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Zusammenfassung

Differenzengleichungen £-ter Ordnung (2 = 1, 2, 3, 4), in die ¥ und dessen Ablei-
tungen bis zur I-ten Ordnung (! = 1, 2, 3) einbezogen sind, werden zur numerischen
Integration der Differentialgleichung 3’ = f(x, ), ¥, = 0 beniitzt. Die Reduktion
des Abbrechfehlers erreicht man am besten, indem man eher / als & vergrossert.

{Received: July 5, 1981.)

On a Mixed Boundary Value Problem for an
Infinite Elastic Cone’)

By Roger D. Low, Ann Arbor, Michigan, U.S.A.?%),
and HARRY J. WEiss, Ames, lowa, U.S.A.3)

1. Introduction

Consider an infinite right circular cone of vertex angle 2 « made of an
isotropic, homogeneous, elastic material. Let the vertex of the cone be at the
origin of a spherical coordinate system (7, 0, ¢) and let its axis lie along the
polar axis 0 = 0. The problem is to determine the components of stress and
displacement in the interior and on the boundary of the cone when the displace-
ment is prescribed over a portion of the boundary, the remainder of the bound-
ary being stress free. It will be assumed that the shear stress is zero on the
entire boundary, there are no body forces present, and that the problem is
axially symmetric. Hence the problem consists in solving the homogeneous
Navier equation

1—-20)V2u+V{V.u)y=0, {1.1)

for the displacement vector u = (,, #,, 0) subject to the boundary conditions

o,4(r, ) =0, r>0, (1.2)
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gy, o) =gr), 0<<r<1, (1.3)
oaelt, @) =0, r>1, (1.4)

and _
all stress and displacement components vanish at infinity. (1.5)

It is known [1]%) that an axially symmetric solution of (1.1) in spherical
coordinates is expressible in terms of two harmonic functions @(r, §) and
Y(r, 0). The results are

=P, +rcos¥, - (2f--1)cosOV¥, (1.6)
=+ Py + osO Py + (2 — 1) sinf ¥ (1.7)

where the subscripts on @ and ¥ denote partial derivatives, and § = 2(1 — o),
o being Po1ssoN’s ratio. The non-zero stress components are then given by

7

G,y =24 [(Dw +7cosOW,, —BcosO W, + (2—6) sing 'I’g] , (1.8)

Opp = 2 i [%Q + %@00 +(B—1)cosO ¥, + f Si:,w ¥y + C(z,se Yjaa] , (1.9)

Gpp =21 | - @+ %L Dyt (B~ 1) cost W, + T 0 =) S0 |, (110

[ 7 sin@

Go=2U [%@Tg —%@0 +cosOW,,+{(f—1sind¥,—f cos6 Y’g] , (1.11)

4

where g is the shear modulus.

2. Reduction to a Finite Wiener-Hopf Equation

We begin by defining the Mellin transforms of @ and ¥ to be

@s, 0) =/75-2(25(7, 0)dr, Vs, 0)=[r1®ro)dr. (@21

0

Then by the usual process, one finds?)

@ +cotP + (s—1) (s—2)P =0, P 4ot +s(s—1) P =0, (2.2)

provided the following expressions, obtained by integration by parts, vanish:
PBIS, PO, PR, and [PPSR (2.3)

4) Numbers in brackets refer to References, page 241.
%) The primes denote differentiation with respect to 6.
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It will be assumed that the displacement components », and u, are 0(»—1) at
infinity. Then from (1.6) and (1.7) it follows that @ = 0(1) and ¥ = 0(r~?) as
7 = oo, so {2.3) all vanish at the upper limit if Re(s) < 1. If it is also assumed
that #, and u, are bounded at the origin then @ = 0(r) and ¥ = 0(1) there, and
(2.3) vanish at the lower limit if Re(s) > 0.

The solutions of (2.2) which remain bounded for § = 0 are obviously

@(s, ) = A(s) F,_, (cosb) , P(s, 8) = B(s) P,_; (cosh) (2.4)

where A(s) and B{(s) are to be determined from the boundary conditions
(1.2)—(1.4). The requirement on the displacements in (1.5) is satisfied because of
the assumed behaviour of #, and #, at infinity. That the stress components
also vanish at infinity follows from (1.8)—(1.11) and the order properties on @
and ¥ established above.

To proceed from this point, it is convenient to rewrite the boundary
conditions (1.3) and (1.4) as

(g+(r), 0<r<1 ]
(7, &) = (2.5)
g_(r), r>1,
2phfr), 0<r<1,
g (7, o) = g J(2.6)
0, »r>1.

In the above equations g, (r) is, of course, the given g(r), but g_(r) and %, (r)
are unknown functions of 7 for # > 1 and 0 < # < 1 respectively. The factor
2 u is inserted simply for convenience. The following order properties are
assumed:

g.n=01 as r—0f and r—1-,

01), r—0+
hi(r) =

01, 7r—o0, {0(1—7)—1/2, r—1-.

0(1), r—1t,
g-(r) = [

We now introduce the Mellin transforms
X0 foo]

s, 9)= P =Luglr, 0) dr,  Gppls, 0) = /1"0’00 (v, 0) dr

/ 60 (1, 0)dr, G.(5) = [rrg.(dr, (2.7)

G_(s) :/7’3—1 g_(r)dv, and H.,(s) =/7’ ho(v)dr.

0
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Then the boundary condition (2.5), for example, is transformed into
dgls, o) = G.(s) + G_(s) . (2.8)
If one takes the transform of (1.7) according to the first of (2.7) there results
(s, o) =@ +cosa P + (2 —1)sina 17
and if (2.4) are used, one finds that (2.8) becomes
A(s) P ,(cosa) + B(s) [cosa P (cosar) + (2 8 — 1) sina P,_,(cosa)]
= G, (s) + G_(s) .

In obtaining (2.9), use has been made of the fact [2, p. 63] that

d
dao

(2.9)

[P,(cos®)] = P)(cosb) ,

where P)(cosf) is the associated Legendre function. In a similar fashion one
readily finds that the boundary conditions (1.2) and (2.6) become¥)

S A(S) BL, -+ B(s) (s ) cosa PLy + 5 (B~ ) sinoc B,_] =0, (210)
A(s) [(s — 1)2 P_, + coto P, ]

+ B(s) [s (s + f — 2) cosa P_; + (cosa cota — Bsina) P! |1 | (2.11)
. |

The desired Wiener-Hopf equation is obtained by eliminating A(s) and B(s)
from (2.9)~(2.11). Hence from (2.10) one finds

(s+ B)cosa P! | + s(f— 1)sina P,_,

A(s) = — B(s) SPL, , (2.12)
and if one puts this relation in (2.9) there results
— s[G.4(s) + G_(s)]
B(s) = Blcosa P1_, + ssina P, ) ° (213)
Finally, substitution of (2.13) and (2.12) into (2.11) gives
E(s) [6,(s) + G_(s)] = H.(s), (2.14)
where
K 1 s cota Bl — P, 1T 2 F_s

(2.15)

s?(s+ f — 2) cota P,_; + s (cot?a — B) PL | ]
B(cota Bl | +sP,_,) )

8) When the argument of the Legendre functions is not indicated, it is understood to be cos o
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Now in (2.14) G,(s) and K(s) are known, whereas G_(s) and H_(s) are to be
determined. If it can be shown that (2.14) holds in the strip 0 < Re(s) < 1,
that G (s) and H_(s) are regular in Re(s) > 0, and that G_(s) is regular in
Re(s) < 1, then the determination of G_{s) and H ,(s) is possible by the Wiener-
Hopf technique if one can factor K(s) in the form

K(s) = ==L (2.16)

in which K, (s) and K_(s) are regular and zeroless in Re(s) > 0 and in Re(s) < 1
respectively. From (2.15) and the asymptotic forms of the Legendre functions
given in [2, p. 71] it follows that | K(s) | = 0(] s |#), where # = 2 unless o = 7t/2,
in which case p = 1. Thus it is possible [3, 5. 42] to perform the factorization
in (2.16). Hence (2.14) may be written in the form

K. (s) H,(s) — K_(s) G_(s) — K_(s) G,(s) = 0. (2.17)

Next [3,p.13] if |[K_(s)Gy(s) | =0(s|?), p>0 as |s| > oo in the strip
0 < Re(s) < 1, then the function K_(s) G_(s) = f(s), say, can be decomposed
into the sum f,(s) + f_(s) in which f,(s) and f_(s) are regular in Re(s) > 0 and
Re(s) < 1 respectively. Then (2.17) becomes

K (s) Ho(s) = fo(s) = K_(s) G_(s) + /() - (2.18)

Now the left side of (2.18) is regular in Re(s) > 0, the right side in Re(s) < 1.
Since the two sides are equal in the strip 0 < Re(s) < 1, they are the analytic
continuations of each other into the whole s-plane. Thus an entire function is
defined, the representations of which are the two sides of (2.18) in right and
left half planes. If it can be shown that each side is of algebraic growth as
| s | > oo in appropriate half planes, then by the extended form of LIOUVILLE'S
theorem, the entire function must be a polynomial, say Q(s). Hence one obtains
from (2.18)

H+(s)=ﬂ%§;ﬂ and G_(s):_m_s}{:(sf)—ﬁ. (2.19)

Then from MELLIN’s inversion theorem, the functions %_(7) and g_(#) are given
by

hel) = 5o /H+(s) y-s-1ds, (2.20)
and
g () = ZM /(; s) 77 ds7) (2.21)

7) In (2.20) and (2.21) and whenever it appears in the sequel, p denotes the path Re(s) = ¢
from c— 400 to ¢+ 200, 0 <Tec<C 1.
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To determine the complete solution one can now find A(s) and B(s) from

(2.12) and (2.13) after which @(s, ) and ¥(s, 0) are determined. Then the
transforms of the stress and displacement components can be expressed in
terms of @ and ¥ by transforming (1.6)—(1.11). Finally inversion gives the
stress and displacement components themselves. Of course, the main difficulty
is the determination of the factors K (s) and K_(s), to say nothing of the
integrations which arise in the inversion process.

Before considering a special case in which it is relatively easy to perform
the above steps, we first show that (2.14) holds in 0 < Re(s) < 1, and verify’
the statements made in regard to the regions of regularity of the functions
appearing in (2.14). From standard theorems [3, p. 165] on the Mellin transform
and the assumed order properties on g.(#), g_(#), and %, (¢), it follows that:
G, (s) is regular in Re(s) > 0, [G,(s) | = 0(] s |~?) as | s | > oo in a right half
plane; G_(s) is regular in Re(s) < 1, |G_{s) | =0(] s|~1) as | s| > co in a left
half plane; and that H (s) is regular in Re(s) > 0, |H (s)| =0(]s| ®) as|s]| > o0
in a right half plane. Finally it follows from (2.15) that K(s) is regular in
0 < Re(s) < 1 if it can be shown that the factors cot« Pi_, + s P,_; and
P! _, have no zeros in this strip. We have been unable to prove this for an
arbitrary «, but for the special case to be considered in the next section, K(s)
reduces to a function which is known to be regular and zeroless in 0 << Re(s) < 1.

3. Indentation of an Elastic Half Space by a Rigid
Flat Ended Circular Punch

As an application of the above results we consider the elastic half space
0 < 0 = =r/2 on whose boundary, § = « = x/2 the following are prescribed:

a,e(r,;)=0, r > 0; ua(r,%):—e, 0<r<<1; -
000(7,%)=0, r>1.

The solution of this problem is well known [4, p. 458]. It is usually formulated
and solved in cylindrical coordinates, but its solution by the above method
serves as a check on the method and, of course, if one desires the stress and
displacement components in terms of the spherical coordinates, the present
method will give them directly. To proceed then, we see from the second of
(3.1) that g,(#) = — ¢ and then from the third of (2.7), one readily finds that

G+(s)=—8/75—1d7=—~j~, R (s5)>0. (3.2)

0

When o = nt/2 the expression (2.5) for K(s) simplifies considerably. This is due
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to the fact that the argument of the Legendre functions is now zero and it is
known that [2, p. 63]

PH0) = 24 )/

v vy —u+ 2 —p—p+ 1y
r=) rEH)

(3.3)

Hence if one uses (3.3) with u = 0, 1 and makes use of the elementary relations
for the Gamma function, after some algebraic manipulation it follows that for

o =72
K(s) = 2 Ml 3.4)
tor) )

In the form (3.4) it is obvious that K(s) is regular and zeroless in 0 << Re(s) < 1
and moreover the factors K, (s) and K_(s) can be determined by inspection.

They are
N 2—s
r(3) =)
—, K. (s)=2 - (3.5)
) )
(= :
so that K (s) and K_(s) are regular and zeroless in Re(s) > 0 and Re(s) < 1
respectively. Furthermore K, (s) = 0(s~¥2) and K _(s) = 0(s*2) as | s | > o in
appropriate half planes. Hence (2.17) becomes

K. (s) =B

K, (s) H(s) — K_(s) G_(s) + f(s) =0, (3.6)
where
2—s
2 F( 2
o) =~ i
(3"

We must now decompose f(s) into f.(s) + /_(s) so that f.(s) and f_(s) are
regular in Re(s) > 0 and Re(s) < 1 respectively. This is easily done by

Caucay’s theorem and the results are
2 —t

fo(s) =2 27”%/ tf(iz_‘t) P
C o B
f—(s)_zeznih/ zr(*;;t) t—s’

where y; and y, are the paths Re(f) = # from 4 + ¢ oo to @ — 7 co and Re(f) = b
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from b — 4 00 to b -+ 7 0o respectively with 0 < & < Re(s) < b < 1. We close
the contours for both integrations in the left half plane since the Gamma
functions are regular there. There is no contribution from the closing path
since the absolute value of the integrand is 0(| ¢ | ~32). Hence we obtain

557

el A2 7t
yms ' s F(1;5) yr |

(3.7)

It is obvious that f,(s) is regular for Re(s) > 0, but f_(s) appears to have a

pole at s = 0. However, it is easy to show that hm ]‘ (s) = —¢ ln4/l/7z Thus
the Wiener-Hopf equation is

2—s
2e s 2¢ F( 2 ) 1

K. (s) H.(s) +

in which the left side is regular in Re(s) > 0, the right side in Re(s) < 1. The
two sides are equal in the common strip so they are the analytic continuations
of each other into the whole s-plane. From the order properties established in
the second section, we see that the left side is 0(] s |~1) and the right side is
0(| s [-%2) in their half planes or regularity. Hence the polynomial Q(s) is
identically zero and we obtain

_ 2e £ F(l—;s)
H.(s) = *m = V"'ﬁ *;(‘_!_—7 (3.9)
G 2e T(E_Z_S) =t 1-M— . (3.10)

s) V= ﬁr(z_

)
Then from (3.9) and MELLIN’S inversion theorem we have

€ ’ T(£>
h+(7>:—l/;/3 2:1[11,{/ ]_,(Z—ZFS)

2

r=s-1ds, 0<r<<1l. (3.11)

To evaluate this integral we note that since » < 1, we must close the path in
the left half plane if the contribution of the closing path is to vanish. The
integrand then has simple polesat s = — (2% -+ 1), n = 0, 1, 2, ...; the residue
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at the n'® pole being
2T +1j2)

S (3.12)
With (3.12) and (2.6) we find
= 2u b y L0412 s,
000( ) K 20 Vr !
_ 45 (1—m), 0<r<1.
Hence
4uce _
SRy <<l
pg (1’, Izi) - = p (3.13)
0 , r>1.

Next from (3.10) and (2.5) we get

1—5s
0(1’,—725):g_(7)=82i1.y/ 1-— V:((22~2) 7‘5f15i, r>1. (3.14)

Here » > 1 so we must close the path in the right half plane and in this region
the integrand of the first integral in (3.14) is regular. Hence we have

u0(7,7 _-]/7_: 27”.? sp(i___s) r=sds. (3.15)

n); € 1/‘F("1—;_s)

The integrand in (3.15) has simple poles at s=2#xn 41, =0, 1, 2, ..., and
the residue at the #'t pole is

2 I'(n+1/2)

[ M S S 2n-1
T (2n+ 1) n!

Since the integration is clockwise, the integral is the negative of the sum of
its residues and we have

n 26 yv I'(m+1/2) #=2-1  2¢ .1
“ () = = X s AT~ m STy Tl
Thus
— & , 0<r<1

u,,(r,g):l e 41 o, (3.16)
v



Vol. XIII, 1962 A Mixed Boundary Value Problem for an Infinite Elastic Cone 241

The results (3.13) and (3.16) were obtained without explicit knowledge of
A(s) and B(s); but to determine the rest of the solution one must find these
functions. From (2.12) and (2.13) it is a simple matter to obtain

™Ss TS
SeC——— S€C——
&

e(f—1) 2 B 2
A === oo BO=—p

Then as an example let us determine #,(r, 0). Define

[ee]

(s, 0) = / L (r, 0) dr .

0

Then from (1.6) and (2.4) it follows that
(s, 0) = — (s — 1) A(s) P,_,(cosf) — (s + 2 8 — 1) B(s) cosf P,_4(cosb) .

Then since P,(1) = 1 we have

us, 0) = % (ﬁ j_ s) seclzi,

and from the inversion theorem

e 1 f+s v* -
(r, 0) = 5 5 / : _ds. (3.17)
y COS‘Z—

To evaluate (3.17) we complete the contour in the left or right half plane
according as » < 1 or » > 1; the result is the same in both cases and we have

w{r,0) =& (1~ 2 tan-tr ¢ 732—75 ) (3.18)
In a similar fashion one can determine the remaining stress and displacement
components on the boundary 6 = =/2 and on the axis § = 0, and the results agree
with those listed in [4]. The result (3.18) is not listed there but it is probably
well known. Finally, it is remarked that the solution for interior points offers
no serious mathematical difficulties; however, the results are given as infinite
series. Since the present special case is considered primarily as an example of
the method, the results for interior points are not included.

REFERENCES

[1] E. STERNBERG, R. A. EuBaNKs, and M. A, SapowsKkY, On the Stress-Function
Approaches of Boussinesq and Timpe to the Axisymmetvic Problem of Elasticity
Theory. J. Appl. Phys. 22, 1121-1124 (1951).

[2] W. MagNus and F. OBERHETTINGER, Formulae and Theovems for the Special
Functions of Mathematical Physics. Chelsea, New York (1949).

ZAMP 13/16



242 KEITH STEWARTSON ZAMP

[3] B. NoBLE, The Wiener-Hopf Technigue. Pergamon, New York (1958).
[4] 1. N. SNepDpoN, Fourier Tvansforms. McGraw-Hill, New York (1951).

Zusammenfassung

Die Verfasser haben ein gemischtes Randwertproblem fiir einen unendlichen
elastischen Kegel mit Spitzenwinkel 2 o auf die Losung einer endlichen Wiener-
Hopf-Gleichung zuriickgefithrt. Der wesentliche Schritt besteht darin, eine Funk-
tion K(s), die in einem Streifen reguldr ist, als ein Produkt von Faktoren darzu-
stellen, die auf iibereinanderliegenden Halbebenen regulir sind. In dem hier behan-
delten Fall fiir willkiirliches « ist diese Methode besonders schwierig. In dem Son-
derfalle des elastischen Halbraumes o = r/2 koénnen jedoch bekannte Resultate
erlangt werden. Das deutet darauf hin, dass die Methode auf das Kegelproblem an-
wendbar ist, vorausgesetzt dass die erforderliche Faktorzerlegung durchgefiihrt
werden kann.

(Received: August 21, 1961.)

Magneto-Fluid Dynamics of Thin Bodies
in Oblique Fields (IT)")

By K1t StewarTsoN, Durham, Great Britain?)

1. Introduction

The motion of an electrically conducting fluid past a fixed body in the
presence of a magnetic field has attracted a good deal of interest in recent
years. Restricting attention to inviscid compressible fluids perhaps the earliest
work [5]3) was concerned with the motion of a conducting fluid past a per-
fectly conducting sphere. This work revealed an apparent non-uniqueness in the
steady state solution which was removed by considering how the motion was
set up from an initial state of rest. Subsequently SEARs and RESLER [4] pre-
sented a two-dimensional theory for a thin body in a perfectly conducting fluid
when the magnetic field is either perpendicular (crossed field) or parallel
(aligned field) to the direction of motion of the fluid. Mc CUNE [2] generalised
the first of these to include a fluid of finite conductivity ¢ concentrating his
attention on the flow properties when o is large. He was able to show how the
interesting and novel features found by SEars and RESLER, for crossed fields,
developed as o - oo.

1} Part I see ZAMP 12, 261 (1961).
2) Durham Colleges, University of Durham.
3) Numbers in brackets refer to References, page 255.



