M in R". In
theory we can explore M by finding n—m independent variables, at least locally, to
describe the dynamics of the constrained system. Many seemingly totally different
numerical algorithms are based upon this concept. Their underlying merits can be
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discussed in the context of analytical dynamics via Maggi’s equations

PMG—-Q) =0,

o =0, ®)
where

PO, =0. (6)

For the holonomic constraints, the Jacobian matrix ® is the gradient of W, which
means the range space of <I>£ spans the normal space of the constrained manifold
M. 1t is further induced from (6) that the row space of P spans the n—m dimen-
sional tangent space. Maggi’s equations (5) concisely tell us that the dynamics of
the constrained system occur only on the tangent space, which makes the solution
always stay on M.

Kurdila et al. [14] wisely point out the role of Maggi’s equations for con-
strained mechanical systems and they provide an excellent discussion on various
algorithms based on this concept. They argue that all the variants simply employ
different bases to span the tangent space and to project the dynamics. Algorithms
belonging to this class include the zero eigenvalue method [15], coordinate parti-
tion method [16], QR decomposition method [17], singular value decomposition
method [18] and Kane’s equations [19]. A convergence theorem and a numerical
implementation of applying linear multistep numerical integration methods to local
parameterization can be found in [20, 21].

In contrast to the stiff integrators, with the local parameterization approach,
generalized constraint forces, A, can be easily recovered using

A= (2))"(Q—Mi. @)

The superscript ‘4’ operator represents the Moore—Penrose generalized inverse op-
eration on the operand. Equation (7) is a by-product from the derivation of Maggi’s
equations, as shown by Papastravridis [22].

2.3. WAVEFORM RELAXATION (WR) METHOD

Relaxation methods afford a means of parallel numerical solution of systems of
differential equations. The key is to partition the whole problem into several sub-
domains; coupling between each partition is relaxed in order to solve smaller
size sub-problems separately. Iterations are usually needed to attain convergence.
The waveform relaxation method is an iterative method for analyzing nonlinear
dynamical systems in the time domain. It was originally applied to the time-
domain analysis of large-scale integrated circuits [23]. Leimkuhler [24] extended
the method to solve DAEs for constrained mechanical systems and considered two
important non-linear cases: (i) a pair of multibody systems connected by ‘soft’
elements, and (ii) a pair of multibody systems connected through joints.
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In the first case, a convergent iteration of the natural decoupling of the equations
is reported. Considering a pair of bodies, the system can be modeled by

M;q; + ‘I’iTq,.)»i = Qi
®; =0, ®)

where q;, q; and q; : t > R"; M; : q; xt = R"™;Q; : ¢ X1 Xq2 X Q2 Xt —
R"; X :t - R"; ®; : q; xt - R"; ®;y, = (09;/3q;) : q; x t — R"*" | =
1, 2. Note the two systems are coupled only through the forcing terms Q; and Q5.
The constraint equations ®; and @, are not coupled. Physically, this corresponds
to systems that are interconnected only by spring and damper elements. Applying
WR leads to iteration of the following form

. T
Mg, + @ A = Qo qi db, b, o),
@ =0, )
and
. T
M5 g, + @57 Ao = Qu(qf, df, 5T, a5 ),
@, =0, (10)

where k is the iteration counter. During a given iteration, each subdomain only
needs the coupling information of the other subdomains from the previous iteration.
Parallel implementation is straightforward. Convergence of the above iterations
was demonstrated, provided consistent initial conditions are given. The remaining
challenge is then how to choose a proper time step size in order to obtain rapid
convergence properties for use in practical applications.

The results seem promising in the first case. However, two attempted parti-
tions of the second scenario lead to iteration divergence. In practical applications,
many multibody systems of interest belong to the latter type: the system is coupled
through the nonlinear constraint equations. Thus, the strategy of splitting systems
at the constraint interface and applying WR iteration will fail to converge. One
simple remedy may be to derive the underlying ODEs before WR can be applied.
More research is required to devise a generic relaxation algorithm for multibody
systems.

2.4. STABILIZED CONSTRAINT APPROACH

One can reduce the index of DAEs by repeatedly differentiating the constraint to
take advantage of their better numerical properties for general time integration
schemes. Differentiation of the constraint equations will transform the original
high index DAE:s to a lower index system with invariants. One well-known prob-
lem associated with this transformation is that the solution may drift off from
the non-differentiated invariant manifolds because of accumulated errors from the
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time integration scheme. Some stabilization measures must be taken if longer time
simulation is required. Among the numerous stabilization approaches, some rep-
resentative ideas are mentioned in the following. Many stabilization methods can
be seen as variants or combinations of these key ideas.

Baumgarte’s stabilization [25] is probably the most widely known and used
scheme for engineering applications. It replaces the holonomic constraint (2b) by
a linear combination of the constraints and their time derivatives in such a way that
the differential equations for the constraints are stable. Recent efforts have been
reported that apply modern control theory to derive better stabilization forms, see,
e.g., [26, 27].

GGL index-2 formulation [28] is another widely used method in simulation.
Both the velocity constraints and the position invariants are imbedded in the equa-
tions of motion. The resulting index-2 system can be solved more easily than the
original higher index system. The price to be paid is solving the augmented set of
equations simultaneously.

Park et al. [29] adopted the penalty procedure A = & '®, & — 0 by
differentiating it once with ¢ assumed constant to obtain

A=¢'®. (11)

Formula (11) together with (2a) are a set of ODEs that can be integrated using
standard numerical algorithms. Park further showed that the errors committed in
the constraint relation would decay according to the different corresponding re-
sponse time constants of the system, in contrast to the single time constant of
Baumgarte’s stabilization. Park also reported that even when <I>qM‘1<I>£ is almost
singular, their stabilization scheme experiences no numerical difficulty. A parallel
multibody dynamics analysis algorithm that combines Park’s stabilization and an
explicit-implicit staggered procedure [30] can be found in [31].

Bayo et al. [32] presented a modified Lagrangian formulation for the dynamics
of constrained mechanisms. They proposed to append the constraint relation to
the Lagrange equations, by means of a penalty. The resulting augmented formula-
tion excludes the Lagrange multipliers but includes parameters similar to those of
Baumgarte’s methods. The total number of equations is independent of the number
of constraints and remains the same. Better yet, the resulting system is a set of
ODEs, so standard numerical integration can be used. One variant, obtained by
combining mass-orthogonal projection and position, velocity invariant projection,
can be found in [33].

2.5. PERTURBATION METHOD

The perturbation approach also is a constraint stabilization method. It differs from
the standard constraint stabilization approach in that the stabilization is performed
independently from the numerical integration. The kernel of the method is to solve
ODEs with invariants. By themselves, the ODEs are sufficient to uniquely determ-
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ine the solution with consistent initial conditions; i.e. IC’s that satisfy the invariants.
The challenge is to ensure that the invariants are satisfied at any subsequent time
step by the numerical algorithms. These invariants typically have specific physical
meaning, e.g., mechanical systems with energy conservation or momentum con-
servation. Conservation of these invariants not only justifies the solution but also
can improve the solution precision.

The basic idea of maintaining the invariants is to perturb the solution after each
time step by just the minimum amount necessary to satisfy the invariants. The
underlying ODEs of the DAEs (2) can be derived by first solving for A from the
index-1 DAEs

T .o
M ¢ N - Q. (12)
@, 0 A —(®q+ ®))
and substituting the result into (12a), to obtain the explicit form of the underlying
ODEs

M + @] (@M '®]) " (dyq + & + M 'Q) = Q. (13)

Two extra invariants associated with (13) arise because the differentiated accel-
eration constraints are used in (12). If the system begins with consistent initial
conditions, the solution should satisfy the displacement and velocity invariants at
any subsequent time step. Using any time integration method, the ODEs (13) are
solved; the results are then perturbed so that the invariants are satisfied. This pro-
cess is characterized by the projection of the solution onto the invariant manifolds.
It is usually referred as the coordinate projection method in the applied mathem-
atics literature. The projection can be regarded as the solution of the minimization
problem

Given q, v
ming ||q — q|| subject to ®(q) =0 (14)

ming ||V — v|| subject to (g, V) = 0

for the perturbed values q and v. By proper definition of the norm operator || e ||,
(14) represents a wide spectrum of projection choices.

Shampine [34] first showed how the perturbations by (14) are contained and
proved the convergence of the perturbed solutions with the use of one-step methods
for solving ODEs. He showed that the perturbations made to the solution do not
seriously disturb the step size selection process for one-step methods. In particular,
if in each step the local error is controlled within tolerance by the step size selec-
tion, a perturbation to the solution at the end of the step to satisfy the invariants
will not induce an error larger than the tolerance, provided the norm to control the
local error and the norm to compute the minimum norm perturbation are the same.

However, he warned of a side effect of this perturbation process when em-
ploying multistep methods, noting that modern multistep methods monitor the
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smoothness of the solution and adapt the order of methods appropriately. Perturb-
ations to solution values can cause the solution to look rough. Such roughness
can cause the code to lower the order. The low average order and the constant
fluctuation of the order can disastrously affect the efficiency of the numerical
integration.

Eich [35] gave a convergence theorem for the combination of the BDF method
and the coordinate projection method. He showed that only errors that lie in the
manifold given by the invariants are propagated. In particular, the projected k-step
BDF method (1 < k < 6) has the same order of convergence as the corresponding
non-projected method if the time step size is sufficiently small. As opposed to
Shampine’s comments about projected multistep methods, Eich argued that good
results with variable order and step size can be obtained, because in no part of
his proof was the constancy of step size and order invoked. His only assumption
is that the non-projected method is stable. He also wisely pointed out it is not
necessary to explicitly use the underlying ODEs (13). The discretized version of
the index-1 system (12) can be used instead because semi-explicit index-1 DAEs
behave like ODEs for most integration methods, especially for the BDF methods.
This observation will relieve us from the expensive decomposition of <I>qM_1<I>£
at every time step.

3. Gluing Algorithm

Yen and coworkers [36, 37], presented a coordinate-split (CS) technique for the
numerical solution of the index-2 form DAEs for flexible mechanism dynamics.
These methods, which extend the o-methods for ODEs of structural dynamics
to DAEs, possess numerical dissipation that can be controlled by the user. A
coordinate-split modification (CM) to the Newton iteration was further adopted
to improve the convergence for highly oscillatory systems.

We recognize that the CS technique is another numerical implementation of
Maggi’s equations. We construct a simplified Newton iteration in such a way
that the solution of the dynamics and the constraint satisfaction are separated.
The solution of the dynamics can be easily mapped into parallel executions for
individual subdomains while the constraint satisfaction efforts can be regarded as
the coordination actions. Therefore, this strategy is a fine candidate for a gluing
algorithm.

3.1. DERIVATION

Suppose the orthonormal subspaces of the constraint Jacobian matrix @4 have been
identified as U and V, where U € R®"™>" V ¢ R"™*" The rows of U and V
constitute the standard basis for R”. We define the following operators for later
use.

PJ_ = (I);_(I)q :VTV,
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P, =1-P, =U"U (15)

The system is written in stabilized index-2 GGL formulation of the constrained
equations of motion

q—v+oiun=0

Mv + @/ =0,

v =0,

®=0. (16)

Like Maggi’s equations, we pre-multiply (16a) and (16b) by an annihilation matrix
P such that P(I>£ = 0, resulting in the following index-1 DAEs

P(q—-v) =0,

PMv—-Q) =0,

®,v=0,

® =0, (17

where the CS matrix P is chosen to be U. Applying a kth-order BDF formula to
(17) yields the nonlinear system

P(q,)h(onGn — Va) =0,

P(q,) (M) oV — Q(Vi, Qs 12)) = 0,

Pq(qn)v, =0,

®(q,) =0, (18)

where pj, is the discretization operator,

k
1
Pnldn = Z E oi(q,—1
i=0

in which «; are the coefficients of the BDF method and # the step size of the time
discretization. Applying Newton-type methods to (18) requires the solution of the
linear system

Aq,
J(@s V) [ Ay } = —r(q, Vo), (19)

where Aq, and Av, are the increments of q, and v,,
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[ P! (q,) 3pnn ]
P(q,) | ——"s, + n-2M —hP(q,)
99, 09,
IPI(q))  Ara(gn. V) s ( )
q \1n 2(qxn, Vau 2(qxn, Vau
N v) = | P | =+ = — | P@)—5== | 0
9(®q(qn)Va)
e/ ng ®,(q,
’q, ¢(dn)
L ®,(q,) 0 i
and where
P(qn)rl
P(qn)r2
rg,, va) = 21
@Y%) =1 g (q,)v, @l
®(q,)
in which
s = (Vo) 'Vr, s =—(V@;) ™' Vry,
ry = h(phqn - Vn) and r, = h(M(qn)phVn - Q(Vna qn, tn))-
It is easy to verify that
PP, =P. (22)

Then, we can rewrite the first two formulae of (19) as

P(q,) 0 Aq, Pi(qur; | _
[ 0 P(qﬁ}<Jh(q”’v”)[Av,,}+[P(qn>r2]>‘°’ @9

where, after we adopt the CM modification,

90nqn
hg’h_‘l —hl
_ @,
Jh (q” ’ V”) - 0 %) (qn ) Vn) ad | ) (qn s Vn) ’ (24)
8qn avn

The simplified Newton iteration of the linear system, (23) and the last two formulae
of (19), can be shown to be

Av, = Pj(q)AV, — 7 (q,)D(V,. q, + Aq,), (25)

in which Aq, and Aq,, are solved from

Aq, | _ | Py(gr
T [ Aq, } B [P(Qn)rz ] ' (26)
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An interesting feature is noted from the simplified Newton iterations (25) and (26).
The modified linear problem (26) is engaged in solving the dynamics only. It pre-
serves the sparsity of the system and is independent of the constraint equations.
After these relaxed incremental values, Aq, and AV,, are calculated, they are cor-
rected by (25), which involves diminishing any constraint violations. This is a nice
general structure that warrants further exploration. We would like to extend this
to the acceleration level, because the acceleration generally is one of the desired
solution variables. A natural extension of (25) for the incremental acceleration,
with known Aq, and Av,, is

Aan = PH(qn)Aﬁn - (I);]i_(qn)(.l.)(anv Vu + AVn, q, + Aqn) (27)

The convergence of the dynamics and the constraints are monitored separately
by respective residues of the dynamics, the acceleration, velocity and position
constraints

Fdynamic = P(Mq -Q),

Face = (I;,
Fyel = é,
Ipos = P. (28)

Assuming basic update formula are used in the discretization (see, e.g., [11], for
more details on these equations and choices for the Newmark parameters y and ),

h2
Qo1 = qu + hv, + 7((1 - 2,8)3,, + 2ﬁan+l),

Vit = Vo +0((1 —y)a, + ya,.), (29)

the first version of the iteration loop for the gluing algorithm is proposed as follows

(in pseudo code). The subscript n and function variables are droped for clarity; K
is the Jacobian matix associated with the discretized unconstrained problem.

1. IF ||rgynamics|| < Dynamic Tolerance AND ||r,.|| < Acc. Constraint Tolerance
then problem solved

BREAK

ELSE IF ||rgynamics|| > Dynamic Tolerance
incrementally solve the unconstrained problem

KAa = —P;(Ma — Q) (GL-DYN)
and perform the acceleration projection (27)

Aa=PjAa— o} d (GL-ACC)
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ELSE
perform the acceleration projection only
Aa=PjAd— o] d (GL-ACC)
END
2. Recover the incremental displacement and velocity values.
Aq = h*BAa,
Av = hyAa.

3. IF ||rye || > Vel. Constraint Tolerance OR [|ryoq|| > Pos. Constraint Tolerance
perform the position and velocity projection (25)

Aq = P”Aq - (I);]F(I),
Av=PAv - &} d. (GL-POS, GL-VEL)

END

After attaining convergence, the generalized constraint forces can be recovered
using (7).

In structure, this version is as close to an ideal gluing algorithm as possible.
We first solve the unconstrained problem (GL-DYN) iteratively and then perform
the projection to satisfy the constraints (GL-ACC), (GL-VEL) and (GL-POS). The
operators involved in the projection can be constructed once the constraint Jacobian
®, is known. No other information is required from the system. However, when
implemented for a simple parallel four-bar linkage problem, the algorithm does not
converge. Before abandoning hope to derive a practical gluing algorithm, we refer
to one lesser-known result from analytical dynamics for inspiration.

3.2. GAUSS’S PRINCIPLE OF LEAST CONSTRAINT

Closely related to the Gibbs—Appell equations of motion, this beautiful and power-
ful theorem was discovered by Gauss in 1829 [38]. It states that the acceleration
of the constrained mechanical system, a, can be determined from the following
minimization problem, provided that the configuration and the velocity, q and v, of
the system are known,

min(a — a,)"M(a — a,) subject to <'I'>(a, v,q,t) =0, (30)
a

where a, = M~! Q(v, q, ) is the unconstrained acceleration. Udwadia and Kalaba
[39] showed the explicit form of the Gauss’s principle to be

a=a, —M "*(@M )" d(,,v,q,0). (31)
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In incremental form we obtain
Aa=Aa-M"? (o, M )" & (32)

This acceleration projection formula must be used instead of the naive extension,
(27), in order to satisfy the Gauss principle of least constraint. The new version
of the gluing algorithm is obtained by the replacement of (GL-ACC) with (32).
Gauss’s principle informs us that we cannot minimize exchange of data between
the solution of the dynamics and constraint satisfaction as ideally as we had hoped.
The acceleration projection needs information about the mass matrix of the system.
This extra information implicitly couples these two procedures together.

3.3. NUMERICAL EXAMPLE

A planar four-bar linkage, as presented in [17], is used to demonstrate the features
of the proposed algorithm. The generalized coordinates g1, ¢», and g3 are defined
by the relative rotation angles as in Figure 1. Body 1 of the linkage is ground and
revolute joints connect all the bodies. If bodies 2 and 4 have the same link length,
they will rotate in a parallel motion. The joint between bodies 1 and 4 is selected
as a cut-joint to make an open chain. This will give us the constraint equations of
the three generalized coordinates as

& — licos g1 41> cos(q1 + q2) +13008(q1 +q2 +q3) =1 | _ 0 (33)
[y sing, + [ sin(q; + q2) + [3sin(q; + q2 + q3) '

Simulation is carried out for the specific case: m, = my = 10 kg, m3z = 20 kg,
Lh=L=1mL=2m,J,=J,=1kg x m?, J; = 2kg><m2, q1(0) = /2 rad,
q(0) = 27 rad/s,which m; and J; are the mass and the mass moment of inertia of
body i, respectively. To check the results of the gluing algorithm, the solution of
the reduced equation of motion

2\ ..
(Jz + Js + (my +4ms3 + m4)zl) gi=rt (34)

is used as a reference, where T = —2.0 x ¢ nt - m is the driving torque on body 2.

We take a rather large time step, 0.4 sec, to illustrate some interesting character-
istics of the algorithm. As seen in Figures 25, it is quite impressive that with such
large time step sizes the responses are well captured without too much overhead
effort; generally, two iterations per time step suffice. We attribute these excellent
results to two main characteristics.

First, we observe that if the three generalized coordinates satisfy constraints,
ie. q + ¢ = 2n, —q, + q3 = 7, the Jacobian matrix for the cut-joint constraint
equations (33), can be simplified as

0 [ sin [, sin
o, = 1 q1 1 q1 ' (35)
12 lz — ll COS g1 —11 COS g1
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The QR decomposition of the Jacobian matrix is

0 «/LE % V21, sing, \/i(% — 1, cosql)
T _ | L 1 _ 1
=17 % 7 0 Loy - (36)
1 1 1
NN NG 0 0

The above decomposition shows that the tangent space of the constraint manifold is
a constant vector; i.e. we have P = [1/+4/3, —1/+/3, 1/+/3]. Thus the Jacobian used
in the simplified Newton iteration, (24), is exact and convergence is well achieved
with this exact sensitivity analysis.
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Figure 4. Constraint torque on body 2.

Second we emphasize that the constraint forces are not solved simultaneously
with the dynamics of the constrained system. They are recovered after we get
converged solutions of the dynamics. In this example the choice of the general-
ized coordinates as joint coordinates results in the system dynamics (Figures 2
and 3), having longer time scales than the constraint force (Figure 4). Thus, we
can use a larger time step to solve the dynamics. The slower system dynamics are
successfully insulated from the higher frequency content of the algebraic variables.

If we use Cartesian coordinates to describe the same problem, neither the tan-
gent space is constant nor are the dynamics slower. To capture the dynamics using
Cartesian coordinates, a smaller time step size is anticipated. Figures 6 and 7 illus-
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trate solutions of the x coordinate of the center of mass of body 2, using a time step
size one-tenth the time step size of the previous results. The solution drifts a little
even with the time step size of 0.04 sec.

4. Conclusions

Despite advances in computer hardware and software, there does not exist a
practical, network-distributed dynamics simulation environment. To tackle this
problem, instead of the traditional divide-and-conquer paradigm, an integrate-
and-collaborate paradigm is exploited in this paper. This new approach naturally
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encapsulates individual modules and makes them well suited for deployment over
the modern network-distributed computing environments.

As the first step towards building a network-distributed dynamics simulation
environment, an unobtrusive algorithm is presented after a brief discussion of the
classification of the DAE algorithms. The proposed algorithm separates the solu-
tion of the dynamics from the constraint equations. The solution of the dynamics
can be readily mapped into individual modules and the coordination module to
satisfy the constraint Equations fits the integrate-and-collaborate role perfectly.
A planar parallel four-bar problem is used to illustrate the effectiveness of the
algorithm.

A framework that implements the gluing algorithm over the network is under
development. The ultimate goal is to couple legacy codes for integrated system
simulation. The feasibility of wrapper interfaces for such legacy packages needs to
be evaluated on a case-by-case basis. Also the impact of the subdomain solution
strategy on the system solution requires additional, careful studies.
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