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Abstract. This study focuses on the relative importance of two sources of nonlinearities affecting submerged cable
response. The first of these is the added fluid damping offered by the surrounding medium while the second is
the geometric stiffening offered by the cable through finite extensions of its centerline. The contribution of each
nonlinear effect, taken separately and in tandem, is evaluated herein through the study of structural waves that form
in the (out-of-plane) direction normal to the cable equilibrium plane.

Numerical solutions are pursued herein using a finite difference algorithm which is brought to bear on two
nonlinear cable/fluid models including: (1) a nonlinear submerged cable model in which hydrodynamic drag is
the sole nonlinear mechanism (referred to herein as the nonlinear drag model); and (2) a nonlinear submerged
cable model in which hydrodynamic drag and geometric stiffening are both active nonlinear mechanisms (the
nonlinear elastic-drag model). Numerical solutions for propagating cable waves are developed for the case of
a long suspension subjected to a concentrated harmonic excitation source. Conclusions are subsequently drawn
regarding the spatial decay of the resulting out-of-plane waves and the dynamic cable tension induced by these
waves. The effect of these two nonlinear mechanisms is further explored through the analysis of two additional,
linear models: (3) a simple linear taut string model without drag (the simple model); and (4) a linear taut string
model with linear drag (the linear drag model). The results of all models are critically compared and the range of
validity of the linear/cable fluid models are assessed.
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1. Introduction

This investigation addresses the need to understand the dynamics of submerged cables
employed in ocean engineering applications including: towing and mooring systems, oceano-
graphic and ranging systems, and tether and umbilical systems. In all of these applications,
the submerged cable is excited by loads that originate from the surrounding fluid environment
(e.g., currents and waves) and from the motion of attached bodies (e.g., motions of instruments,
buoys, vessels). The ensuing cables motions may significantly influence the performance of
the cable and the mission that it is designed to support. Thus, accurate predictions of dynamic
response are often desired to design or to evaluate cable/system performance.

Predictions of dynamic cable response may, at times, follow from low-order cable models
assuming the participation of a few selected cable modes. While computationally simple,
this modal approach becomes less feasible for very long cable suspensions or for higher
frequency/shorter wavelength dynamics due to high modal density. In such instances, an
attractive alternative is to describe the cable response in terms of propagating waves, in lieu
of standing waves (cable modes) [2, 4]. To this end, this study contributes a fundamental
understanding of nonlinear wave propagation along a fluid-loaded cable, specifically for the
case of out-of-plane structural waves.

This study focuses on the relative importance of two sources of nonlinearities affecting
submerged cable response. The first of these is the added fluid damping offered by the
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surrounding medium while the second is the geometric stiffening offered by the cable through
finite extensions of its centerline. The contribution of each nonlinear effect, taken separately
and in tandem, is evaluated herein through the study of structural waves that form in the out-
of-plane direction. While these waves may, in general, also induce in-plane cable response,
the present study focuses exclusively on the simpler out-of-plane response. Taken with the
recently developed linear theory governing the in-plane structural waves [2, 4], the present
investigation on nonlinear cable waves provides a further step towards a complete nonlinear,
three-dimensional theory.

The study of cable structural waves is related to the theory of wave propagation of a
simple string which is a classical subject treated in numerous sources [5–10]. The addition of
lumped masses (instruments) alters the characteristics of free wave propagation on strings as
evaluated by Lili and Vandiver using the transfer matrix method [11]. Few studies, however,
have considered either nonlinear waves resulting from either geometrically large motions
and/or fluid/structure interaction.

Chapman [13] numerically simulated the effects of deterministic and random ship distur-
bances that propagate through a submerged, sagged string or “cable” to a neutrally buoyant
towed-fish. Motivated by similar applications, Dowling [14] investigated the dynamic response
of a towed flexible cylinder and a faired cable using analytical methods. Focusing on the prop-
agation of a disturbance along the faired cable to the cylinder due to unsteady ship motion,
Dowling concluded that cable wave propagation depends strongly on the ship velocity, the fre-
quency of the disturbance, and the cable length. Dowling’s studies further concentrate on the
singularity in the cylinder or cable where cylinder or cable tension equals the hydrodynamic
forces.

The nonlinearities due to hydrodynamic drag and geometric stiffening render the cable/fluid
model intractable by exact analytical methods. Numerical solutions are pursued herein using
a finite difference algorithm. This algorithm is brought to bear on two nonlinear cable/fluid
models including: (1) a nonlinear submerged cable model in which hydrodynamic drag is
the sole nonlinear mechanism (referred to herein as the nonlinear drag model); and (2) a
nonlinear submerged cable model in which hydrodynamic drag and geometric stiffening are
both active nonlinear mechanisms (the nonlinear elastic-drag model). Numerical solutions
for propagating cable waves are developed for the case of a long suspension subjected to
a concentrated harmonic excitation source. Conclusions are subsequently drawn regarding
the spatial decay of the resulting out-of-plane waves and the dynamic cable tension induced
by these waves. The effect of these two nonlinear mechanisms is further explored through
the analysis of two addition, linear models: (3) a simple linear taut string model without
drag (the simple model); and (4) a linear taut string model with linear drag (the linear drag
model). The simple model and the linear drag model are classical and are evaluated using
closed-form techniques. In particular, the linear drag model is evaluated by first linearizing the
hydrodynamic drag force model over one excitation period and then, via a Green’s function
formulation, evaluating forced wave propagation solutions. Results of both linear and nonlinear
cable/fluid models are critically compared.

2. Nonlinear Cable/Fluid Models

Consider a uniform, flexible, cable submerged in a quiescent fluid as depicted in Figure 1.
Following [2, 3], the cable is modeled as a one-dimensional elastic continuum with negligible
bending and torsional stiffness, having density �c, and supporting static tension T0(s). The
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Figure 1. Free body diagram for an elastic submerged cable element. Three-dimensional displacement is referred
to the equilibrium Frenet triad fet; en; ebg. T denotes the total tension in the cable, W is the weight per unit length,
and � is the centerline curvature.

spatial variable, s, is the arc length coordinate measured along the cable equilibrium centerline.
Following a disturbance, the cable centerline may deform as described by the displacement
u(s; t) shown in Figure 1. Here, we shall immediately focus attention on the bi-normal motion
of the cable u3(s; t); that is, the motion component orthogonal to the plane formed by the
cable equilibrium. While this motion component couples, in general, to components describing
motion in the equilibrium plane [3], the present model will neglect this coupling. With this
restriction, the resulting theory for out-of-plane dynamics reduces to that of a taut string and
provides the opportunity to examine the relative importance of geometric and hydrodynamic
nonlinearities in the context of the simplest (albeit approximate) cable theory. The conclusions
drawn from this simple theory are subsequently extended to the geometrically more complex
theory for in-plane response [1].

The equation governing the out-of-plane motion of a cable element �s is

[F hyd + F elastic + F appl]�s = �cA�su3;tt; (1)

where F elastic represents the bi-normal component of the net elastic force/length, F hyd repre-
sents the bi-normal component of the net hydrodynamic force/length,F appl is any bi-normally
applied external excitation/length. These force components are illustrated in Figure 1 which
also illustrates the Frenet triad (et; en; eb) used to define the bi-normal (eb) direction. The
equation of motion is augmented by the initial conditions

u3(s; t = 0) = u03(s); u3;t(s; t = 0) = u03;t(s); (2)
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where the functions u03(s) and u03;t(s) have finite norm on the infinite cable domain �1 <

s < �1. Moreover, the cable response satisfies classical radiation conditions for an infinite
domain. The form of each force component in (1) is presently reviewed.

The net hydrodynamic force is composed of three major components, namely the Froude–
Krylov forces FFK deriving from wave pressure, hydrodynamic inertia forces Fm, and viscous
drag forces FD [23, 24]. Employing standard Morison assumptions leads to

F hyd = FFK + Fm + FD; (3)

FFK = Cm�wA
@vf

@t
; Fm = Ca�wA

@2u

@t2
; FD = CD

�wd

2
jvjv; (4)

where vf denotes the fluid particle velocity, v is the velocity of a cable material point relative
to the fluid particle velocity, �w is the density of water, and A is the cable cross sectional area
of diameter d. The coefficients Cm, Ca, CD, may be determined theoretically (in exceptional
cases) or experimentally. For the quiescent fluid medium considered, herein the Froude–
Krylov forces vanish and v = @u=@t. As a result, the net hydrodynamic force/length on a
submerged cable in the bi-normal direction is

F hyd =

"
�w

�d2

4
@2u3

@t2
+ CD

�wd

2
ju3;tju3;t

#
; (5)

where Ca = 1 and the drag coefficient, CD, is chosen from experimental data [23]. Further
consideration of a relative fluid velocity field leads to convective nonlinearities that can be
accounted for using established extensions as in [22].

Stretching of the cable centerline induces the total cable tension T . The static tension
component T0 represents the dominant stiffness mechanism for the long cable suspensions
of interest in this study (negligible bending, shear, and torsional stiffnesses). The net elastic
force/length in the bi-normal direction acting on the element is

F elastic =
@(T�)

@s
= �

@T

@s
+ T

@�

@s
; (6)

where � = @u3=@s and

T (s; t) = EA("0 + "d); (7)

"0 =
T0

EA
; "d =

1
2
(u3;s)

2: (8)

Here "0 denotes the static strain and "d is the dynamic (Lagrangian) strain. The resultant
Young’s modulus for the cable material isE. Finally, the applied force/length,F appl, represents
any prescribed excitation/length in the bi-normal direction. The central, concentrated harmonic
excitation source, F appl = F0�(s)e

j!t, is selected for all the examples in this study as the
means to examine wave propagation characteristics.

3. Four Model Formulations

To achieve the objective of this investigation, four different models for the bi-normal motion
of a taut elastic cable are evaluated. Two of these models are linearizations of Equation (1);
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one without and one with hydrodynamic drag (dissipation). Specifically, the two linear models
are: (1) a simple linear taut string model without drag (the simple model); and (2) a simple
linear taut string model with an equivalent linearized hydrodynamic drag term (the linear drag
model). The linear models are both evaluated analytically. The nonlinear effects are captured
in two nonlinear models, beginning with: (3) a simple linear string with the full nonlinear
hydrodynamic term (the nonlinear drag model); and (4) a nonlinear elastic string model with
the full nonlinear hydrodynamic drag term (the nonlinear elastic-drag model). The nonlinear
models are evaluated using numerical methods.

3.1. LINEARIZED MODELS

3.1.1. Simple Model

Neglecting the hydrodynamic forces in (1) and linearizing (1) leads to the nonhomogeneous
linear, one-dimensional wave equation (Cauchy problem [8]) defining the simple model:

c2
tu3;ss +

1
�cA

F appl = u3;tt; (9)

where ct =
p
T0=�c is the phase velocity and T0 is equilibrium cable tension. Here, attention

will focus on the steady state response to the applied harmonic excitation source introduced
in Section 2.

The solution for forced wave propagation is readily available in the literature; see, for
instance [8]. The concentrated harmonic forces induces the rightward propagating wave

u3(s; t) = �
jF0

2�Act!
expfj(
0s� !t)g+ C:C: on 0 < s <1; (10)

in which F0(!) is the amplitude (frequency) of the harmonic excitation and 
0 = !=ct is
the wave number. Here, C.C. represents the complex conjugate of the preceding terms. The
concentrated source also induces leftward propagation waves, the form of which is obvious
from (10).

3.1.2. Linear Drag Model

The simple model above is an extreme idealization for a submerged cable and is included here
for direct comparison with models of greater fidelity. A simple model with greater fidelity
follows from linearization of the equation of motion (1). To this end, the linearized equation
of motion can be decomposed as

F elastic
L + F

hyd
DL + F hyd

m + F appl = �cAu3;tt; (11)

where F elastic
L denotes the linear elastic force component, F hyd

DL and F
hyd
m denote the hydrody-

namic forces composed of a linearized drag component and an added mass component, and
F appl denotes the external excitation. The force components are

F elastic
L = [T0u3;s];s; F appl = F�(s) exp(j!t); (12)

F
hyd
L = �F

hyd
DL � F hyd

m = �
1
2
CDL�wdu3;t � �wAu3;tt; (13)
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where CDL is the equivalent linear drag coefficient.
To obtainCDL, the linearized hydrodynamic drag force is selected to minimize the squared

error between the linear drag model and the (quadratic) Morison’s drag model over one period
of motion. Thus, CDL is chosen such that

TpZ
0

(F
hyd
DL

� F
hyd
DNL

)2 dt (14)

is minimized [23], where

F
hyd
DL

=
1
2
�2dCDLu3;t; F

hyd
DNL

=
1
2
�wdCDu3;tju3;tj: (15)

After some manipulation, the equivalent linear drag coefficient is found to be

CDL =
8

3�
CD!�u3; (16)

where ! and �u3 denote the frequency and amplitude of the cable motion.
Substituting Equations (12) and (13) into (11) leads to the nonhomogeneous and dissipative

linear wave equation defining the linear drag model:
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�
1

�cA

�
F0�(s)e
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�
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�
u3;tt: (17)

The forced wave propagation response can be determined in closed form by the Green’s
function approach developed in [2]. In particular, the concentrated harmonic force considered
herein induces the rightward propagating wave

u3(s; t) =
jF0

2�cAc2
t
d

expf�s
Ig expfs
R � !tg+ C:C: on 0 < s <1; (18)

where 
R and 
I are the real and imaginary parts of the wave number, 
d as given by


2
d =

�
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	L
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Here 	L = (�wd=2�cA)CDL and � = (�c + �w)=�c. Thus, the cable response is determined
once the drag coefficient CDL is determined. In view of the fact that CDL depends on the
amplitude of the response (16), the solution must be found iteratively as follows. First, an
initial guess of the amplitude �u3 is used to compute the draf coefficient (16) which is then
used to compute the response through (18). The computed new response amplitude �u3 is then
used to adjust CDL and the procedure is repeated until convergence is achieved for �u3.
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3.2. NONLINEAR MODELS

3.2.1. Nonlinear Drag Model

The nonlinear drag model results from considering the hydrodynamic drag as the sole nonlinear
mechanism. In this case, the complete nonlinear Morison Equation (5) is utilized together with
the linearized elastic force component of (12). Substituting these equations in (1) leads to the
nonlinear drag model

c2
tu3;ss �	u3;tju3;tj+�F appl = �u3;tt; (22)

where

	 =
�wd

2�cA
CD; � =

1
�cA

; � =
�c + �w

�c
: (23)

The nonlinear drag model, which is quadratic in the cable velocity, is evaluated using the
numerical procedure described in Section 4.

3.2.2. Nonlinear Elastic-Drag Model

The nonlinear elastic-drag model results from simultaneous consideration of the nonlinearities
due to hydrodynamic drag and finite cable stretching. In this case, the linear and nonlinear
elastic forces are

F elastic
L + F elastic

NL =

��
T0 +

1
2
EAu2

3;s

�
u3;s

�
;s

(24)

which capture the finite stretching of the string centerline [20]. Substituting (23) and (5) in
the equation of motion (1) yields the nonlinear elastic-drag model

c2
tu3;ss �	u3;tju3;tj+

1
2
c2
l [u

3
3;s];s +�F appl = �u3;tt; (25)

where cl is the classical longitudinal wave speed of a rod, cl =
p
E=�c.

4. Numerical Solution Model

Numerical solutions are pursued herein using a space-time finite difference algorithm. Con-
sider a cable of length L described by N internal nodes. Let uij denote the bi-normal displace-
ment of the cable at node j and at time step i. Fourth-order central differencing in space is
employed for first and second spatial derivatives. Second-order backwards differencing in time
is employed for formulating first and second order time derivatives [25]. This discretization
forms a time-marching algorithm for solution of the nodal displacements uij and velocity vij
as given by

ui+1
j = uij + vij�t+

1
2
�1�t2(aij + �2a

i+1
j ); (26)

vi+1
j = vij +

1
2
�1�t(aij + �2a

i+1
j ): (27)

Here, �t is the time step and �1, �2, �1 and �2 are integration parameters which are selected
as 0.5, 1.0, 0.5, and 1.0, respectively.
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Figure 2. L2 norm of (A) the displacement and (B) the displacement gradient along the first ten meters from the
source. Norm is computed using numerical solutions to all four models for the example cable suspension defined
in Table 1. The excitation frequency is ! = 10 rad/s. Simple model � � � �; linear drag model ++++; nonlinear drag
model ����; nonlinear elastic-drag model ����.

The nodal acceleration ai+1
j are collected as the vector Ai+1 and evaluated from the

approximate equation of motion:

MAi+1 + CjVijVi + KUi = (Fappl)i; (28)

where Ui and Vi are vectors containing the nodal displacements and velocities, respectively,
and (Fappl)i is the prescribed excitation (vector). The M and C matrices are constants, but K
is a function of the nodal displacements due to the geometric nonlinearity. This algorithm is
a two-step, three-value method.

5. Results and Discussion

In all examples to follow, consider the response of an infinite cable subject to a concentrated
harmonic excitation source in the out-of-plane direction at the origin (s = 0). Let F0 and !

denote the amplitude and frequency of the source

F appl = F0�(s)e
j!t: (29)

As a first example, consider a cable suspension with properties defined in Table 1. This
suspension is subjected to a concentrated harmonic source which, in the present example,
has frequency ! = 10 rad/s. Figure 2 provides a direct comparison of the results computed
from all four models. Shown in Figure 2A (2B) is the L2 norm of the computed cable
displacement (displacement gradient) for each model. The L2 norm, which is computed over
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Table 1. Cable parameter values for a representative
steel wire rope suspension [12].

Sample submerged steel wire rope

Cable property Symbol Values

Young’s modulus E 1:0 � 1011 Pa
Density �c 3750 kg/m3

Cross sectional area A 314.2 mm2

Static tension T0 21.2 kN
Length L 2000 m
Phase speed ct 134 m/s

0 � s � 10 m, is shown as a function of the excitation amplitude F0 (N). For the simple
model, these norms increase linearly with F0 as required by linearity. Focusing first on the
displacement norm of Figure 2A, note that all models predict nearly identical norms for
excitation amplitudes below 100 N. For excitation amplitudes exceeding 100 N, however,
the three models with dissipation (linear drag, nonlinear drag, and nonlinear elastic-drag)
predict response amplitudes significantly less than the simple model. The displacement norm
computed from the nonlinear drag and nonlinear elastic-drag models are nearly identical and
both substantially less than that of the linear drag model.

Figure 2B illustrates similar results for the norm of the gradient of the displacement (u3;s).
This gradient is an important quantity that is subsequently used to compute the dynamic
tension as described in the following. Inspection of Figure 2B reveals that the simple model
first under predicts the gradient for excitation amplitudes less than 400 N when compared to
the three models with dissipation. For excitation amplitude in excess of 400 N, however, the
simple model leads to large overpredictions. For all excitation amplitudes, the norm of the
gradient of the linear drag model is comparable to that of the nonlinear drag model, but both
exceed that of the nonlinear elastic-drag model.

The previous solutions for the displacement field can be used to compute the dynamic
cable tension which is an important metric of cable response in applications (e.g., dynamic
tension influences cable survivability and the positioning and response of attached bodies).
The dynamic tension is evaluated using

Td(s; t) = EA"d; (30)

where "d (8) is the Lagrangian strain of the centerline.
The L2 norm of the dynamic tension for all four models is illustrated in Figure 3 for com-

parison. The results follow directly from those of Figure 2B. Note that for the simple model,
the dynamic tension, which can be calculated in a closed form, grows exactly quadratically
with excitation amplitude. Moreover, in the region of large excitation amplitude, this model
greatly overestimates the dynamic tension. This error limits the utility of this model for design.
Again note the close agreement of the linear and nonlinear drag models which also overpredict
the dynamic tension relative to the nonlinear elastic-drag model. Thus, the importance of the
nonlinear geometric stiffening increases with increasing excitation amplitude.

The effect of nonlinear geometric stiffening is further examined in Figure 4 which compares
the cable response for the nonlinear drag model, and the nonlinear elastic-drag model. The
displacement profiles are illustrated at one representative time. Observe that the wavelength
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Figure 3. L2 norm of dynamic tensionof the cable along the first ten meters from the source. This tension norm is
presented as a percentage of the static tension and is computed for all four models for the example cable suspension
defined in Table 1. The excitation frequency is! = 10 rad/s. Simple model � � � �; linear drag model ++++; nonlinear
drag model ����; nonlinear elastic-drag model ����.

of the disturbance increases slightly as a result of the additional nonlinear geometric stiffness.
Similarly this geometric stiffening reduces the gradient of the wave form and leads to a marked
reduction in displacement in the vicinity of the concentrated load.

The spatial distribution of the dynamic cable tension is illustrated in the results of Figure 5
computed using the nonlinear elastic-drag model for the case ! = 10 rad/s and F0 = 800 N.
The dynamic tension wave profile is illustrated in Figure 5A with the associated power
spectral density (versus wave number) in Figure 5B. Inspection of these results reveals two
major points. First, application of an external excitation in the bi-normal direction creates a
significant tension wave that propagates outwards from the source (note dynamic tension is
reported as a percentage of static tension). Second, the tension waves along the submerged
cable sharply decrease as they propagate away from the source. This reduction of dynamic
tension derives from the dissipation of energy by hydrodynamic drag. From Figure 5B, note
that the wave numbers less than 
 = 0:25 (m�1) have significant effect on the tension wave.
In particular, two special wave numbers, one close to zero and another close to 
 = 0:16 have
pronounced influence. The dominant role of these wave numbers is further explained using
the results of Figure 6.
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Figure 4. Comparison of the displacement predicted by the nonlinear drag and the nonlinear elastic-drag models.
Displacement profiles illustrated at time t = 7:9 sec for excitation characterized by F0 = 3 kN and ! = 10 rad/s.
The cable material and geometric properties are listed in Table 1. Nonlinear drag model —-; nonlinear elastic-drag
model � � � �.

The results of Figure 6 illustrate wave propagation characteristics for three cable models;
namely the simple model (A1, A2), the nonlinear drag model (B1, B2), and the nonlinear
elastic-drag model (C1, C2). Results in the first column illustrate the wave profile at the
representative time t = 5:8 sec which corresponds to approximately three excitation cycles
(! = 10 rad/s). Results in the second column illustrate the corresponding power spectral
densities. For the simple model (A1), the waves propagate uniformly without attenuation
from the source as expected. In contrast, for the nonlinear drag (B1) and nonlinear elastic-
drag models (C1), the wave amplitudes sharply attenuate with distance from the source due
to fluid damping.

The power spectral densities provide further distinction between these models. For the
simple model (A2), the power spectral density essentially vanishes for all wave numbers
except that corresponding to excitation frequency (! = 10 rad/s) for the phase velocity (ct =
152 m/s); namely 
 = !=ct = 0:066 m�1. By contrast, the power spectral densities for the two
nonlinear models illustrate measurable contributions for all wave numbers 
 � 0:15 (m�1)
with maximum contribution in the neighborhood of 
 = 0:08 (m�1). Comparison of (B2) and
(C2) reveals a small discernible difference between the two nonlinear models. Note that the
power spectral density for the nonlinear elastic-drag model (C2) is greater (lesser) than that of
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Figure 5. (A) Dynamic tension profile induced by a concentrated harmonic source of magnitude of F0 = 800 N
and frequency ! = 10 rad/s. (B) The associated power spectrum. The cable material and geometric properties are
listed in Table 1.

the nonlinear drag model (B2) for the wave numbers 
 � 0:08 (
 � 0:08). Thus, waves for the
nonlinear elastic-drag model will propagate faster than those for the nonlinear drag model due
to the increased (nonlinear) stiffness. Note also that, at this excitation frequency, disturbances
propagate visibly slower for both nonlinear models in comparison with the simple model as
can be observed from the results in either column.

The results of Figure 6B1 and 6C1 illustrate considerable spatial decay due to hydrody-
namic drag. This effect is further examined through Figure 7 which illustrates the envelope
(loci of response maxima) of the cable displacement along the suspension computed using
the nonlinear elastic-drag model. The three envelopes shown correspond to three values of
the excitation frequency (! = 2, 3, 10 rad/s). Note that the spatial decay rate is greatest near
the source and that this decay rate increases with excitation frequency in direct response to
higher hydrodynamic drag. Moreover, the amplitude of the response decreases with increasing
excitation frequency as expected.

6. Conclusion

This investigation focuses on two nonlinear mechanisms governing the propagation of out-
of-plane structural waves along elastic cables in a fluid medium. The nonlinear mechanisms
model (1) hydrodynamic drag, and (2) finite centerline stretching (geometric stiffening). The
influence of these nonlinear mechanisms is highlighted by examining computed response
solution to four models. Examples focus on cable response to a concentrated harmonic source.
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Figure 6. Response to a harmonic source characterized by F0 = 3 kN and ! = 10 rad/s at the representation time
t = 5:8 sec. Response and associated power spectra for the simple model (A1, A2), the nonlinear drag model (B1,
B2), and nonlinear elastic-drag model (C1, C2). The cable material and geometric properties are listed in Table 1.

The major effect of hydrodynamic drag is to attenuate cable response away from the source and
to do so sharply as the excitation frequency increases. The major effect of geometric stiffening
is to increase the wave propagation speed (rendering the model dispersive). Solutions for the
cable response were subsequently used to estimate dynamic cable tension for all four models.
Comparison of the L2 norm of the dynamic tension reveals that the simple model greatly
overestimates the dynamic tension rendering this model inadequate for design calculations.
By contrast, the linearized drag model provides a rather good prediction when compared to
both nonlinear models (the nonlinear drag model and the nonlinear elastic-drag models) for the
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Figure 7. The displacement envelope of the cable response for three values of the external excitation frequency
as predicted by the nonlinear elastic-drag model. The excitation is characterized by F0 = 2 kN and frequencies
! = 2 rad/s —-, ! = 3 rad/s – – –, ! = 10 rad/s � – � – �. The cable material and geometric properties are listed in
Table 1.

small to moderate excitation levels considered herein. Thus, the linearized drag approximation
appears to be an acceptable and reliable approximation for design calculation. For the largest
excitation levels considered herein, the tension computed by the nonlinear elastic-drag model
forms a lower bound to the tension computed using all other models due to the added stiffness
generated by finite centerline stretching.
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