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Abstract. We formulate the method of averaging for perturbations of Euler’s equations of rotational motion. Euler’s
equations are three strongly nonlinear coupled differential equations that can be viewed as a three dimensional
oscillator. The method of averaging is used to determine the long-term influence of perturbation terms on the motion
by averaging about the nominal rigid body motion. The treatment is applicable to a large class of motions including
precession with large nutation — it is not restricted to small motions about simple spins or nearly axi-symmetric
bodies. Three examples are shown that demonstrate the accuracy of the method’s predictions.
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1. Introduction

The method of averaging is a perturbation method applicable for systems whose nominal
motion consists of oscillatory solutions. Typically, the method is applied to a perturbed two-
dimensional oscillator or to coupled pairs of oscillators. The most widely known example is
the perturbed harmonic oscillator

whereg represents the perturbation and« 1 is a scaling parameter. The method of aver-
aging provides an approximation of the solution to the perturbed equations by averaging out
short-period fluctuations while retaining long-term information. In the case of the harmonic
oscillator, the method provides information on the change of the amplitude of motion and its
frequency.

We formulate the method of averaging for the three strongly nonlinear equations repre-
sented by perturbations of Euler’s equations of rotational motion. This is possible because the
nominal (unperturbed) motion consists of three oscillatory motions. However, rather than the
more familiar trig functions that naturally appear in applying averaging to Equation (1), the
computations involve differentiation and integration of elliptic functions. An introduction to
the method of averaging using elliptic functions is found in [3, 5, 6, 7].

The motivation for investigating Euler’s equations stems from their use in modeling the
motion of spinning spacecraft. References concerning spinning spacecraft motion are too
numerous to list—see [11, 12, 16] for an introduction. The literature contains many references
employing the method of averaging for axi-symmetric spacecraft or for asymmetric spacecraft
undergoing small coning motions. In both of these cases, the equations of motion reduce to a
perturbed linear oscillator of the form Equation (1) that is treated using trig functions.

Averaging of spacecraft motion using elliptic functions has been largely avoided, although
a few examples exist. Chernous’ko [2] investigates the motion of an asymmetric rigid body
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perturbed by orientation-dependent gravity gradient torques. Hall and Rand [10] investigate
the spinup dynamics of a dualspin spacecratft.

2. Formulation

Consider the equations of motion for a spinning vehicle consisting of a base rigidbadg
movable appendagé¥®. The rotational equations of motion are
d

I-d—L:—i—wx(I-w):M(w,w), @)
wherel is the mass moment of inertia tensor®f+ W about its center of massg; is the
inertial angular velocity ofR, and M is composed of the external moment 8+ W and
internal moments caused by the motionNBfrelative toR. We shall restrict this investigation
by not considering the orientation-dependent environmental torques (e.g., gravity or drag).

By resolving Equation (2) onto body axes, =2, x3) fixed in R and simplifying, we find:

w1 = Jiwws + eg1(w,w), (3a)
wp = —Jowawy + £g2(w, w), (3b)
w3 = Jawiwr + eg3(w, w), (3¢)
where
I, — I3 Iz3—1h IL1—D
== = — == . 4
Jl I]_ 3 JZ [2 3 J3 1—3 ( )

I, denotes a diagonal element of the inertia tedsandg,, denotes terms arising from the
moments and all the off-diagonal inertia terms, scaled by a parameter

2.1. UNPERTURBEDMOTION

The unperturbed system consists of Equation (3) withO (the torque-free rigid body equa-
tions). The system is fully integrable, with two constants of motion: the angular momentum
vector L and the rotational kinetic energy scalfir= (w - L)/2. Resolving onto the body
axes, we find

1
T = > (Iw? + w3 + I3w3), (5a)

L? = I2w% + TEw3 + I2w3. (5b)

These equations describe two intersecting ellipsoids in the three-dimensiondlspasews).

Thus, the unperturbed solution is a motion specifie@'lhying on a two-dimensional ellipsoid
defined byL? in w-space. Tangential intersections give rise to six equilibrium points, a pair
lying on each axis,,, that correspond to simple spin motions, i.e., motions in whicnd

L are aligned. One pair of equilibria are unstable and are connected by four heteroclinic
connections (i.e., separatrices) while the other two pair are (linearly) stable. Nontangential
intersections give rise to one-dimensional closed curves lying on the ellipsoid that encircle a
stable equlibrium and accumulate onto a pair of separatrices. Each of these curves correspond
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to a complicated orientation manuever involving coning, nutation, spin, and precession. See
Hughes [11] or Wittenburg [18] for an illustration. Finally, since no external torques act in the
unperturbed systent, remains inertially fixed.

Knowing w does not completely determine the orientatiorfofvith respect to inertial
space; however, the orientation relativeltas determined. Define the unit vectbby

1
L= (01,02,03) = T (Iiw1, Iowo, I3w3), (6)

where/,, are direction cosines. Then, the directioréatlative to the body axes is specified
by (6,+) where

£1 = siny sing, (7a)
¢ = cosy sing, (7b)
{3 = cosh. (7¢)

The angléed is the coning angle and is the spin angle. These angles are two rotations for

Euler angles; the third rotation (i.e., the precession aliguannot be found fror alone.
Using the direction cosines, Equation (5) becomes
1 ¢ 05 1

I L LI (8a)

1=02+065+4 (8b)

wherel = L?/(2T) is called the momentum parameter [11]. For each valug'dhe solution

to Equation (8a) consists of two disjoint one-dimensional curves lying on the momentum
sphere described by Equation (8b). The two curves are merely reflections of one another
under the symmetry/s, 2, /3) — (—¢1, —¢2, —¢3). Thus, the unperturbed motion traverses
one of the two curves: initial conditions determine which one.

2.2. UNPERTURBEDSOLUTION

The unperturbed solution for a general asymmetric rigid body is well known [11, 17, 18]. It
is given by

w1 =81 R, cn(u, k), (98.)
w2 = s2 Ro sn(u, k‘), (gb)
w3 = s3 R3 dn(u, k), (9C)

wheres,, = +1 andsis2s3 = —1. The amplitude®,, are given by

Ri=T13kQ, Rp=TpkQ, Rs3=Q, (10)
wherek > 0,Q > 0, andl',,, = /J./J;. The argument, linear in time, is given by

u = T13023J3 Ot + uo. (11)

1 Except for degenerate cases wHes I, [ = I, or I = Is.
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Table 1 Convention for determin-
ing the 1 and 3-axed.is evaluated
at the initial condition.

Iy I3
I1>1D Inmin Tmax
I<I Tmax Tnin

Q, k, andug are the three constants of integration that are related to the initial conditions.
The functions ctwu, k), snu, k), and driu, k) are called Jacobian elliptic functions. These
functions are periodic in the argumenfor each fixed modulus with period 4K (k) when
0 < k? < 1, whereK (k) is the complete elliptic integral of the first kind [1].

The unperturbed solution fdris

by =s111 cn(u, k‘), (12a)
lr= 5212 Sr(uak)a (12b)
l3 = s3713 dn(u, k), (12¢)

wherer,, = (IR, /L). These amplitudes are related according to

r1 = v13kr3, T2 = Y23kT3, (13)
where
ITL .TL
Ynk = I_ Fnk: =1 ]_ ; (14)
k \ gk
with
n=nhlr—13), jo=DL(I1—13), j3=I3(I1—1I). (15)

The amplitudes,, depend ork but notf.
Solution (9—11) holds wheneverdenotes the middle axis of inertia, i.&pax > I2 > Imin.
We shall not consider cases for whikh= I'nin or I =~ ImaxSince Equation (3) then reducesto
a perturbed harmonic oscillator that can be investigated using standard perturbation methods.

The solution is most easily interpreted by adopting the following convention. The momen-
tum parameterd is known to satisfylnmax > I > Inin for unperturbed motion [11]. The
directions of the 1-axis and 3-axis are now chosen according to Table 1.

We shall not consider cases in whi€lis approximatelyl, because the motion few lies
near a separatrix in the phase space where averaging is not valid.

Adopting the convention listed in Table 1, all inertia paramefgrandj,, are of the same
sign. Moreover, thexz-axis undergoes coning and nutation while precessing aboithe
modulusk is a measure of the coning and nutation motion (i.e., the oscillatiérdafing the
motion). In particularfmin < 0 < Onax Where

1
1 |
Omin = COS ( W) s (163)

2 While the smallest period for dn, k) is 2K (k), it is still periodic with period 4 (k).
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[ 1—k2
~1
Omax = COS < W) . (16b)

The constants of motion are expressed in term$Xk) according to

1
T = > 1097 (1 + y13l'13k2), (17a)

L= Q{1+ 242 (17b)

Thus,k depends only oif according to

2 (hi—Ix)(I-15)
v = (2—13) (IL—1)° (18)

so that its value also specifies closed curves on the momentum sphere. From Equation (18),
we also find that

0<k’<1

implying thatw,, wy, w3, andf are all periodic functions of time (as expected). Bethand
0 have nonzero mean value whilg andw, have zero mean value.

2.3. METHOD OFAVERAGING

A brief summary of the method of averaging is described below. Consider the system of
differential equations far € R? and¢ € S* below:

i = eF(x,4), (19a)
¢ = A(z) +eG(z, ¢), (19b)

where 0< ¢ < 1is a small parameteF, € R? andG are both periodic i for fixed z, and
A > e. Define a near-identity transformation by

z=1a +eW(,¢)+ 0(?), (20a)
p=¢ +eV(z',¢) + O(?). (20b)

The transformation functiori € R?andV are chosen to transform the differential equations
for 2/ and¢’ into

i' = e F(z') + O(£?), (21a)
¢ = Aa') +eG() + O(?), (21b)

whereF’ andG denote the averages ovgrof F(z', ¢') andG(z', ¢') respectively, where

Vg ) = o [ fa ) @2)
[
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andT'(z') denotes the period. See [3, 8, 9, 14] for a more complete discussion.

Note that in the averaged system (21), the differential equations {tihhe slow-varying
variables) are decoupled fromi (the fast variable): the slow-varying variables evolve on
a manifold that has been reduced by one dimension. Theorems on the averaging method
guarantee that the solution faf is an O(s) approximation forz for timest¢ of O(1/¢)
[8, 9, 14]. Moreover, many qualities of the motion focan be determined from investigating

x'

2.4. \ARIATIONAL EQUATIONS

Three conditions must be satisfied so thgt represents a small perturbation term in Equa-
tion (3). First, the momentM | must be small relative t@" so that the nominal motion
consists of rigid body motion. Hence, definas(|| M ||/T') evaluated at the initial condition.
Second, the body axes must be nominally principal axes, i.e.,

I={0DL0|+e |l 0 I, (23)

where the off-diagonal elements remain(afe). Obviously, the body axes may be chosen to
be principal axes at all times, but such axes may be inconvenient to use if shape changes of
the body occur (caused By moving relative tdR). Third, the rate at which the inertia tensor
I changes must be slow, i.d..2 I(7) wherer = et.

We now identify a set of slowly-varying variables and a fast varying phase angle to put
Equation (3) into the form of Equation (19). Obviously, ba@thand L? are slowly-varying
but we prefer to use = (2, k) (the equation for- need not be explicitly computed). Since
the unperturbed system is strongly nonlinear, only certain phase angles will result in periodic
variational equations [3, 4, 5]. A convenient choiceis- u/(4K (k)).

Variation of parameters is now applied by assuming a solution of the form given by (9-11)
with (Q, k, ug) now considered as unknown functions of time. After lengthy computations
(computed using an elliptic function processor written for Mathem3jtieee find

Q = eFo(Qk, 7, ¢), (244)
1;7 = ‘SFk(QakaTa ¢)a (24b)
¢ =MDk, 7) +£G(Q,k, 7, ), (24c)

where the function$’,, Fi, G, andA are given in Table 2.

3. Examples

The averaged system (21) is computed from the variational equations given by (24) once the
perturbation termg,, (w, w) are specified. Three examples are considered below.

3.1. INTERNAL MOVING PARTS

Consider the case where the the external moment on the body is zero, but appendages are
allowed to move and thrusters are allowed to fire [13]. The variaflexrresponding to a

% Available from the author. E-mail request to coppola@caen.engin.umich.edu
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Table 2 Explicit forms of the variational equations (24). Eaghis to be evaluated on the unperturbed solution
given by (9-11).Z(u, k) denotes the Jacobian Zeta function (related to the incomplete elliptic integral of the
second kind [1]). The argumen{s, k) have been suppressed in writing the elliptic functions.

Fo(Q,k,7,¢) = ssgadn+ ‘Sl,z—f;ksn— Fizs %kzﬁsnz
_ sig1 $202 . 2\ S$3g3 1 dls 1 dlzs i
Fr(Q k7, 0) = o Ot 1,239(1 K*)sn— == kdn ool ker? P k(1 — k?)srf
Gk, 6) = 1 [sigi(Zen—sndn | s2g2(Zsn+cndn) s3ga(Zdn — k?sncn)
DT 4K | TiskQ(1— k2) 23k Q(1— k?)
cn dr'is sn dl'23
- —B(zen— - =2z
To(l—F3) dr (Zcn—sndn T dr (Zsn+ cndn)}
Ak 7) = TRkl

body with internal moving parts are written
g1 = G+ Grwi + Giowz + Giaws
133 ( 2 2 I3 .
+ T (w3 — wz) A (wiw2 + w3)

S

I )
+ % (wiws — wo), (25)
1

whereg, andgs can be found using cyclic permutatid@®,,,, depends od and the motion of
W relative toR but not onw. The three parameters of the foiH,,, are given by

Gnn—_EE+E;Fdni (26)

whered,,; measures the perpendicular distance fromathexis to mass thrustern,; which
is ejecting mass at the ratengl/dr. The three parameters, o are related to the external

torque onR + W, torques orR caused byV, and torques created by thruster firings. These
parameters figure prominently in the averaged system.

3.2. THRUSTTORQUES

Perturbations caused by small thrust torques are also described by Equation (25). However,
in many applications, the amount of mass lost during the firing is negligible compared to the
inertia of the vehicle. In such cases, the inertia may be approximated as constant so that the
perturbation becomeg, = G,0.

3.3. LINEAR FEEDBACK

Consider the model of a control system for a rigid spacecraft given by Equation (3) where
egn, represents a control torque ateh, z,, z3) are principal axes. The analysis for linear
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Table 3 Values of the averages appearing in the averaged equations (27). The prime notation has been dropped
for convenienceK = K (k) andE = E(k) are complete elliptic integrals.

_ FE E
Fo(Q, k; No, N2, No) = = No+ {Nz (- %) +N3—}

2K K
_ k N,— N E B
Fi(@,; No, N1, No, Na) = 570 No o ~2 % (1— K2 - E) + (N2 = No) b

S ™ E G12 1 FE
G0 G G i) = gz {rirs (1 ) + 75, (1 2 ) }

where
1 dr 1 dr
No = s3G'3, N1=Gn———13, Nz = G2 ——23, N3 = G33
'3 dr Iy dr

feedback control torques can be recovered from Equation (25) by tékjng= 0, I;;,, = 0,
and each7,,,,, constant. Note that the linear terms here are considered as perturbations on
the nonlinear unperturbed system, in contrast to traditional perturbation approaches that treat

nonlinear terms as perturbations on a linear system.

4. Averaging Results

The averaged system (21) corresponding to Equation (25) is found to be

Q:‘?FQ(Qak;NmNZaN?:)a (27&)
k = eFy(Q, k; No, N1, N2, N3), (27b)
¢ = Ak, 7) + £G(k; G12, G21, 53T'12), (27¢)

where the values of the averagésandG are given in Table 3. The prime notation has been
dropped for convenience. The averaged system depends on only seven parameters (out of a
total of 18) with the slow-flow equations depending only on the four parameters de¥igted
These four parameters determine the qualitative behavior of the motion — the other parameters
do not significantly affect the long-term motion. Note in particular that the off-diagonal
elementd;’; do not appear in the averaged system.

Additionally, one sees that iy = 0, the slow-flow equations themselves decouple with
Equation (27b) being a first order nonlinear differential equatioh and possiblyr. The
motion for(2 is then found from quadrature of Equation (27a).

4.1. INTERNAL MOTIONS

When the perturbation term consists only of internal motions (not external torques or thruster
firings), then the total angular momentumf- WV is conserved. If, in addition, the internal
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motions do not generate any internal angular momentum,@gn= 0 andL is conserved
both in Equation (3) and in the averaged system.
Equation (27b) becomes

.1 > FE > FE

k_sk{akKJrﬂ(l k K)}’ (28)
where

o = 1 e : _ 1dw ‘ (29)

Y32 dr Y12 dr

To find an approximate solution, we first compute the equationsfare.,

B E

ro k2 (1 K) ’ (30)

and approximate the right-hand side by performing a Taylor seriealoutt = 0. To lowest
order, the right-hand side becong®/ 2 making Equation (30) integrable. The solution to the
approximate equation is

1= ro\/712 = To{ ;—; ; (31)

whererg is an arbitrary constant. Approximate solutions for the remaining slowly-varying
guantities are given below:

0

ro — : 32a
2 VT (32a)
r3=1/1—1fy12, (32b)
K2 = 6781732 (32c)
1- 7’(2)')’12 ’
L
Q= 1—3\/1—7’3')/12, (32d)
L? )
T= 2% (1 —7r5(712 — ’732F13)) : (32e)

andR,, = (Lr,/I,). Thus, the averaging method provideaplicit algebraiapproximation
to the motion of a vehicle with internal motions. This result was first developed for sufficiently
small coning motions in [15] using another technique.

Figure 1 compares the actual motion for Equation (3) with the averaged solution for the
case of a mass deploying along the end of a boom alonggtais. The moments of inertia
are given by

I]_ = 10+ mSZ,
12 =11+ mSZ,
I3 = 20,
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Figure 1 Boom Deployments = 0.1. (a) Plot ofk? for both actual and averaged solution. (b) Relative %-error
between actual and averaged solution %@r (c) Plot of T for both actual and averaged solution. (d) Relative
%-error between actual and averaged solutioriffofe) Plot of actuab (in deg) and the averaged solutions for

Omin andfmayx. (f) Plot of actuall; and the averaged solution fer.

wherem = 0.04, s = 0.25,5(0) = 0, ande = 0.1. The angular momentum 5 = 40 and

the initial value ofk? is 0.25. Values fok?, ©, 8, andr; were computed for the actual motion

of Equation (3) by computing@” and L. from Equation (5) and using the formulas given in
Section 2.1. It is seen that the averaging solution is an excellent approximation to the actual
motion.
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Figure 2 Thruster firing.e = 0.1. Beforet = 0 the thruster is off and the body is performing purely rigid
body motion. Att = 0, the thruster is turned on resulting in an increasg @ind decrease df. The oscillations
are the result of numerical integration of (3) while the lines are the predicted amplitudes based on the averaging
approximation.

4.2. THRUSTERFIRING

For the thruster firing example, the averaged system becomes

. ™

Q= Eﬁ NO, (33a)
. k

k= —e5 No (33b)

Only the torque about thes-axis leads to any significant long-term motion. Equation (33) has
the integral of motiork<) that remains constant during the motion. Recalling Equation (10),
we see that torque does not change the amplitudes of w». Using the constant of motion,
Equation (33b) becomes

o
2kl K’

(34)

where (o, ko) denote initial conditions. WhelVy > 0, & = 0 is an attractive equilibrium:
the torque serves to redugeauntil a simple spin about thes-axis is achieved; however, the
spin rate) increases. WheiWy < 0, k = 0 is an unstable equilibrium: the torque serves to
increase the nutation amplitude while reducihgrhe coning increases until the motion nears
the separatrix (at = 1) at which point the averaging solution is no longer valid.

Figure 2 compares the motion of Equation (3) with the averaged solution based on Equa-
tion (34) for the case wher® = 3,1, = 4,13 =5, = 0.1, G3g # 0, and all othe(,,,,, are
zero. Fort < 0, G3g = 0 and the motion is purely rigid body motion describediby: 0.6
and() = 1.0. At¢ = 0 the thruster is turned on witfizp = 0.8. As predicted, the amplitude
of w1 remains fixed while the amplitude af; grows. Note also that the period of oscillation
decreases.
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4.3. umiT CYCLES PRODUCED BY FEEDBACK

In the linear feedback example, all inertias are constant@go= 0, so that the slow-flow
equation (27b) is given by Equation (28) where= N, — N3 and@ = N, — Ny are both
constant parameters. A nontrivial equilibridnof Equation (28) exists if

fpn
g ME (35)
E—-(1-k)K

whereE = E(k) andK = K (k). This condition is bounded by the lins= o andj = 2«

in the («, 3) parameter plane. The equilibrium is stable if> 0 and unstable if < O.

Considering now the implications for the momentum sphere, we conclude that the nontrivial
equilibriumk = k corresponds tolmit cycleon the momentum sphere with the same stability
properties. The limit cycle exists independentbfin fact, {2 may increase or decrease with
no change in the limit cycle shape.

The limit cycle bifurcates from a particular unperturbed trajectory (dependirlb asc
passes through zero. The bifurcation is comparable to the well-known birth of a limit cycle in
the van der Pol oscillator wherein a particular unperturbed trajectory becomes a limit cycle as
e10. (The bifurcation is sometimes called an Andronov bifurcation.) The limit cycle trajectory,
then, is very nearly a particular coning motion of theaxis of R of the unperturbed motion.
Thus,Q only affects the rate at which the limit cycle is traversed (i.e., the spin rate of the
motion).

The solution for2 can be found from quadrature, once the solution to Equation (28) is
determined. Note, however, that even on the limit cycle describédby:, {2 need not remain
constant. In fact/€2/dt = 0 only when

TN
N, = (%) M, (36a)
N3 = (%) Ny (36b)

Even when Equation (36) is satisfied, a constant valégisfnot obtained until the motion for
k(t) reaches = k. The final value of2 cannot be found without performing the quadrature
(which in turn depends on the initial value Bf. Hence, Equation (36) does not imply the
existence of a limit cycle inv-space. Moreover, since the analysis is really for the primed
(averaged) variables, Equation (36) really implies tHafdt = O(£?), not 0, resulting in a
slowly-varying (rather than constant) valuetof

Figure 3 compares the motion of Equation (3) with that predicted by averaged solution
atk = k for the case wheré; = 3, I, = 4,13 = 5, G11 = —1.35614,G», = 1.26209,

G33 = —0.187738w1(0) = 0.5, w,(0) = 0.5, andws(0) = 1.0. These values give = 0.1,
k = 0.25,a = 1.44982, and? = 2.61822 so that Equation (36) is satisfied. Figures 3a and
3b show the limit cycle that the averaging method predicts.

Values fork?, Q, 6, andr, were computed for the actual motion of Equation (3) by
computingT and L from Equation (5) and using the formulas given in Section 2.1. It is
seen that as time increases the actual motion consists of small oscillations about the constant
solution determined front = k. These oscillations can be determined by computing the
transformation function®” andV in Equation (20) but was not done here.
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(@) (b)
L1111 -
So(e) I m(f)

Figure 3 Limit Cycle. e = 0.1. (a) Limit cycle on the momentum sphere. (b) Projection dhte plane (axes
shown black); gray axes align with symmetry lines of limit cycle that are rotated w.r.t axes. (c) Plot of actual

k? and the linek? = k. (d) Plot showing actual increasing slowly. (e) Plot of actuél(in deg) and the lines
0 = Omin(k), 0 = Omax(k). (f) Plot of actualr, and the linery = r1(k).

5. Conclusions

The method of averaging has been applied to the strongly nonlinear system of Euler’'s equations
for rotational motion. The formulation uses the elliptic function solution that appears from the
torque-free asymmetric rigid body equations. The averaging procedure averages the influence
of perturbation terms over nominal rigid body motion — motion that includes nutation and
possibly large coning motions. This generalizes the weakly nonlinear cases described by a
nearly axi-symmetric spacecraft or by a small coning motion assumption.

An averaged system has been computed for a perturbation involving linear terms in the
angular velocity components. The averaged system shows that the long-term motion is deter-
mined by only four parameters out of a total of 18. The reduction of the number of parameters
greatly simplifies a qualitative investigation.
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Three examples concerning internal motion, thrust torques, and feedback control have been
investigated. In each case, the predictions made using the averaged system compare very well
with the actual motion, both quantitatively and qualitatively.
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