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Abstract. We describe a characteristic-free algorithm for "reducing" an algebraic variety defined 
by the vanishing of a set of integer polynomials. In very special cases, the algorithm can be used 
to decide whether the number of points on a variety, as the ground field varies over finite fields, is a 
polynomial function of the size of the field. The algorithm is then used to investigate a conjecture 
of Kontsevich regarding the number of points on a variety associated with the set of spanning trees 
of any graph. We also prove several theorems describing properties of a (hypothetical) minimal 
counterexample to the conjecture, and produce counterexamples to some related conjectures. 
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1. Introduction 

Given a connected graph G, choose a variable for each edge, and consider the generating 
function for spanning trees of G, the weight of a spanning tree T being the product of 
the variables corresponding to edges not in T. 

In 1997 at the Rutgers University Gelfand Seminar, M. Kontsevich proposed the 
conjecture that, for every graph, the number of zeroes of this polynomial over the finite 
field Fq is a polynomial function of q. The motivation for the conjecture arose from the 
evaluation of certain integrals in quantum field theory. 

R. Stanley has written a recent paper on various aspects of this conjecture [5]. He 
uses an inclusion-exclusion argument to show that Kontsevich's conjecture is true for 
all graphs if and only if the same is true when we modify the above generating function 
so that the weight of tree T is the product of the variables corresponding to edges that 
do appear in T. Stanley has proved this modified conjecture for the complete graph 
(giving an explicit formula) and certain "nearly complete" graphs. 

In this paper, we describe a simple technique that allows one to explicitly compute 
the number of points on certain very special varieties over finite fields Fq, as a function 
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of q. It is difficult to describe a priori the varieties for which this technique will succeed, 
but an obvious necessary condition is that the variety should be defined by the vanishing 
of integer polynomials that are linear with respect to most, if not all, of the dependent 
variables. 

We have written a Maple program I that implements this method, and applied it to 
the varieties defined by spanning tree generating functions of graphs. To our surprise, 
it was very successful. For example, we used it to verify that Kontsevich's conjecture 
is true (or rather, Stanley's modification in which the spanning tree variables are used) 
for all graphs with at most 11 edges. By combining the program with some additional 
techniques, we are able to show that the conjecture is also true for graphs with 12 edges. 

There is an interesting special case of the Kontsevich conjecture that can be formu- 
lated in terms of symmetric determinants [5, Section 3]. More specifically, consider 
a generic symmetric determinant in which certain off-diagonal entries have been spe- 
cialized to 0. If the Kontsevich conjecture is true, then the number of points on the 
corresponding variety over Fq must be a polynomial function of q. Again, we applied 
our program to these varieties and were able to verify the conjecture in the 6 x 6 case, 
as well as all cases with at most 11 off-diagonal variables. 

On the other hand, if one drops the condition of symmetry in the above determinant, 
then the analogous conjecture fails, and we are able to show that the smallest counter- 
example is 7 x 7 and has 21 independent variables. 

Another negative result occurs if one generalizes from graphs to matroids, as shown 
by Stanley. Even if we restrict to the class of regular (or unimodular) matroids, our 
program has found that the analogous conjecture fails. 

2. A Probabilistic View 

Rather than counting points on varieties over finite fields, there are some slight nota- 
tional advantages that occur if we translate the problem into probabilistic language. 

Given a set of polynomials f l , . . .  ,f~ E Z[xl,... ,Xm], we define Z[f l , . . .  ,f~](q)to 
be the probability that jS(xl,... ,Xm) = 0 for 1 < i < k, where x t , . . .  ,Xm are chosen 
uniformly at random from Fq. In other words, 

Z[fl,. . .  ,fk](q) = q-rnlXqt, 

where Xq denotes the variety over Fq defined by the vanishing of f l , . . . ,  fk. 
The main benefit of this notation is that it allows us to focus on the polynomials J~ 

and disregard the ambient space. The quantity Z[x 2 - y2] (q) is the same whether we are 
interested in the variety {(x, y) E F2: x 2 = y2} or {(x, y, z) E F3q: X 2 = y2}. 

For example, Z[3] (q) = 1 if 3 I q; otherwise Z[3] (q) = 0. 

Proposition 2.1. The quantity Z[fl, . . .  , fk] (q) is a polynomial function of q-1 if and 
only if IXql is a polynomial function of q. 

Proof Clearly, IXqt < qm, so if IXql is a polynomial, it must have degree _< m. Hence, 
the corresponding assertion about Z[fl,.. .  ,fk](q) follows immediately. Conversely, 
since qmZ[fl,... ,fk](q) is integer-valued for all prime powers q, it follows that if it is a 
Laurent polynomial in q, then it must also be a polynomial in q. | 

1 Available at h t t p  ://raww .math. l s a .  umich, edu/"  j r s / .  
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A (non-empty) polynomial list [ f l , . .  • ,fk] is said to be primitive if there is no prime 
integer that divides all of  the coefficients. 

Proposition 2.2. If [ f l , . . . ,  fk] is primitive, then Z[fl , . . .  , fk] (q) = O(q- 1). 

Proof Proceed by induction with respect to the number of variables that appear among 
f l , . . .  ,fk, say, m. If m = 0, then the fi 's  are a collection of scalars with no common 
divisor, and hence, Z[fl , . . .  ,fk] = 0. Otherwise, m > 0 and we may choose a variable x 
that appears in one or more of the J~'s. Let gl , . . .  ,gl denote the coefficients of  the j}'s 
as polynomials in x. Since [ f l , . . .  ,fk] is primitive, the same is true of  [gl , . . .  ,gl]. 

If we choose a random point in F~ - l  and evaluate f l , . . .  ,fk, we obtain a collection 
of univariate polynomials in x. These polynomials will be identically 0 with probability 
Z[gl,.. .  ,gt]. Otherwise, to obtain O's, x must be a root of  one or more polynomials of 
degree _< d, where d denotes the maximum degree of the (unevaluated) 35's with respect 
to x, an event with probability at most d/q. Hence, 

Z[fl , . . .  ,fk](q) _< dq -1 + Z[gl,... ,gl](q) 

and the result follows by induction. | 

Now, consider the consequences if f l  is linear with respect to some variable xl, i.e., 

f l  = go+glXl, gi C Z[x2,x3,...]. (2.1) 

Given a polynomial h = ho + hlxl + . . .  + h t~  with hi C Z[x2, x3,. . .  ], hk ~ 0, define 

h = h o g ~ - h l g o g ~ - l + . . . + ( - 1 ) k h k g ~  E Z[x2, x3, . . . ] .  (2.2) 

This can be viewed as a fraction-free resultant of h and f l .  

Proposition 2.3. Assuming fl  satisfies (2.1), then 

Z[fl , . . .  ,fk] = Z[g0, gl, f2 , . . .  ,fk] -}- q-lZ[f2,. . .  ,fk] -- q-lZ[gl, f2 , . . .  ,J~], 

where f2, . . .  ,fk are defined as in (2.2). 

Proof Partition the points in Xq according to whether gl = 0 or gl ¢ 0. In the former 
case, we have f l  = 0 if and only if go = 0, and the probability that a randomly chosen 
point in F~ lies in this subvariety is Z[go, gt, f2, . . .  ,fk](q). 

Otherwise, if gt ¢ 0, we must have xl = -go~g1 in order to satisfy f l  = 0. Since 
j~ is g~ times the result of substituting xl = -go/g1 in J}, it follows (given f l  = 0 and 
gl ¢ 0) that fi  = 0 if and only if 3~ = 0. Ignoring the variable xl, the probability that a 
randomly chosen point in F~ n-l  satisfies gl ¢ 0 and f2 . . . . .  3~ = 0 is 

z[y2,. . .  ,A] - Z[g,, f2 , . . .  ,A]. 

If we restore xl and add the condition f l  = 0, then the probability drops by a factor of  q 
since xl is uniquely determined. II 
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Remark 2.4. We can simplify the last term in the above recurrence based on the obser- 
vation that h = +hkg ~ mod gL. Indeed, 

where h denotes the leading term of h as a polynomial in xl, and e(h) = 0 or I according 
to whether h is independent of xl. 

3. The Conjecture of Kontsevich 

In the present context, graphs are unoriented and may have loops and multiple edges. 
It will be helpful to regard the edge set of a graph as the "ground set", with the vertices 
providing incidence data. 

Given a graph G, choose a variable Xe for each edge e and define 

E 1-I xe, 
T eET 

where T ranges over all spanning trees of G. If G is disconnected, E(G) = 0. 
For any edge e, we let G - e denote the graph obtained by deleting e, and G/e the 

graph obtained by contracting e to a point. By partitioning the spanning trees of G 
according to whether they contain e, one can see that 

Z ( G / e ) ' X e + Z ( G - e ) ,  if e is not a loop, (3.I) 

E ( G ) =  E ( G -  e), otherwise. 

With suitable initial conditions, this could serve as the definition of E(G). 
Translating the (modified) conjecture of Kontsevich reported in [5], we arrive at 

Conjecture 3.1. For all graphs G, Z[E(G)](q) is a polynomial function of q -1. 

We claim that Z[E(G)] is unchanged by the addition or deletion of loops or duplicate 
edges. In the case of a loop, this is clear since E(G) does not depend on any loop 
variables. If e and e f are edges of G with the same endpoints, then E(G) is a function of 
Xe + Xe' and the remaining variables. Furthermore, as Xe and Xe' vary uniformly over F 2, 
one sees that Xe + Xe' varies uniformly over Fq, so the claim follows. Hence, there is no 
loss of generality in restricting our attention to simple graphs (i.e., no loops or multiple 
edges). 

Unless stated otherwise, assume henceforth that G is a simple, connected graph. 

Another easy observation to make is that if G has a cut vertex (i.e., a vertex whose 
removal disconnects G), then the edges of G can be partitioned into two subgraphs G1 
and G2 with the property that E(G) = E(G 0 . E(G2), hence, 

Z[E(G)] = Z[Z(G1)] + Z[E(G2)] - Z[Z(G1)]" Z[E(G2)]. (3.2) 

Thus, to prove Conjecture 3.1, it suffices to consider 2-connected graphs. 
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L e m m a  3.2. For any edge e o f  G, we have 

Z[E(G)] = q - t  _ q - I Z [ E ( G / e )  ] + Z[E(G/e) ,  E(G - e)]. (3.3) 

Proof  Proposition 2.3 and (3.1). | 

L e m m a  3.3. For any a, b, c, d E Z[xl,  x2, . . . ] ,  we have 

Z[ay + b, cy + d] = Z[a, b, c, d] + q - lZ[ad  - bc] - q- tZ[a ,  c]. 

Proof  Applying Proposition 2.3 twice, we obtain 

Z[ay + b, cy + d] 

= Z[a, b, cy + d] + q - lZ[ad  - bc] - q-1Z[a, ad - bc] 

= Z[a, b, c, d] + q- lZ[a ,  b] - q - lZ[a ,  b, c] + q - lZ[ad  - bc] - q- lZ[a ,  bc] 

= Z[a, b, c, d] + q - lZ[ad  - bc] - q- lZ[a ,  c], 

the last equality being a consequence of Z[a, bc] = Z[a, b] + Z[a, e] - Z[a, b, c]. | 

T h e o r e m  3.4. For any (distinct) edges e, e ~ o f  G, we have 

Z[Z(G)] = q-1 + q-2 _ q - I z [ E ( G / e )  ] _ q - lZ[Z(G/e , ) ]  _ q-ZZ[E(G/e/e , )]  

+ q-1Z[Ae, e, (G)] + Z[E(G/e / e ' ) ,  Z ( G / e  - e'), E (G/e '  - e), Z ( G -  e - e')], 

where Ae, e, (G) = Z ( G / e  - e ' ) .  Z (G/e '  - e) - Z ( G / e / e ' ) .  Z ( G -  e - e'). 

Proof  Using Lemma 3.3 (with y = Xe,) to compute Z[Z(G/e) ,  E(G - e)], we find 

Z[Z(G/e) ,  E(G - e)] = Z [ Z ( G / e / e ' ) ,  Z ( G / e  - e'), Z (G /e '  - e), Z(G - e - e')] 

+ q-1Z['~e,e' (O)] - q - I Z [ E ( G / e ' / e ) ,  Z ( G / e '  - e)], 

using the fact that deletion and contraction commute (e.g., (G - e ) / e  r = G / e  I - e). 
Applying L e m m a  3.2 to G / e  ~, we can eliminate the appearance of Z[E(G/e t / e ) ,  
E ( G / e '  - e)] from the above expression, obtaining 

Z[E(G/e) ,  E(G - e)] = Z[Y~(G/e/e') ,  E ( G / e  - e'), E(G/e '  - e), E(G - e - e')] 

+ q-1Z[Ae, e' (G)] + q-2 _ q-1Z[E(G/e ,  )l - q-ZZ[E(G/e /e ' ) ]  • 

Now, substitute the result back into (3.3). | 

We remark that in the above proof, applying Lemma 3.2 to G / e  ~ is somewhat sloppy, 
since G / e  ~ need not be a simple graph. However, the validity of  Lemma 3.2 depends 
only on e not being a loop. 

A particularly interesting situation occurs when {e, e'} is a cutset, i.e., G -  e - e p is 
disconnected. For simplicity, we may assume that this is a minimal cutset, otherwise, 
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G has a cut vertex and (3.2) applies. In that case, G / e -  e ~ and G/e  t -  e have the 
same 2-connected components, and hence 2(G/e  - #)  = E ( G / #  - e). It follows that 
Z[Z(G/e)] = Z[Z(G/e')] (Lemma 3.2), and since 2(G - e - e') = 0, 

Ae, e' (G) = Z ( G / e  - e ' ) .  Z ( G / e '  - e) = r.(Ole - e') 2. (3.4) 

Furthermore, the last term in Theorem 3.4 reduces to Z[Z(Glele ' ) ,  Z(Gle  - e')], and 
hence, can be eliminated via Lemma 3.2. Combining these simplifications, Theorem 3.4 
implies 

Z[E(G)] = q-2 + (1 - 2q-i)Z[Z(Gle)] 

+ (q-1 _ q-2)Z[E(G/e/e,)] + q-1Z[E(G/e _ e')]. (3.5) 

Corol lary  3.5. A minimal graph that provides a counterexample to Conjecture 3.1 must 
have edge connectivity > 3. 

It is well-known that the spanning tree generating function of a graph is expressible 
as a determinant. Define the Laplacian L(G) to be a matrix whose rows and columns 
are indexed by the vertices of G, with the (u, v)-entry being -Xuv (if u ¢ v and uv = vu 
is an edge of  G), or 0 (if u and v are non-adjacent), or ~xuv,, summed over all vertices 
v I adjacent to u (if u = v). The Matrix-Tree Theorem (e.g., [3, Section 4]) asserts that 

E(G) = detLv, v(G) (3.6) 

for any vertex v, where Lu, v(G) denotes the result of deleting from L(G) the row indexed 
by u and the column indexed by v. 

Following Stanley (see Theorem 3.3 of [5]), we observe that, for each vertex u 
adjacent to v, the variable xuv appears only once in Lv, v (G), in the (u, u)-entry. Thus, as 
xuv varies uniformly over Fq, the (u, u)-entry also varies uniformly over Fq. It follows 
that if L , , .  (G) is the matrix obtained from Lv, v(G) by redefining the (u, u)-entry to be xu 
for all u adjacent to v, then detLv, v(G) and detLv, v(G) vanish with the same probability, 
i.e., 

Z[E(G)] = Z[detL~, v(G)]. (3.7) 

For any vertex u, we let N(u) denote the neighborhood of u, i.e., the set consisting 
of u and all vertices adjacent to u. 

Theo rem 3.6. I f  u, u ~, v, v I are vertices that form a complete subgraph of G and N(u) 
is a subset of  both N(v) and N(v'), then 

Z[E(G)] = Z[E(G - u'v')] + q-IZ[E(G - u'u)] - q-IZ[Z(G - u' u - u'v')]. 

Proof If we set xu, u = 0 in Lv, v(G), we obtain Lv, v ( G -  u'u), so by (3.7), 

Z[~'.(G)](q) - q - I Z [ E ( G -  u' u)](q) 

represents the simultaneous probability that detLv, v(G) = 0 and that the (u', u)-entry of 
Lv, v(G) is invertible in Fq. In that event, there is a uniquely determined multiple of the 
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row and column indexed by u that can be added to the row and column indexed by v I so 
that the (u I, vl)-entry is zero. 

Consider the effect of this operation on the distribution of the entries of the matrix. 
Of course the matrix remains symmetric, the determinant is preserved, and only the row 
and column indexed by v ~ is modified. First, consider a typical off-diagonal entry in the 
v / column, say, (w, vt). In order for this entry to be modified, we must have w E N(u); 
in particular (since N(u) C_ N(v')) ,  w must be adjacent to v', and the (w, v')-entry is 
originally -Xw¢.  Since w and v r are both in N(u),  and hence, N(v) ,  it follows that the 
variable Xwv, does not appear anywhere else in L~, ~(G), aside from the identical (v ~, w)- 
entry. Thus, any quantities added to this entry (except in the case w = d )  do not change 
the fact that it is distributed uniformly over Fq and is independent of the other entries. 
There is a similar argument for the (v l, vl)-entry, since it is originally a variable that is 
independent of all other entries. 

Thus, when the (u ~, u)-entry is restricted to be invertible in Fq, the distributions of 
detLv, v (G) and detLv, v ( G -  d v  ~) are the same, which implies 

Z[Z(G)] - q- IZ[Z(G - ut u)] = Z[Z(G - u'vl)] - q - IZ[Z(G - d u  - ut vt)], 

given the observation made at the beginning of the argument. | 

Corollary 3.7. A minimal graph that provides a counterexample to Conjecture 3.1 can- 
not have a triple o f  vertices u, v, v' such that N(u) C N(v) ,  N(v') .  

Proof  Given the stated condition, u, v, and v t must be mutually adjacent. If u is not ad- 
jacent to other vertices, then the edges uv and uv ~ form a (minimal) cutset, whence (3.5) 
is applicable. Otherwise, there is another vertex u ~ adjacent to u, and hence also adja- 
cent to v and v ~, so Theorem 3.6 is applicable. | 

Extending our previous notation, define (for example) Luv, u,v, (G) to be the matrix 
obtained from L(G) by deleting the rows indexed by u and v, and the columns indexed 
by u ~ and v ~. Recall that a key step in the derivation of Corollary 3.5 is the fact that 
if {e, e ~} is a minimal cutset for G, then Ae, e,(G ) is a perfect square (see (3.4)). The 
following result shows that this is true in general. 

Theorem 3.8. Let e, e ~ be distinct edges o f  G. 

(a) I f  e = uv and e I = u'v, then 

de, e, (C) = detLu ;u,v(G) 2. 

(b) / fe  = uv and e I = urv t (and u, v, u t, v t are distinct), then 

~e,e' (a)  = (detLuv, u,~(G) - ( -  1)r detLuv, v,v(G)) 2 , 

where r denotes the distance between rows u t and v ~ in Lv, v(G). 

Proof  (a) Recall that Z(G/e )  and E(G - e) are the linear and constant terms of Z(G) 
with respect to Xe. Since the variables Xe and Xe~ appear only in the rows and columns 
of Lv, v(G) indexed by u and u I (respectively), it follows from (3.6) that 

E ( G / e  - e') = detLuv, uv(G), E(G/e '  - e) = detLu,v,u,v(G), 

Z ( G / e / e ' )  = detLuu, v, uu, v(G), E ( G -  e -  e') = detLv, v(G), 
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where G = G - e - e ~. However, by the Dodgson determinant identity [2], one knows 
that, for all i < k and j < l (or vice-versa), 

Ai,  l A k , j  = Ai,  jAk ,  l - A ik , f lAo ,  o, 

where AI,j denotes the minor of a square matrix A obtained by deleting the rows indexed 
by I and the columns indexed by J. Hence, 

Ae, e t (a)  : detLuv, u,v( G ) detLu,v, uv( G ) = detLuv, u, v(G) 2, 

since L(G) is symmetric and Luv, u,v(G) is independent Of Xe and Xe,. 
(b) We may assume that u t and v t index consecutive rows and columns of L~; ~(G), 

for, if we interchange the row and column of u ~ with an adjacent row and column other 
than v t, the parity of r changes and the determinant of Luv, v,v(G) changes sign. The 
analysis is now similar to (a), the only difference being that the variable Xe' appears in 
four positions (the rows and columns of u ~ and v~), which leads to 

E(G/e '  - e) = detLu, v,u,v(G) + detLu,v,v,v(G) + detLcv, u,v(G) + detLvq,,¢v(G). 

Similarly, E(G/e / e  ~) can be obtained by deleting the row and column of u from these 
four minors. Thus, via foiar applications of the Dodgson identity, we obtain 

Ae, e, (G) = (de tLudv(G)  + detLuv ' cv(G)) • (detLu, v,,v(G) + detLv,~;uv(G)) 

= (detLuv, u,v(G) + detLuv, v'v(G)) 2 , 

again by the symmetry of L(G). Although the determinants of Luv ' u'v(G) and Luv, v'v (G) 
both depend on Xe, , it is easily shown that their sum does not. 1 

We remark that T. Chow [1] has given a combinatorial interpretation of Ae, e, (G) 
based on the above formula. It seems plausible that a combinatorial derivation could be 
obtained along the lines of Zeilberger's proof of the Dodgson identity [6]. 

4. Duality 

Let E(G) denote the generating function for complements of spanning trees, i.e., 

T e E G - T  

where T ranges over all spanning trees of G. The conjecture that Z[E(G)] (q) should be 
a polynomial function of q-1 for all graphs G is essentially the original formulation of 
Kontsevich's conjecture (cf. also Subsection 8.2). 

Given a subset S of the edge set of G, extend the notation of Section 3 by defining 
G/S  to be the graph obtained from G by contracting the edges of S to points. A minor 
of G is obtained by any sequence of deletions or contractions of edges of G. 

The following is a more explicit version of Proposition 2. t in [5]. 
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Proposition 4.1. We have 

1 - Z[~(G)] = y" ] ~ ( -  1)Isl q-Is't-Irl(1 _ Z[E(G/T - S)]), 
T S 

where the outer sum ranges over edge subsets T of G without cycles, and the inner sum 
ranges over edge subsets S of G/T. 

Proof For edge subsets T of G, define Na, r (q) to be the probability in Fq of the 
event that (1) 12(G) ¢ 0 and (2) Xe = 0 if and only if e E T. Similarly, define NG, r (q), 
substituting E(G) in place of Z(G). Since 

~(G) .VIx;  t =E(G)lxe~l/xe, 
eEG 

it follows that NG, o(q) = filG, o(q). 
If we substitute Xe = 0 in ~(G) for all e E T, we obtain 0 if there is a cycle in T, 

otherwise, we obtain E(G/T). Hence, 

1-Z[E(G)]= ]~Nc, r(q)= ~ q-lrlNa/r,o(q)= y" q-frlNa/T,~(q ). 
T T acyclic T acyclic 

However, by inclusion-exclusion, we have 

NG/r,o(q) = ~ (_q ) - I s l  (1 - Z [ E ( G / T -  S)]), 
S 

so the claimed identity follows. 

There is a similar inversion formula expressing Z[E(G)] as an alternating sum of 
terms of the form Z[f'.(H)], where H ranges over minors of G. 

Corollary 4.2. IfZ[Y(H)](q) is a polynomial in q-I for every minor H of G, then the 
same is true for Z[~;(H)] (q). 

If G has n vertices and at most 2n - 3 edges, then a spanning tree has more edges 
than its complement in G. In these cases, it may be easier to test whether Z[r(G)] is a 
polynomial, rather than Z[E(G)]. 

Corollary 4.3. If  G is a minimal counterexample to Conjecture 3.1, then Z[f~( G)](q) is 
not a polynomial in q- 1 and is minor-minimal with respect to this property. 

5. A Reduction Method 

We now turn to the problem of explicitly computing Z[E(G)] (q), or more generally, 
Z [ f l , . . . ,  fk] (q), regarding q as an indeterminate. Motivated by the reasoning used in 
the proof of Theorem 3.4, we define a reduction of the expression Z [ f l , . . . ,  fk] to be an 
application of one or more of the following relations: 

(R1) If one of the polynomials, say, f b  is linear with respect to one of the variables, 
say, Xl, then we can apply the relation of Proposition 2.3. 
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(R2) If one of the polynomials, say, f t ,  factors nontrivially over Z, i.e., f l  = gig2, 
where gi E Z[xl, x2, . . .  ] and gi 7 ~ 0, -I- 1, then we have the relation 

Z[f l , . .  . ,fk] = Z[gl, f2 , . . .  ,fk] + Z[g2, f2 , . . .  ,fk] - Z[gl, g2, f2 , . . .  ,fk]. 

(R3) If two of the polynomials, say, f l ,  f2, are scalars (i.e., integers), then we have 

Z[ f l , . . .  ,fk] = Z[gcd(fl ,  f2), f3 , . - - , fk] .  

(R4) I f f i  = +f2  o r f l  = 0 say, then Z[ f t , . . .  ,fk] = Z[f2, . . .  ,fk]. 

(R5) IfJ~ = +1 for some i, then Z[ f l , . . .  ,fk] = O. 

More generally, we define reductions of Z[q-1]-linear combinations of expressions of 
the form Z[ f l , . . .  ,fk] in the obvious way. 

If none of the above relations can be applied, then we say that If1,.. •, fk] is inert. 2 
To abuse notation, we may also say that Z [ f l , . . .  ,fk] is inert. More generally, any 
Z[q-1]-linear combination of inert expressions is said to be inert. 

It is easy to see that [fl , .  - . ,  Jk] is inert if and only if at most one of the f i 's  is a prime 
integer and the remaining j~'s are distinct (up to a factor of 4-1), irreducible, primitive 
polynomials of degree at least two with respect to every dependent variable. 

Of special importance is the empty list [ ], for which we have Z[ ](q) = I. We say that 
[ f t , . .  • ,fk] is completely reducible if Z[f l , . . .  ,fk] can be reduced to a Z[q-1]-multiple 
of Z[ ]. Of  course in this case, Proposition 2.1 implies that the number of  points on the 
corresponding variety over Fq is a polynomial function of q. 

Although we have defined the above relations as "reductions", it requires some work 
to show that there are no infinite sequences of reductions. To verify this claim, let us 
first define an offspring of the nonzero polynomial f to be either a non-trivial divisor of 
f (i.e., not :t: 1 or + f ) ,  or the linear or constant term with respect to some variable that 
appears in f .  The zero polynomial has no offspring by definition. 

L e m m a  5.1, There are no infinite sequences gl, g2,. . ,  in which gk+l is an offspring 
of  gk, for  all k. 

Proof If we order Z[xl, xz , . . . ]  first by total degree and second by the number of de- 
pendent variables, then an offspring of f might not (strictly) precede f in this ordering 
only i f f  is a constant. However in that case, the only offspring o f f  are strictly smaller 
than f in absolute value. | 

Proposition 5.2. Starting from any polynomial list F : [ f l , . . .  ,f~], the reductions 
(R1)-(R5) can only be applied a finite number of times. 

Proof Set F1 = F and given/~, let b}+l be the polynomial list corresponding to one 
of the terms appearing on the right-hand side of one of the relations (R1)-(R4). (An 
application of  (R5) is clearly terminal.) If the proposition were false, there would exist 
an infinite sequence Fl, Fz, . . .  of this type. Indeed, any infinite rooted tree of bounded 
width has an infinite chain. 

2 It is unfortunate that the term "irreducible" already has a standard meaning for varieties. 
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Observe that every term on the right-hand sides of (R1)-(R4) involves the same 
or a smaller set of variables, and the two terms of (R1) involving [f2,---,fk] and 
[gl, f 2 , . . . ,  fk] (see Proposition 2.3) both have a strictly smaller set of variables. Hence, 
these terms can be chosen only a finite number of times in any sequence {F/}i_>b By 
truncating an initial segment if necessary, we may assume that {~}i>1 is constructed 
without ever selecting these particular right-hand sides. 

If/~+1 is obtained from/~ via (R1), the remaining possibility is that two of the 
members of F/+l  a r e  offspring of one of the members of F/, and the remaining terms are 
identical. Similarly, if (R2) is applied, one member of F/is replaced with one or two of 
its offspring. The remaining relations all involve deletion of terms or replacements of 
scalars. So for each non-constant polynomial f appearing in b}, we can trace a sequence 
from f back to some f j  in F in which each term is either equal to or an offspring of the 
previous term. But every offspring-sequence starting at f j  must be finite (Lemma 5.1), 
so there can only be finitely many occasions in the sequence {b}}i___t in which offspring 
of non-constant polynomials are chosen. 

Thus by truncation, we may assume that all applications of (R 1)-(R4) involve delet- 
ing terms or replacing scalars with divisors. However, it is easy to see that no infinite 
sequence of reductions can be constructed from these limited operations. | 

6. Conducting a Search 

We have implemented an algorithm in Maple for reducing any expression Z[fl , . . .  ,fk] 
to a Z[q-1]-linear combination of inert expressions. In theory, this is straightforward, 
Since one needs only to look for opportunities to apply (R1)-(R5), and halt when no 
such opportunities exist. However, in practice, there are a number of subtle points, 
one being the need to guard against expression swell, and another being the fact that 
while a given expression may be completely reducible, it may also be difficult to find 
a sequence of reductions that achieve this. The latter is the primary objective of the 
computation, 

6.1. Strategy 

We summarize here the main features of our strategy for finding complete reduc- 
tions. 

(1) One should keep the terms j~ in a canonical order, and replace j~ with - j~ in 
case the leading coefficient of j5 is negative. Using (R3), one may permit at most one 
scalar among the fi's. With these conventions, we increase the likelihood of finding 
cancellations such as Z[f  ] - Z[-  f ] = O. 

(2) Whenever using (R1) to eliminate a variable, the new polynomials that are 
introduced are replaced with their "square-free" parts. More specifically, if the polyno- 
mial g is to be introduced into an expression Z[g,... ], we first compute the canonical 
square-free factorization g = cglg~g 3... , where the gi's a re  primitive, co-prime, and 
square-free, and c is an integer. (This is significantly cheaper than an irreducible factor- 
ization of g.) We then replace g with cgtg2g3"", an operation that is easily shown to 
be a reduction in the sense of Section 5. 
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(3) The main issue of strategy concerns how to choose from among the many 
opportunities that may exist for applying (R1) and (R2). Since the use of (R1) tends 
to produce expressions with fewer variables than the original, this operation is usually 
preferable to (R2). However, it can easily lead to expressions large enough to exceed the 
capacity of Maple. It is also difficult to determine in advance Which variable and which 
term 3~ will yield the smallest results. On the other hand, if we apply (R2) whenever 
possible, the total number of terms tends to explode. 

To cope with these conflicting tendencies, we use a heuristic that combines random- 
ized, greedy, and conservative methods. The algorithm first looks for a greedy solution 
by attempting a complete reduction of Z If  1, . . . ,  fk], using (R1) first whenever possible. 
When there is a choice of variables to eliminate, one is taken at random. Error traps 
are set for detecting if any internally generated expressions are "too large" If any traps 
are triggered, or if the resulting inert expression involves terms other than Z[ ] or Z[p] 
for p a prime integer, then the greedy method is designated as having "failed," and the 
algorithm restarts in conservative mode. In this mode, we examine every opportunity 
to apply (R2), but apply only one of them, namely, the one that produces the smallest 
results. If there is no opportunity to apply (R2), we do the same with (R1). Then the 
full algorithm is recursively applied to each of the new expressions (i.e., first greedy 
mode, and then if it fails, conservative mode) until an inert expression is reached. 

6.2. Results 

In using this program to investigate the conjecture of Kontsevich, we were amazed 
at how effective it is at finding complete reductions. We had expected that it would 
be necessary to incorporate Buchberger-style reductions (e.g., f2 --+ fa - a f l ,  where a 
is chosen to kill the leading term of f2), and perhaps invertible changes of variable, in 
order to obtain results for all but the smallest problems. 

For example, the complete bipartite graph K3,3 has 81 spanning trees, so £(G) is a 
sum of 81 square-free monomials of degree 5 in 9 variables. It typically takes about 17 
or 18 rounds in greedy mode to obtain a complete reduction that proves 

Z[£(K3,3)](q) = q-1 + 7q-3 _ 13q-4 + 14q-5 _ 17q-6 + 9q-7. 

Due to the randomized nature of the algorithm, it is possible for the greedy mode to 
fail for this graph, thus, creating the need for a round of conservative reduction. On 
the other hand, for slightly larger graphs, several rounds in conservative mode are often 
required. 

Bearing in mind Corollaries 3.5 and 3.7, we searched for a minimal counterexample 
to Conjecture 3.1. We generated all connected graphs with no cut vertex (cf. (3.5)), no 
two-edge cutset, no triple of vertices satisfying N(u) C__ N(v), N(v'), and at most 13 
edges. The number of such graphs, sorted by edge and vertex counts, is displayed in 
Table 1. 

For the graphs with _< 11 edges, and all but two of the graphs with 12 edges, the 
program was able to find a complete reduction of £(G). The two exceptional graphs are 
the cubic graphs of girth four on eight vertices: the cube Q and the "Mtibius ladder" L 

- -  the graph obtained by adding edges joining the antipodal points of an eight-vertex 
circuit. 



Counting Points on Varieties over Finite Fields 

8 9 10 

5 1 

6 2 4 

7 

8 

11 12 13 

3 1 

4 15 22 

4 32 

Table 1: Potential counterexamples to Conjecture 3.1. 
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Since the cube is a planar graph, there is a natural bijection between the edges 
of Q and its planar dual, the octahedron O. Furthermore, this identification induces a 
bijection between the spanning trees of O and complements of spanning trees in Q (e.g., 
see Lemma 3.3.7 in [4]). In particular, Z[E(O)] = Z[E(Q)]. However, included among 
the calculations mentioned above is a complete reduction for E(O) (the octahedron has 
only six vertices), so it follows from Corollary 4.3 that Z[E(Q)] must be a polynomial 
in q-1. 

Although the M6bius ladder is not planar, it is still an advantage that r.(L) has degree 
five, whereas E(L) has degree seven. We were able to obtain a complete reduction 
proving that Z[E(L)] is a polynomial in q- l ;  so again it follows from Corollary 4.3 that 
Z[E(L)] must be a polynomial in q- 1. 

We conclude from these considerations that Kontsevich's conjecture is true for all 
graphs with at most 12 edges. 

While we are skeptical that the following question has an affirmative answer, the 
unreasonable success of the algorithm prompts it. 

Question 6.1. Is it true that E(G) is completely reducible for every graph G? 

We have used the program to verify that this is true for all graphs with at most 11 
edges. Note that we cannot use Corollary 3.5 to reduce the search to graphs with edge 
connectivity _> 3, since the proof of Theorem 3.4 involves the use of Proposition 2.3 in 
the "reverse" direction. Similarly, we also cannot make use of Corollary 3.7. 

A hint towards an explanation of the effectiveness of the algorithm is provided by 
Theorem 3.8. Recall that the quantity Ae, e,(G ) appears when (R1) is applied twice 
to Z[E(G)] (see Theorem 3.4). Since AGe,(G) is quadratic in each variable, it would 
be inert if it were irreducible. However, Theorem 3.8 shows that Ae, e' (G) is a perfect 
square. 

6.3. Interpolation 

Define the depth of the expression q-¢tZ[fl,..., fk] to be d + 1 if If1,. • • ,fk] is prim- 
itive, d if If1,... ,fk] is imprimitive but not identically zero, and infinite if [ f l , . . .  ,fk] 
is zero (or an empty list). The depth of a Z-linear combination of such expressions is 
defined to be the minimum depth of its constituents. 

Note that [ ] and [p] for prime integers p are the only imprimitive lists that are inert. 
By Proposition 2.2, any expression of depth d is asymptotically go(q -l) + O(q -d) 

for some (explicit) polynomial go. Thus, if our algorithm fails to completely reduce 
E(G), but instead it produces an inert expression of depth d, then we will at least be 
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able to determine an asymptotic series for Z[E(G)] (q) through terms of order less than 
q-d. 

Define the embedding degree of the expression q-dZ[fl , . . .  ,fk] to be m + d, where 
m is the number of dependent variables that appear in [f l , . . .  ,fk]. More generally, 
define the embedding degree of a Z-linear combination of such expressions to be the 
maximum embedding degree of its constituents. 

Proposition 6.2. Assume f l , . . .  ,fk are homogeneous of  positive degree. I f  g(q) = 
Z[fl,... ,A](q) is a polynomial function of  q -1, then g can be explicitly determined 
from a reduction of  Z[f l , . . .  , fk] of depth d and embedding degree e, together with the 
values of  g(q) at e - d prime powers q. 

Proof. Given the existence of a reduction as described, qeg(q) must be integer-valued 
for all prime powers q, so as a polynomial in q-  1, g has degree < e. Furthermore, since 
the reduction has depth d, one can extract from it an explicit polynomial go such that 

g(q) = go(q - l )  + adq -d + ad+lq -(d+l) +. . .  + aeq -e, 

for certain (unknown) scalars ad, ad+l,... ,ae. Now, since f l , . . . ,  fk are homogeneous 
and nonconstant, it follows that the nonzero points on the corresponding variety can be 
partitioned into Fq-orbits, each of size q - 1. Hence, the polynomial g(q) must evaluate 
to 1 at q = 1, i.e., g0(1) +ad +""  +ae = 1, leaving a parameter space of dimension 
e - d .  | 

Remark 6.3. (a) As pointed out by Stanley (see Proposition 2.2 of [5]), the rationality 
of zeta functions of varieties over finite fields implies that the coefficients of g(q) are 
necessarily integers. Thus, if we use the interpolation suggested by the above propo- 
sition when g(q) is not known in advance to be a polynomial, and it happens that the 
resulting coefficients are not integers, we obtain proof that g(q) is not a polynomial. 

(b) An expression of the form Z[hl , . . . ,  hi], where h l (say) is a nonzero integer, eval- 
uates to 0 for infinitely many prime p.owers q. Thus in an application of Proposition 6.2, 
we may ignore such terms when computing the depth and embedding degree. 

(c) If G has m edges and at least one cycle, then Z[Z(G)] has a reduction with 
embedding degree < m - 1. This follows by induction from Lemma 3.2, if we include 
graphs with loops or duplicate edges as part of the assertion, and take the basis of the 
induction to be graphs with at least one loop. In the latter case, the result is obvious, 
since E(G) depends on at most m - 1 variables. 

As we mentioned previously, our program produced incomplete reductions for the 
cube and the M6bius ladder. For the cube Q, it produced a Z[q-1]-linear combination 
of Z[ ], Z[2], and 13 inert expressions of the form Z[f] for various polynomials f .  The 
depth of the expression was 5 and the embedding degree 11, so since we do know that 
Z[E(Q)] is a polynomial, we were able to determine it by explicitly counting points on 
the varieties f = 0 over the fields Fq, q = 2, 3, 4, 5, 7, 8, obtaining 

Z[Z(Q)] = q-I  + 9q-3 + 3q-4 _ 86q-5 + 191 q-6 _ 220q-7 + 133q -8 - 6q -9 - 24q-1°. 
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For redundancy, we also counted points over F9 and checked to see that it agreed with 
this result. As a further check of correctness, we also counted points on the variety 
E(Q) = 0 over F2 and F3 and compared it with this formula. 

For the M/3bius ladder L, our program produced a Z[q-1]-linear combination of 
Z[ ], Z[2], Z[3], and 137 inert expressions involving one, two, or three polynomials 
and scalars, the depth being 4 and the embedding degree 11. Proceeding as above, we 
needed one more evaluation than in the case of the cube, and used the count for Fll  as 
a redundancy check. In this case, we obtained 

Z[E(L)] = q-1 + 9q-3 + q-4 _ 85q-5 ÷ 203q-6 _ 258q-7 + 176q-8 _ 14q-9 _ 32q-10. 

As before, we also counted solutions of E(L) = 0 over F2 and F3 and verified that the 
counts were consistent with this formula. 

7. The Apex Case 

As noted by Stanley in [5], the conjecture of Kontsevich is particularly interesting when 
the graph G has an apex--  a vertex v that is adjacent to every other vertex. In that case, 
if we make a change of variables xe ~ -xe  for all edges e not incident to v, then Lv, v(G) 
is a symmetric matrix whose entries are either zero (in certain off-diagonal positions) 
or independent indeterminates, aside from the symmetry condition. 

Reformulating this slightly, given a simple graph G, let us define M(G) to be the 
matrix whose rows and columns are indexed by the vertices of G, with the (u, v)-entry 
being Xuv (if u ~ v and uv = vu is an edge of G), xu (if u = v), or 0 (if u and v are 
non-adjacent). Considering (3.7), we have 

Z[E(G*)] = Z[detM(G)], 

where G* denotes the graph obtained from G by adjoining a new vertex adjacent to all 
vertices of G. Thus, the following is a special case of Conjecture 3.1. 

Conjecture 7.1. For all graphs G, Z[detM(G)] is a polynomial function of q- t. 

Given a subset S of the edge set of G, let M(G)Is denote the matrix obtained from 
M(G) by specializing Xe = 1 for all e E S. 

Theorem 7.2. If G is a minimal counterexample to Conjecture 7.1, then 

(a) G is connected; 
(b) every vertex of G has degree > 2; 
(c) there is no pair of vertices u, v such that N(u) C_ N(v); 
(d) for all acyclic subgraphs T of G, Z[detM(G)IT ] is not a polynomial in q-1. 

Proof (a) If G is disconnected, then detM(G) = detM(G1)detM(G2) for certain sub- 
graphs GI and G2, and hence (cf. (3.2)), 

Z[detM(G)] = Z[detM( G1 )] ÷ Z[detM(G2)] - Z[detM(Gl )]. Z[detM(G2)]. 

(b) If v has degree 1 in G, then it has degree 2 in G*. Hence, the two edges e, e t 
incident to v form a minimal cutset in G*. (Given that G is connected and has more 
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than two vertices, all doubleton edge cuts in G* are of this form.) Applying (3.5) to G*, 
we obtain that Z[detM(G)] is a Z[q-1]-linear combination of expressions of the form 
Z[detM(G~)] for three smaller graphs G ~, contradicting the minimality of G. 

(c) Suppose N(u) C_ N(v~). Adjoining an apex v, the same relationship holds in G*. 
Since u has degree at least two in G, there must be another vertex u ~ in G adjacent to u 
(and hence also v'). Hence, the identity of Theorem 3.6 applies to G*. Since each of the 
constituent graphs of this identity have v as an apex, we contradict the minimality of G. 

(d) By inclusion-exclusion, the quantity 

P(q) = Pa, r(q) := ]~ (-q)-ISlZ[detM(G- S ) ] ( q )  
SC_T 

represents the probability that a randomly chosen evaluation of the matrix M(G) in Fq 
is singular and has nonzero entries in each of the positions indexed by T. Furthermore, 
since G is minimal, the expression Z[detM(G - S)](q) is a polynomial if and only if 
S ~ 0, so P(q) cannot be a polynomial function o fq  -1. 

Now, choose a root vertex for each connected component of T, and let D(q) denote 
the group of (invertible) diagonal matrices D over Fq such that Dr, v = 1 unless v is an 
unrooted vertex of T. Note that D(q) acts on the set of singular evaluations of M(G) 
over Fq via M ~ DMD, and this action preserves the zeroes of the matrix. Furthermore, 
it is not hard to show that an evaluation of M(G) with nonzero entries in the positions 
of T has a trivial D(q)-stabilizer, thus, the singular matrices of this form can be parti- 
tioned into D(q)-orbits each of size ( q -  1)ITI, and the matrices with 1 's in the positions 
indexed by T serve as orbit representatives. It follows that 

P(q) = (1 - q-1)irlZ[detM(G)lT](q), 

hence, Z[detM(G)[7"] cannot be a polynomial in q- l .  

Remark 7.3. In the proof of (d), it would be natural to try to use the action of the full 
group of diagonal matrices. However, the orbit structure is much more complicated, 
and the characteristic 2 case is exceptional. On the other hand, it can be shown that 
there is an analogue of (d) in which we permit T to have a unique cycle, provided that 
this cycle has odd length. (This is possible if and only if G is not bipartite.) In this case, 
one uses the action of F~ x D(q), the first factor acting via scalar multiplication. 

We investigated Conjecture 7.1 by first generating all graphs with at most 12 edges 
that meet conditions (a)-(c) of Theorem 7.2. The number of such graphs, sorted by 
edge and vertex counts, is displayed in Table 2. Remember that if there are n vertices 
and m edges, this represents an instance of Conjecture 3.1 with m + n edges, so these 
are substantially larger problems than those listed in Table 1. 

We then used the Maple program described in Section 6 to reduce detM(G)[r for 
a randomly chosen spanning tree T (for smaller graphs, we reduced detM(G) itself). 
For every graph with < 11 edges, we obtained a complete reduction, so we conclude 
that Conjecture 7.1 is true for all graphs with < 11 edges. We also checked the 12-edge 
graphs with < 7 vertices and a few of the graphs with 8 vertices. In every case, we 
obtained a complete reduction. 
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1 

1 2 

1 

3 2 1 

4 9 11 7 6 

1 7 26 53 80 

1 10 56 200 

1 14 121 

1 19 

1 

Table 2: Potential counterexamples to Conjecture 7.1. 

8. Related Quest ions  

There are a number of natural variations and generalizations of Kontsevich's conjecture 
that turn out to be false. 

8.1. Non-symmetric Determinants 

For example (see [5]), consider dropping the symmetry condition in Conjecture 7.1. 
Equivalently, suppose we have a bipartite graph G on n + n vertices (i.e., n vertices in 
each color class). Define A(G) to be the n x n matrix with rows and columns indexed 
by the two colors of vertices, the (u, v)-entry being xuv if uv is an edge of G and 0 
otherwise. 

Question 8.1. Is Z[detA(G)] a polynomial in q- t  for all G? 

Kontsevich suggested in a message to Stanley that a negative answer to this question 
follows from the non-representability of the Fano plane over fields of characteristic 

2. In fact, taking G to be the point-line incidence graph of the Fano plane (a regular 
bipartite graph with 21 edges and 7 + 7 vertices), we used the program in Section 6 to 
determine that 

1 - Z[detA(G)] = (1 - q-1)7g(q-1) _ q-5(1 _ q-Z)13Z[2] ' 

where 

g(q) = 1 + 6q + 20q 2 + 35q 3 - 7q 4 -  97q 5 + 120q 6 -  74q 7 + 16q 8 + 9q 9 - 6q ~° + qll, 

thus confirming that Question 8.1 has a negative answer. 
We also conducted a search to determine whether the incidence graph of the Fano 

plane is the smallest graph G such that Z[detA(G)] is not a polynomial. Considering 
that there are 2310376 bipartite graphs with 21 edges and 7-t-7 vertices (up to color- 
preserving isomorphism), this search space requires pruning. 
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T h e o r e m  8.2. If G is a minimal bipartite graph such that Z[detA(G)] is not a polyno- 
mial function of q -1, then 

(a) G is connected; 
(b) every edge of G participates in a perfect matching; 
(c) for all acyclic subgraphs T of G, Z[detA(G)[r] is not a polynomial in q- 1; 
(d) there are no vertices u, u' such that N(u) C_ N(u'), where N(u) :=  N(u) - {u}; 

(e) for every edge e = uv, there are at least l~(u)l non-adjacent pairs (u', v I) with 
u' ~ ~(v) and v' ~ /q(u); 

(f) every vertex has degree > 3; 

(g) every vertex is non-adjacent to at least two vertices of the opposite color. 

Proof (a) Similar to the proof of  Theorem 7.2(a). 
(b) I f  there are no perfect matchings of  G that contain the edge e, then detA(G) does 

not depend on Xe and e can be deleted. 
(c) Choose a root vertex for each connected component of  T and follow the proof  of  

Theorem 7.2(d). The only necessary change is that one should employ the group action 
A ~ D~AD2, where D1, D2 range over diagonal matrices supported on the unrooted 
vertices of  T belonging to the two color classes. 

(d) Suppose/~/(u) C_ ~'(u ') .  Since G is connected, there is some vertex v adjacent 
to u (and hence, also ur). Since the columns in row u that have variable entries are a 
subset of  those in row u t, it follows by reasoning similar to the proof of  Theorem 3.6 that 
detA(G)lr  and d e t A ( G -  ulv)[z have the same distribution over Fq, where T = {uv}. 
Hence, 

Z[detZ(G) 17"] = Z[detZ(G - u'v)IT]. 

On the other hand, we know that 

Z[deta( G -  u'v) l r  ] = Z[detA(G - u'v)] - q-lZ[detA( G -  uv - u' v)] 

is a polynomial since G is minimal, so this contradicts (c). 
(e) We may assume that u (and similarly v) is adjacent to additional vertices. Other- 

wise, we violate (a), or (b) or G consists of  the single edge uv. For each vertex v r E F/(u) 
other than v, there must be at least one vertex in N(v) that is not adjacent to v r (by (d)), 
so there are at least I~(u) l - 1 non-adjacent pairs in ~/(v) x ??(u). 

Thus, if (e) is violated, there must be exactly one member  of Nr(v) that is non- 
adjacent to each v ~, and we have a configuration of entries in A (G) such as the following: 

V V t V tt  V ttt  

U Xll X12 XI3 X14 

U t X21 X22 X23 0 

U tt X31 0 0 X34. 

Here, we are supposing that N(u) = {v, v', v", v'"} and FI(v) = {u, u', u"}, so that row 
u and column v are zero in A(G) outside of  this submatrix. The crucial point is that 
there is exactly one zero in each column of the submatrix beyond the first. 
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Set T = {u'v : u' E N(v)} and considerA(G)lT. In the above example, this amounts 
to setting Xll = x21 = x3t = 1. If we now add multiples of column v of A(G)Ir to 
the columns of N(u) so as to kill the nonzero entries of row u, the net effect is that 
the 0 in column v I of the submatrix becomes -Xuv,. In the above example, the vari- 
ables xla, x13, xl4 move to the positions currently occupied by O's (and change sign). 
The new matrix again has entries that are, aside from O's and l's, independently and 
uniformly distributed over Fq. We conclude that detA(G)lr and detA(G')lr have the 
same distribution, where G r is obtained from G by adding edges between every pair 
(u ~, v') E/ / (v)  × N(u), and deleting all edges incident to u other than the edge uv. 

The new graph G ~ has the same number of edges as G, but it has edges u~v : u ~ E N(v) 
that cannot appear in a perfect matching, so Z[detA(GP)] must be a polynomial in q - 1  
and the same must be true for all subgraphs of Gq By an inclusion-exclusion argument 
similar to the proof of Theorem 7.2(d), it follows that 

Z[deta(G) It] = Z[deta(G ~) It] = p(q- t ) / (1  - q-1)lrt 

for some polynomial P. This is possible only if Z[detA(G)It] is itself a polynomial in 
q-  1, contradicting (c). 

(f) If v has degree 2 and u is a vertex of degree k > 2 adjacent to v, then (e) implies 
that there can be at most k edges between/V(v) and ~(u).  However, we have already 
accounted for k + 1 such edges. 

(g) We know that every vertex must be non-adjacent to at least one vertex of the 
opposite color (by (d)), so if (g) is violated, there must be a vertex u that is non-adjacent 
to a unique vertex v of the opposite color. Furthermore, again by (d), u must also be the 
unique vertex of the opposite color that is non-adjacent to v. 

There are at least two other (in fact by (f), three other) vertices u f, u" of the same 
color as u. Since their neighborhoods must be incomparable, there exist edges u~v ~ and 
u"v" in G such that (u l, v") and (u", v ~) are non-adjacent pairs. Thus, in A(G), we have 
a submatrix of the form 

I) ~)/ pit 

U 0 X12 XI3 

U / X21 X22 0 

u" x31 0 x33, 

and the remaining entries in row u and column v are variables. 
Now, set T = {u'v, u"v, u'v', u"v"} and consider A(G)Ir, i.e., xzi, X3h x22, x33 = 1. 

Subtracting multiples of rows u ~ and u" from row u to kill the (u, V)- and (u, v")- 
entries, we obtain a new matrix whose (u, v)-entry is -x t z  - x13, and aside from O's and 
l's, the entries are independently and uniformly distributed over Fq. We conclude that 
detA (G) lr and detA(G ~) [7" have the same distribution, where G' is obtained by adding 
uv and deleting uV and uv" from G. We now obtain a contradiction by reasoning similar 
to (e). | 

There are no graphs satisfying the conditions of Theorem 8.2 with less than 6 + 6 
vertices. For example, with 5 + 5 vertices, (f) and (g) force the graph to be cubic. There 
are only two such graphs, their (bipartite) complements being a 10-cycle and the union 
of a 4-cycle and a 6-cycle. The latter violates (d), whereas the former violates (e). 
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Omitting (c), there are 6 graphs on 6 + 6 vertices that meet the conditions of 
Theorem 8.2 - -  one each with 18, 19, 20, and 21 edges, and two with 24. For each 
of these graphs, we chose a spanning tree T and used the program described in Sec- 
tion 6 to obtain a complete reduction of detA(G)ir, thereby proving that there are no 
examples on 6 + 6 vertices. 

For graphs on 7 + 7 vertices, the minimum possible number of edges is 21 by (f). 
There are three graphs with 2t edges that meet all of the above conditions (other 
than (c)), and we found that only the incidence graph of the Fano plane has a span- 
ning tree specialization that fails to produce a polynomial. It follows that this is the 
only graph with _< 21 edges such that Z[detA(G)] is not a polynomial in q - l  

8.2. Matroids 

Generalizing from graphs to matroids, it is natural to define I~(M) to be the gener- 
ating function for the bases of a matroid M. The original formulation of Kontsevich's 
conjecture in terms of complements of spanning trees is the statement that if M is a 
co-graphic matroid, then the number of zeroes of Z(M) over Fq should be a polynomial 
in q. 

If we consider the matroid Mn of an n-point line, then every pair of points forms a 
base, and Y.(Mn) = ~ '4<jx ix j .  However, as pointed out by Stanley in [5], the number 
of zeroes of E(M4) over Fq is not a polynomial in q. Indeed, using only two rounds of 
reductions, one obtains 

Z[E(M4)] = q-1 _ q-2 + q-lZ[x2 + x y  + y2]. 

One can show that this is not a polynomial by analyzing when x 2 +xy  + y2 is irreducible 
or a perfect square (or neither) over Fq or use the methods of Subsection 6.3. 

On the other hand, both T. Chow and A. Barvinok have suggested restricting to 
the class of regular (or unimodular) matroids. These are the linear matroids that are 
representable over every field, and can roughly be described as the class of matroids for 
which one has an analogue of the Matrix-Tree Theorem. 

The smallest 3 regular matroid that is neither graphic nor co-graphic, labeled Rt0 
in [4], can be represented over every field by the matrix 

L =  

--1 1 0 0 1 1 0 0 0 0' 

1 --1 1 0 0 0 1 0 0 0 

0 1 - - 1  1 0 0 0 1 0 0 

0 0 1 --1 0 0 0 0 1 0 

1 0 0 1 --1 0 0 0 0 1 

In other words, the bases of Rio are the sets of columns of nonzero maximal minors of 
L, and since this is a universal representation of R10, these nonzero minors are all -I- 1. 
By the analogue of the Matrix-Tree Theorem (a Binet-Cauchy expansion), one has 

Y-(RIo) = detLDL ~, 

3 In terms of the ground set, which in the case of a graph is the number of edges. 
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where D is a diagonal matrix of indeterminates. 
We applied the reduction algorithm to E(R10), obtaining 

Z[~(RIo)] = q-I  + q-3 + 15q-4_ 27q-5 + 4q-6 + 8q-7 

+ (q-6 _ q-7) (7Z[2 ] + 3Z[3]) - q-3Z[f], 

where f is an irreducible, primitive polynomial in 5 variables. This expression has 
depth 4 and embedding degree 8, so if we accept the hypothesis that Z[E(Rlo)](q) is a 
polynomial in q-  l, then it can be explicitly determined by evaluating the above expres- 
sion at four prime powers q (Proposition 6.2). 

We counted the zeroes of f over Fq, q = 2, 3, 4, 5 and found that the unique poly- 
nomial that fit the data did not have integer coefficients. Hence (see Remark 6.3(a)), 
Z[E(Rt0)] cannot be a polynomial in q- t .  (Alternatively, one can count zeroes of f over 
F7 and see that the result does not fit the polynomial.) As a check, we also counted the 
zeroes of Z(R10) over F2 and F3, and confirmed that it agreed with the above formula 
and data. 

Thus, even for regular matroids, the analogue of Kontsevich's conjecture fails. 
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