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Zusammen/assung 

Differenzengleichungen k-ter Ordnung (k = 1, 2, 3, 4), in die y und dessen Ablei- 
tungen bis zur/- ten Ordnung (1 = 1, 2, 3) einbezogen sind, werden zur numerischen 
Integration der Differentialgleichung y '  = / (x ,  y), Y o -  0 beniitzt. Die Reduktion 
des Abbrechfehlers erreicht man am besten, indem man eher I als k vergr6ssert. 
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On a Mixed Boundary Value Problem for an 
Infinite Elastic Cone 1) 

By ROGER D. Low, Ann Arbor, Michigan, U.S.A.2), 
and HARRY J.  \~VEiss, Ames, Iowa, U.S.A. a) 

1. I n t r o d u c t i o n  

Consider an infinite right circular cone of vertex angle 2 a made of an 
isotropic, homogeneous, elastic material. Let  the vertex of the cone be at the 
origin of a spherical coordinate system (r, O, cp) and let its axis tie along the 
polar axis 0 = 0. The problem is to determine the components  of stress and 
displacement in the interior and on the boundary  of the cone when the displace- 
ment  is prescribed over a port ion of the boundary ,  the remainder of the bound-  
ary  being stress free. I t  will be assumed tha t  the shear stress is zero on the 
entire boundary,  there are no body  forces present, and tha t  the problem is 
axially symmetric.  Hence the problem consists in solving the homogeneous 
Navier  equation 

(1 --  2 ~) V2u + V ( V .  u) = 0 ,  (1.1) 

for the displacement vector u = (u~, u o, 0) subject to the boundary  conditions 

aro(r, o~) = O, r ~ O, (1.2) 
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uo(r, ~) = g(r) , 0 < r < 1 ,  (1.3) 

aoo(r, ~) = 0 ,  r > 1 , (1.4) 

all stress and displacement  components  vanish a t  infinity. (1.5) 

I t  is known ~1~ 4) t ha t  an axial ly symmet r i c  solution of (1.1) in spherical 
coordinates is expressible in te rms  of two harmonic  functions ~b(r, O) and 
~( r ,  0). The  results are 

ur = ~ r  + r cos 0 ~ r  - (2 fl - 1) cos 0 }P, (1.6) 

1 u~ = r #0 + cos 0 ~0  + (2/5 - 1) sin 0 W, (1.7) 

where the subscripts  on # and }P denote par t ia l  derivatives,  and/5 = 2(1 - ~), 
being Po l ssoN 's  ratio. The  non-zero stress components  are then  given b y  

[ sinO ] 
~rr = 2 ~ ~ + r cos 0 ~ --/5 cos 0 ~ r  + (2 --/5) T ~0 , (1. S) 

1 ~b -- R sinO q.t cosO ~too ] llcosOVr+,,,T O+ , (1.9) 

cot0 (~,~ = 2  # [lqb~ + ~ q ) 0  + (/5 -- 1)cos0 ~r-~ 1 --(t3r~n0-- 1)sin20 }P0] , (1.10) 

[ 1 q~ _ 1 q0 15 cos0 ~o], (1.11) 0 + c o s 0 ~ 0 + ( f l - 1 )  s i n 0 ~ - _ ~  

where # is the shear modulus.  

2. Reduction to a Finite Wiener-Hopf Equation 

We begin b y  defining the Mellin t ransforms of ~ and ~ to be 

o o  o o  

~(~, o) = f ,s ~(r, O)dr, kU~(s, O) = f r "-1 ~(~, O)dr. (2.1) 
0 0 

Then by  the usual process, one finds 5) 

6 " + c o t O 6 ' + ( s - 1 ) ( s - 2 ) 6 = O ,  ~"+co tOW-- '+s ( s -1 )~=O,  (2.2) 

provided the following expressions, obta ined b y  integrat ion b y  parts ,  vanish:  

[ r ~ l o ,  I r ' -~q0~o,  [ r'+~ kU~lo, and Er �9 ~U]o. (2.3) 

~) Numbers in brackets refer to References, page 241. 
5) The primes denote differentiation with respect to 0. 
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I t  will be assumed tha t  the displacement components  u r and u o are 0(r -1) at 
infinity. Then from (1.6) and (1.7) it follows tha t  ~b = 0(1) and • = 0(r -1) as 
r + o0, so (2.3) all vanish at the upper  limit if Re(s) < 1. If  it is also assumed 
tha t  u r and u o are bounded at the origin then ~ = 0(r) and T = 0(1) there, and 
(2.3) vanish at the lower limit if Re(s) > 0. 

The solutions of (2.2) which remain bounded for 0 = 0 are obviously 

~(s, O) = A(s) 1-',_ 2 (cos0) , }P--(s, O) = B(s) P,-1 (cos0) , (2.4) 

where A(s) and B(s) are to be determined from tile boundary  conditions 
(1.2)-(1.4). The requirement on tile displacements in (1.5) is satisfied because of 
the assumed behaviour of u r and u a at  infinity. Tha t  the stress components  
also vanish at infinity follows from (1.8)-(1.11) and the order properties on 
and ~ established above. 

To proceed from this point, it is convenient to rewrite the boundary  
conditions (1.3) and (1.4) as 

g+(r), O < r <  1 [ 
UO(f,  0r (2.5) ] g_(r),  r >  1 ,  

2 /z h+(r) , O < r < l , 
aoo (r, ~) = (2.6) 

0 ,  r > l .  

In  the above equations g+(r) is, of course, the given g(r), but  g_(r) and h+(r) 
are unknown functions of r for r > 1 and 0 < r < 1 respectively. The factor  
2 # is inserted simply for convenience. The following order properties are 

g_(r) = 

assumed: 
g+(r) = 0(1) as 

0 ( 1 ) ,  t - + l + ,  

0(r-t)  , r ---> oo , 

r - ->0+ and r - + l - ,  

o(1) ,  
h+(r) = 

0(1 - r) -112 , 

We now introduce the Mellin t ransforms 

r - ~  0 + 

r--> 1 - .  

oo co 

~o(s, o) = f r~-~ .o(., O) dr, ~oo(~, O) = f r' ~oo (,, o)d~, 
0 0 

o o  1 

a,o(~, o) =f ,~ ~o (r, O) dr, C+(~) =f~'-~ g+(r) d~, 
0 0 

oo 1 

G_(s) : f r ' - l  g_(r) d r ,  and H+(s) : f r" h+(r) dr .  
1 0 

(2.7) 



Vol. X I I I ,  196g A Mixed Boundary  Value Problem for an Infinite Elastic Cone 235 

Then the boundary condition (2.5), for example, is transformed into 

~o(S, e) = G+(s) + G_(s). (2. s) 

If one takes the transform of (1.7) according to the first of (2.7) there results 

go(S, ~) = 6 '  + cos e W~' + (2/5 -- 1) sine 

and if (2.4) are used, one finds tha t  (2.8) becomes 

A(s) P,~2(cos~) + B(s) [cose Psl_l(COSe) + (2 /5 - -  1) sine P,_,(cose)] 
(2.9) 

= G+(s) + G_(s). 

In obtaining (2.9), use has been made of the fact [2, p. 63] tha t  

d [p,(cosO)] --_ P)(eos0) 
dO 

where PJ(cos0) is the associated Legendre function. In a similar fashion one 
readily finds tha t  the boundary  conditions (1.2) and (2.6) become 6) 

s A(s) p 1  + B(s) [(s +/5) cosc~ PJ_, + s (fl - 1) ~ine P,- l l  = 0 ,  (2.10) 

1 A(s) [(s - -  1)~ P,-2 + cot~ Ps-2] 

+ B ( s )  Es(s+/5 -- 2) cos~ Ps_l + (cos~ cote  - /5 sine) Ps-]]l (2.11) 

= - - H + ( s ) .  j 

The desired Wiener-Hopf equation is obtained by eliminating A(s) and B(s) 
from (2.9)-(2.11). Hence from (2.10) one finds 

(s + fl) cos~ Ps*-i + s (fl - 1) sina Ps-1 
A(s) = - B(s) s P:_~ , (2.12) 

and if one puts this relation in (2.9) there results 

sEO+(s) + O_(s)] (2.13) 
B(s) = f l ( c o s ~  P s l l  + s s i n e  P s - , )  " 

Finally, substi tution of (2.13) and (2.12) into (2.11) gives 

K(s) [G+(s) + G_(s) ]  = H + ( s )  , (2.14) 
where 

A COt~ Psi 1 -- Ps-1 -Ps-2 cotg(] 
K(s)= [1+. fl CO~sl l-+--s-p~z ] [(S-- ]_)2 psl 2 + 

(2.15) 
S 2 (S + # -- 2) c o t s  Ps-1 + s (co t2~ -- ~) Ps1_l 

(cots P~_~ + s P~_~) 

~) When the argument  of the Legendre functions is not  indicated, it is understood to be cos c~ 
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Now in (2.14) G+(s) and K(s) are known, whereas G(s) and H+(s) are to be 
determined. If it can be shown that (2.14) holds in the strip 0 < Re(s) < 1, 
that G+(s) and H+(s) are regular in Re(s) > 0, and that G_(s) is regular in 
Re(s) < 1, then the determination of G(s) and H+(s) is possible by the Wiener- 
Hopf technique if one can factor K(s) in the form 

K_(s) (2.16) K(s)- K+(s)' 

in which K+(s) and K_(s) are regular and zeroless in Re(s) > 0 and in Re(s) < 1 
respectively. From (2.15) and the asymptotic forms of the Legendre functions 
given in [2, p. 71] it follows that I K(s) I = 0 (] s[P), where p = 2 unless ~ = rc/2, 
in which case p = 1. Thus it is possible [3, p. 42] to perform the factorization 
in (2.16). Hence (2.14) may be written in the form 

K+(s) H+(s) - K ( s )  G_(s) -- K_(s) G+(s) = 0.  (2.17) 

Next [3, p. 13] if IK_(s) G+(s) I = 0(I s I-P), p > 0 as l s l  § oo in the strip 
0 < Re(s) < 1, then the function K_(s) G+(s) =/(s) ,  say, can be decomposed 
into the sum ]+(s) +/_(s) in which/+(s) and/_(s) are regular in Re(s) > 0 and 
Re(s) < 1 respectively. Then (2.17) becomes 

K+(s) H+(s) - /+(s)  = K_(s) G_(s) +/_(s) .  (2.18) 

Now the left side of (2.18) is regular in Re(s) > 0, the right side in Re(s) < 1. 
Since the two sides are equal in the strip 0 < Re(s) < 1, they are the analytic 
continuations of each other into the whole s-plane. Thus an entire function is 
defined, the representations of which are the two sides of (2.18) in right and 
left half planes. If it can be shown that each side is of algebraic growth as 
I s ] § co in appropriate half planes, then by the extended form of L:OUV:LLE'S 
theorem, the entire function must be a polynomial, say Q(s). Hence one obtains 
from (2.18) 

H+(s) = (2(s) +/+(s) and G_(s) - (2(s) - /_(s)  (2.19) 
K+(s) K_(s) 

Then from MELL:N'S inversion theorem, the functions h+(r) and g_(r) are given 
by 

h+(r) - 2=i: fH+(s) r - ' - I  ds , (2.20) 

and 

1 f G ( s )  r -s ds 7) (2.21) g_(r) - 2 r~ i 
7 

~) I n  (2.20) a n d  (2.21) a n d  w h e n e v e r  i t  appea r s  in the  sequel ,  7 denotes  the  p a t h  Re(s)  = c 
f r o m  c - -  i oo  to  c + i oo ,  O <: c < 1. 
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To determine the complete solution one can now find A(s) and B(s) from 

(2.12) and (2.13) after which ~(s, 0) and ~(s,  0) are determined. Then the 
transforms of the stress and displacement components  can be expressed in 

terms of ~ and ~ by  transforming (1.6)-(1.11). Final ly  inversion gives the 
stress and displacement components  themselves. Of course, the main difficulty 
is the determinat ion of the factors K+(s) and K_(s), to say nothing of the 
integrations which arise in the inversion process. 

Before considering a special case in which it is relatively easy to perform 
the above steps, we first show tha t  (2.14) holds in 0 < Re(s) < 1, and ve r i fy  
the s ta tements  made in regard to the regions of regulari ty of the functions 
appearing in (2.14). F rom s tandard theorems [3, p. 165] on the Mellin t ransform 
and the assumed order properties on g+(r), g_(r), and h+(r), it follows tha t :  
G+(s) is regular in Re(s) > 0, [ G+(s) [ = 0(I s 1-1) as [ s 1 -> oo in a right half 
plane; G_(s) is regular in Re(s) < 1, I G_(s) I = 0(] s 1-1) as I s I + co in a left 
half plane; and tha t  H+(s) is regular in Re(s) > 0, [H+(s) I = 0 ([ s[ -1I~) as Is[ --> oo 
in a right half plane. Finally it follows from (2.15) tha t  K(s) is regular in 
0 < Re(s) < 1 if it can be shown tha t  the factors cot r pls_l + s Ps -1  and 
P~s-2 have no zeros in this strip. We have been unable to prove this for an 
arb i t rary  zr but  for the special case to be considered in the next  section, K(s) 
reduces to a function which is known to be regular and zeroless in 0 < Re(s) < 1. 

3. I n d e n t a t i o n  of an Elas t i c  Half  Space  by  a Rig id  
Flat  Ended  Circular  P u n c h  

As an application of the above results we consider the elastic half space 
0 --< 0 --< re/2 on whose boundary,  0 = c~ = r~/2 the following are prescribed: 

aro (r, 2 )  = O , r > 0 ;  uo (r, 2 )  = - ~  , 0 < r < l ;  
(3.1) 

~oe (r, 2 )  = O, r > l .  

The  solution of this problem is well known E4, p. 458]. I t  is usually formulated 
and solved ill cylindrical coordinates, hu t  its solution by  the above method  
serves as a check on the method  and, of course, if one desires the stress and 
displacement components  in terms of the spherical coordinates, the present 
method  will give them directly. To proceed then, we see from the second of 
(3.1) tha t  g+(r) = -- e and then from the third of (2.7), one readily finds tha t  

1 

G+(S) = - - e ; r  s-1 d r -  e R (s) > 0 (3.2) 
S ' 

0 

When a = re/2 the expression (2.5) for K(s) simplifies considerably. This is due 
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to the fact tha t  the a rgument  of the Legendre functions is now zero and it is 
known tha t  [2, p. 63] 

P~(0) = 2ff 1/~ (3.3) 

Hence if one uses (3.3) with ff = 0, 1 and makes use of the elementary relations 
for the Gamma function, after some algebraic manipulat ion it follows tha t  for 
o: = ~12 

2 F(lt ) 
K(s) B 1,(2) F( 1~. s ) (3.4) 

In  the form (3.4) it is obvious tha t  K(s) is regular and zeroless in 0 < Re(s) < 1 
and moreover the factors K+(s) and K(s)  can be determined by  inspection. 
They  are 

so tha t  K+(s) and K_(s) are regular and zeroless in Re(s) > 0 and Re(s) < 1 
respectively. Fur thermore  K+(s) = 0(s -11~) and K_(s) = O(s 11~) as is  [ + oo in 
appropriate  half planes. Hence (2.17) becomes 

K + ( s )  s-s+(s) - K ( s )  G_(s) + l(s) = o ,  (3.6) 
where 

/(s) = 

We must  now decompose /(s) into /+(s) + /_(s) so tha t  [+(s) and l_(s) are 
regular in R e ( s ) >  0 and R e ( s ) <  1 respectively. This is easily done by  
CAUCHY'S theorem and the results are 

/ O i l * ,  

, d, 

where 71 and F2 are the paths  Re(t) = a from a + i oo to a -- i c~ and Re(t) = b 
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from b - i oo to b + i oo respect ively with 0 < a < Re(s) < b < 1. We close 
the  contours  for bo th  integrat ions in the left half  plane since the G a m m a  
functions are regular  there. There  is no contr ibut ion f rom the closing p a t h  
since the absolute value of the in tegrand is 0 ([ t [ -313). Hence  we obtain  

2 8  2 e  
/ + ( s )  - / ~ s  ' f - ( s )  = 

,] (3.7) 

I t  is obvious t h a t / + ( s )  is regular for Re(s) > 0, b u t / _ ( s )  appears  to have  a 

pole at  s = 0. However ,  it is easy to show tha t  limf_(s) = - e  ln4/I/~. Thus  
the Wiener -Hopf  equat ion is 5-,0 

K+(s) H+(s) + i/~_ s s -  ( _ } @ s )  ~ - ~ . ,  (3.8) 

in which the  left side is regular  in Re(s) > 0, the right side in Re(s) < 1. The  
two sides are equal  in the  common strip so they  are the  analyt ic  cont inuat ions 
of each other  into the  whole s-plane. F rom the order propert ies  established in 
the  second section, we see t ha t  the left side is 0(I s [-1) and the right side is 
0(I s I -lm) in their  half planes or regulari ty.  Hence  the  polynomial  Q(s) is 
identical ly zero and we obta in  

H+(s) = - (3.9) 

\ 2 !  

C _ ( s )  - (3.10) 

Then  f rom (3.9) and MELLIN'S inversion theorem we have  

0 < r < 1 .  (3.11) 

To evalua te  this integral  we note t ha t  since r < 1, we mus t  close the p a t h  in 
the  left half plane if the  contr ibut ion of the closing pa th  is to vanish.  The  
in tegrand then  has simple poles a t  s = -- (2 n + 1), n = 0, 1, 2 . . . .  ; the  residue 
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at  the n th pole being 
2 P (n + 1/2) r~ , (3.12) 

~ 4 !  

With  (3.12) and (2.6) we find 

Hence 

41z  e + r2 n aoo(r'2)=2#h+(r)- ~ 2 F(n 1/2) 

4 # e  (1- -#) -1I~  O<r< 1 ~ , . 

4 # e r2) -1[2  

(700 g, 

0 , r > l .  
(3.13) 

Next  f rom (3.10) and (2.5) we get 

o0(, 2):. [, ;(�89 
a s  

r - '  , r >  1 .  (3.14) 
s 

Here r > 1 so we mus t  close the pa th  in the right half plane and in this region 
the in tegrand of the first integral  in (3.14) is regular. Hence we have 

f I ' ( ~ - ) r - ' d s .  (3.15) 

The integrand in (3.15) has simple poles a t  s = 2 n + 1, n ~ 0, 1, 2, . . . ,  and 
the residue at  the n th pole is 

2 F ( n  + 1 / 2 )  r_2n_l. 
r~ ( 2 n +  1) n! 

Since the integrat ion is clockwise, the integral  is the negat ive of the sum of 
its residues and we have  

( 2 )  2~ 2 r ( n + l / 2 )  r-,.-, 2 ,  sin_l  1 - -  - -  r > l  
u o r ,  " ~ - o  1 / ~ - ( 2 ~ +  ~ n !  ,~ r '  " 

Thus  

I --e , O<r<l  
u~ = /  2e  s in_l  1 

- -  r > ' l  

(3.16) 
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The results (3.13) and (3.16) were obtained without  explicit knowledge of 
A(s) and B(s); bu t  to determine the rest of the solution one must  find these 
functions. F rom (2.12) and (2.13) it is a simple mat te r  to obtain 

~ S  "mS 
SeC-- s e c  

A(s) - ~ ( # -  1) 2 e 2 
# s ( s - 1 ) '  B ( s ) -  # s 

Then as an example let us determine u,(r, 0). Define 

oo 

~(s, O) = / r ' - I  Ur(r ' O) dr.  
0 

Then from (1.6) and (2.4) it follows tha t  

g,(s, 0) = --(s  -- 1) A(s) P,_2(cos0) -- (s + 2/5 -- 1) B(s) cos0 P,_I(COS0) �9 

Then since P,(1) = 1 we have 

~,(s,  0) - -  ~ -  sec  2 ' 

and from the inversion theorem 

e 1 ; / ~ + s  r - s  
- d s .  ( 3 . 1 7 )  ur(r, O) ~ 2 ,~ i j ~ ~ s 

7 COS 

To evaluate (3.17) we complete the contour  in the left or right half plane 
according as r < 1 or r > 1 ; the result is the same in bo th  cases and we have 

u , ( r , O ) = e ( ] - -  2 t an_ l r+  2 r ) (3.18) 
# ~  i 4 r ~  " 

In  a similar fashion one can determine the remaining stress and displacement 
components  on the boundary  0 = ~/2 and on the axis 0 = 0, and the results agree 
with those listed in [4]. The result (3.18) is not  listed there bu t  it is probably  
well known. Finally, it is remarked tha t  the solution for interior points offers 
no serious mathemat ica l  difficulties; however, the results are given as infinite 
series. Since the present special case is considered primari ly as an example of 
the method,  the results for interior points are not  included. 
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Zusammenfassung 

Die Verfasser haben ein gemischtes Randwer tp rob lem ftir einen unendl ichen 
elastischen Kegel  mi t  Spi tzenwinkel  2 u auf die L6sung einer endlichen Wiener-  
Hopf-Gle ichung zurtickgeftihrt.  Der  wesentl iche Schr i t t  bes teht  darin, eine Funk-  
t ion K(s), die in einem Streifen regulgr ist, als ein P roduk t  yon Fak to ren  darzu-  
stellen, die auf ~bereinanderl iegenden Halbebenen  regulgr sind. In  dem hier behan-  
delten Fal l  ftir willkfirliches c~ ist  diese Methode besonders schwierig. In  dem Son- 
derfalle des elastischen Ha lb raumes  c~ = r~/2 kSnnen jedoch bekannte  Resu l ta te  
er langt  werden. Das deu te t  darauf  hin, dass die Methode auf  das Kegelproblem an- 
wendbar  ist, vorausgesetz t  dass die erforderl iche Faktorzer legung durchgef i ihr t  
werden kann.  

(Received: August 21, 1961.) 

Magneto-Fluid Dynamics of Thin Bodies 
in Oblique Fields (11) 1 ) 

By KEITH STEWARTSON, Durham,  Great  Br i ta in  2) 

1. Introduct ion  

The motion of an electrically conducting fluid past a fixed body in the 
presence of a magnetic field has at tracted a good deal of interest in recent 
years. Restricting attention to inviscid compressible fluids perhaps the earliest 
work C5] 8) was concerned with the motion of a conducting fluid past a per- 
fectly conducting sphere. This work revealed an apparent  non-uniqueness in the 
steady state solution which was removed by  considering how the motion was 
set up from an initial state of rest. Subsequently SEARS and RESLER E4~ pre- 
sented a two-dimensional theory for a thin body in a perfectly conducting fluid 
when the magnetic field is either perpendicular (crossed field) or parallel 
(aligned field) to the direction of motion of the fluid, lV[cCuNE C2] generalised 
the first of these to include a fluid of finite conductivity a concentrating his 
attention on the flow properties when a is large. He was able to show how the 
interesting and novel features found by SEARS and RESLER, for crossed fields, 
d e v e l o p e d  as a ->  oo. 

~) Part I see ZAMP lZ, 261 (1961). 
~) Durham Colleges, University of Durham. 
a) Numbers in brackets refer to References, page 255. 


