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Abstract. We formulate the method of averaging for perturbations of Euler’s equations of rotational motion. Euler’s
equations are three strongly nonlinear coupled differential equations that can be viewed as a three dimensional
oscillator. The method of averaging is used to determine the long-term influence of perturbation terms on the motion
by averaging about the nominal rigid body motion. The treatment is applicable to a large class of motions including
precession with large nutation – it is not restricted to small motions about simple spins or nearly axi-symmetric
bodies. Three examples are shown that demonstrate the accuracy of the method’s predictions.
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1. Introduction

The method of averaging is a perturbation method applicable for systems whose nominal
motion consists of oscillatory solutions. Typically, the method is applied to a perturbed two-
dimensional oscillator or to coupled pairs of oscillators. The most widely known example is
the perturbed harmonic oscillator

�x+ x = "g(x; _x; t; "); (1)

whereg represents the perturbation and" � 1 is a scaling parameter. The method of aver-
aging provides an approximation of the solution to the perturbed equations by averaging out
short-period fluctuations while retaining long-term information. In the case of the harmonic
oscillator, the method provides information on the change of the amplitude of motion and its
frequency.

We formulate the method of averaging for the three strongly nonlinear equations repre-
sented by perturbations of Euler’s equations of rotational motion. This is possible because the
nominal (unperturbed) motion consists of three oscillatory motions. However, rather than the
more familiar trig functions that naturally appear in applying averaging to Equation (1), the
computations involve differentiation and integration of elliptic functions. An introduction to
the method of averaging using elliptic functions is found in [3, 5, 6, 7].

The motivation for investigating Euler’s equations stems from their use in modeling the
motion of spinning spacecraft. References concerning spinning spacecraft motion are too
numerous to list – see [11, 12, 16] for an introduction. The literature contains many references
employing the method of averaging for axi-symmetric spacecraft or for asymmetric spacecraft
undergoing small coning motions. In both of these cases, the equations of motion reduce to a
perturbed linear oscillator of the form Equation (1) that is treated using trig functions.

Averaging of spacecraft motion using elliptic functions has been largely avoided, although
a few examples exist. Chernous’ko [2] investigates the motion of an asymmetric rigid body
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perturbed by orientation-dependent gravity gradient torques. Hall and Rand [10] investigate
the spinup dynamics of a dualspin spacecraft.

2. Formulation

Consider the equations of motion for a spinning vehicle consisting of a base rigid bodyR and
movable appendagesW. The rotational equations of motion are

I � d!
dt

+ ! � (I � !) =M(!; _!); (2)

whereI is the mass moment of inertia tensor ofR +W about its center of mass,! is the
inertial angular velocity ofR, andM is composed of the external moment onR +W and
internal moments caused by the motion ofW relative toR. We shall restrict this investigation
by not considering the orientation-dependent environmental torques (e.g., gravity or drag).

By resolving Equation (2) onto body axes(x1; x2; x3) fixed inR and simplifying, we find:

_!1 = J1!2!3 + "g1(!; _!); (3a)

_!2 = �J2!3!1 + "g2(!; _!); (3b)

_!3 = J3!1!2 + "g3(!; _!); (3c)

where

J1 =
I2� I3

I1
; J2 = �I3� I1

I2
; J3 =

I1� I2

I3
: (4)

In denotes a diagonal element of the inertia tensorI andgn denotes terms arising from the
moments and all the off-diagonal inertia terms, scaled by a parameter".

2.1. UNPERTURBEDMOTION

The unperturbed system consists of Equation (3) with" = 0 (the torque-free rigid body equa-
tions). The system is fully integrable, with two constants of motion: the angular momentum
vectorL and the rotational kinetic energy scalarT = (! � L)=2. Resolving onto the body
axes, we find

T =
1
2
(I1!

2
1 + I2!

2
2 + I3!

2
3); (5a)

L2 = I2
1!

2
1 + I2

2!
2
2 + I2

3!
2
3: (5b)

These equations describe two intersecting ellipsoids in the three-dimensional space(!1; !2; !3).
Thus, the unperturbed solution is a motion specified byT lying on a two-dimensional ellipsoid
defined byL2 in !-space. Tangential intersections give rise to six equilibrium points, a pair
lying on each axis!n, that correspond to simple spin motions, i.e., motions in which! and
L are aligned. One pair of equilibria are unstable and are connected by four heteroclinic
connections (i.e., separatrices) while the other two pair are (linearly) stable. Nontangential
intersections give rise to one-dimensional closed curves lying on the ellipsoid that encircle a
stable equlibrium and accumulate onto a pair of separatrices. Each of these curves correspond
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to a complicated orientation manuever involving coning, nutation, spin, and precession. See
Hughes [11] or Wittenburg [18] for an illustration. Finally, since no external torques act in the
unperturbed system,L remains inertially fixed.

Knowing! does not completely determine the orientation ofR with respect to inertial
space; however, the orientation relative toL is determined. Define the unit vector` by

` = (`1; `2; `3)
4

=
1
L
(I1!1; I2!2; I3!3); (6)

where`n are direction cosines. Then, the direction of` relative to the body axes is specified
by (�;  ) where

`1 = sin sin�; (7a)

`2 = cos sin�; (7b)

`3 = cos�: (7c)

The angle� is the coning angle and is the spin angle. These angles are two rotations for
Euler angles; the third rotation (i.e., the precession aboutL) cannot be found from! alone.

Using the direction cosines, Equation (5) becomes

1
I
=
`2

1

I1
+
`2

2

I2
+
`2

3

I3
; (8a)

1 = `2
1 + `2

2 + `2
3; (8b)

whereI = L2=(2T ) is called the momentum parameter [11]. For each value ofI,1 the solution
to Equation (8a) consists of two disjoint one-dimensional curves lying on the momentum
sphere described by Equation (8b). The two curves are merely reflections of one another
under the symmetry(`1; `2; `3) ! (�`1;�`2;�`3). Thus, the unperturbed motion traverses
one of the two curves: initial conditions determine which one.

2.2. UNPERTURBEDSOLUTION

The unperturbed solution for a general asymmetric rigid body is well known [11, 17, 18]. It
is given by

!1 = s1R1 cn(u; k); (9a)

!2 = s2R2 sn(u; k); (9b)

!3 = s3R3 dn(u; k); (9c)

wheresn = �1 ands1s2s3 = �1. The amplitudesRn are given by

R1 = �13k
; R2 = �23k
; R3 = 
; (10)

wherek � 0,
 � 0, and�nk = +
p
Jn=Jk. The argumentu, linear in time, is given by

u = �13�23J3
t+ u0: (11)

1 Except for degenerate cases whenI = I1, I = I2, or I = I3.
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Table 1. Convention for determin-
ing the 1 and 3-axes.I is evaluated
at the initial condition.

I1 I3

I > I2 Imin Imax

I < I2 Imax Imin


, k, andu0 are the three constants of integration that are related to the initial conditions.
The functions cn(u; k), sn(u; k), and dn(u; k) are called Jacobian elliptic functions. These
functions are periodic in the argumentu for each fixed modulusk with period2 4K(k) when
0� k2 < 1, whereK(k) is the complete elliptic integral of the first kind [1].

The unperturbed solution for̀is

`1 = s1 r1 cn(u; k); (12a)

`2 = s2 r2 sn(u; k); (12b)

`3 = s3 r3 dn(u; k); (12c)

wherern = (InRn=L). These amplitudes are related according to

r1 = 13kr3; r2 = 23kr3; (13)

where

nk =
In

Ik
�nk =

+

s
jn

jk
; (14)

with

j1 = I1(I2� I3); j2 = I2(I1� I3); j3 = I3(I1� I2): (15)

The amplitudesrn depend onk but not
.
Solution (9–11) holds wheneverI2 denotes the middle axis of inertia, i.e.,Imax> I2 > Imin.

We shall not consider cases for whichI2 � Imin orI2 � Imaxsince Equation (3) then reduces to
a perturbed harmonic oscillator that can be investigated using standard perturbation methods.

The solution is most easily interpreted by adopting the following convention. The momen-
tum parameterI is known to satisfyImax � I � Imin for unperturbed motion [11]. The
directions of the 1-axis and 3-axis are now chosen according to Table 1.

We shall not consider cases in whichI is approximatelyI2 because the motion for! lies
near a separatrix in the phase space where averaging is not valid.

Adopting the convention listed in Table 1, all inertia parametersJn andjn are of the same
sign. Moreover, thex3-axis undergoes coning and nutation while precessing aboutL. The
modulusk is a measure of the coning and nutation motion (i.e., the oscillation of� during the
motion). In particular,�min � � � �max where

�min = cos�1

 s
1

1+ 2
13k

2

!
; (16a)

2 While the smallest period for dn(u; k) is 2K(k), it is still periodic with period 4K(k).
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�max = cos�1

 s
1� k2

1+ 2
13k

2

!
: (16b)

The constants of motion are expressed in terms of(
; k) according to

T =
1
2
I3


2 (1+ 13�13k
2); (17a)

L = I3

+

q
1+ 2

13k
2 : (17b)

Thus,k depends only onI according to

k2 =
(I1� I2)

(I2� I3)

(I � I3)

(I1� I)
; (18)

so that its value also specifies closed curves on the momentum sphere. From Equation (18),
we also find that

0� k2 < 1

implying that!1, !2, !3, and� are all periodic functions of time (as expected). Both!3 and
� have nonzero mean value while!1 and!2 have zero mean value.

2.3. METHOD OFAVERAGING

A brief summary of the method of averaging is described below. Consider the system of
differential equations forx 2 R2 and� 2 S1 below:

_x = "F (x; �); (19a)

_� = �(x) + "G(x; �); (19b)

where 0< "� 1 is a small parameter,F 2 R2 andG are both periodic in� for fixedx, and
�� ". Define a near-identity transformation by

x = x0 + "W (x0; �0) +O("2); (20a)

� = �0 + "V (x0; �0) +O("2): (20b)

The transformation functionsW 2 R2 andV are chosen to transform the differential equations
for x0 and�0 into

_x0 = " �F (x0) +O("2); (21a)

_�0 = �(x0) + " �G(x0) +O("2); (21b)

where �F and �G denote the averages over�0 of F (x0; �0) andG(x0; �0) respectively, where

avg
�0
hf(x0; �0)i = 1

T (x0)

T (x0)Z
0

f(x0; �0) d�0 (22)
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andT (x0) denotes the period. See [3, 8, 9, 14] for a more complete discussion.
Note that in the averaged system (21), the differential equations forx0 (the slow-varying

variables) are decoupled from�0 (the fast variable): the slow-varying variables evolve on
a manifold that has been reduced by one dimension. Theorems on the averaging method
guarantee that the solution forx0 is anO(") approximation forx for times t of O(1=")
[8, 9, 14]. Moreover, many qualities of the motion forx can be determined from investigating
x0.

2.4. VARIATIONAL EQUATIONS

Three conditions must be satisfied so that"gn represents a small perturbation term in Equa-
tion (3). First, the momentkMk must be small relative toT so that the nominal motion
consists of rigid body motion. Hence, define" as(kMk=T ) evaluated at the initial condition.
Second, the body axes must be nominally principal axes, i.e.,

I =

2
64
I1 0 0
0 I2 0
0 0 I3

3
75+ "

2
64

0 Is12 I
s

13

Is12 0 Is23

Is13 I
s

23 0

3
75 ; (23)

where the off-diagonal elements remain ofO("). Obviously, the body axes may be chosen to
be principal axes at all times, but such axes may be inconvenient to use if shape changes of
the body occur (caused byW moving relative toR). Third, the rate at which the inertia tensor
I changes must be slow, i.e.,I

4

= I(�) where� = "t.
We now identify a set of slowly-varying variables and a fast varying phase angle to put

Equation (3) into the form of Equation (19). Obviously, bothT andL2 are slowly-varying
but we prefer to usex = (
; k) (the equation for� need not be explicitly computed). Since
the unperturbed system is strongly nonlinear, only certain phase angles will result in periodic
variational equations [3, 4, 5]. A convenient choice is� = u=(4K(k)).

Variation of parameters is now applied by assuming a solution of the form given by (9–11)
with (
; k; u0) now considered as unknown functions of time. After lengthy computations
(computed using an elliptic function processor written for Mathematica3), we find

_
 = "F
(
; k; �; �); (24a)

_k = "Fk(
; k; �; �); (24b)

_� = �(
; k; �) + "G(
; k; �; �); (24c)

where the functionsF
, Fk,G, and� are given in Table 2.

3. Examples

The averaged system (21) is computed from the variational equations given by (24) once the
perturbation termsgn(!; _!) are specified. Three examples are considered below.

3.1. INTERNAL MOVING PARTS

Consider the case where the the external moment on the body is zero, but appendages are
allowed to move and thrusters are allowed to fire [13]. The variablesgn corresponding to a

3 Available from the author. E-mail request to coppola@caen.engin.umich.edu



Averaging for Euler’s Equations 301

Table 2. Explicit forms of the variational equations (24). Eachgn is to be evaluated on the unperturbed solution
given by (9–11).Z(u; k) denotes the Jacobian Zeta function (related to the incomplete elliptic integral of the
second kind [1]). The arguments(u; k) have been suppressed in writing the elliptic functions.

F
(
; k; �; �) = s3g3dn+
s2g2

�23
ksn�

1
�23

d�23

d�
k

2
sn2

Fk(
; k; �; �) =
s1g1

�13

cn+

s2g2

�23

(1� k

2)sn�
s3g3



kdn�

1
�13

d�13

d�
kcn2

�
1
�23

d�23

d�
k(1� k

2)sn2

G(
; k; �; �) =
1

4K

�
s1g1(Zcn� sndn)
�13k
(1� k2)

+
s2g2(Zsn+ cndn)

�23k

�

s3g3(Zdn� k2sncn)

(1� k2)

�
cn

�13(1� k2)

d�13

d�
(Zcn� sndn)�

sn
�23

d�23

d�
(Zsn+ cndn)

�

�(
; k; �) =
�13�23J3


4K

body with internal moving parts are written

g1 = G10+G11!1 +G12!2 +G13!3

+
Is23

I1

�
!2

3 � !2
2

�
� Is13

I1
(!1!2 + _!3)

+
Is12

I1
(!1!3� _!2) ; (25)

whereg2 andg3 can be found using cyclic permutation.Gmn depends onI and the motion of
W relative toR but not on!. The three parameters of the formGnn are given by

Gnn = � 1
In

dIn
d�

+
1
In

X
i

dmi

d�
d2
ni (26)

wheredni measures the perpendicular distance from thexn-axis to mass thrustermi which
is ejecting mass at the rate dmi=d� . The three parametersGn0 are related to the external
torque onR+W, torques onR caused byW, and torques created by thruster firings. These
parameters figure prominently in the averaged system.

3.2. THRUSTTORQUES

Perturbations caused by small thrust torques are also described by Equation (25). However,
in many applications, the amount of mass lost during the firing is negligible compared to the
inertia of the vehicle. In such cases, the inertia may be approximated as constant so that the
perturbation becomesgn = Gn0.

3.3. LINEAR FEEDBACK

Consider the model of a control system for a rigid spacecraft given by Equation (3) where
"gn represents a control torque and(x1; x2; x3) are principal axes. The analysis for linear
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Table 3. Values of the averages appearing in the averaged equations (27). The prime notation has been dropped
for convenience.K = K(k) andE = E(k) are complete elliptic integrals.

�F
(
; k;N0; N2; N3) =
�

2K
N0 +


�
N2

�
1�

E

K

�
+N3

E

K

�

�Fk(
; k;N0; N1; N2; N3) = �
�k

2K

N0 +

N2 �N1

k

�
1� k

2 �
E

K

�
+ (N2 �N3)k

E

K

�G(k;G12; G21; s3�12) = �
�

8k2K2

�
s3�12G21

�
1�

E

K

�
+

G12

s3�12

�
1�

1
1� k2

E

K

��

where

N0 = s3G30; N1 = G11�
1
�13

d�13

d�
; N2 = G22�

1
�23

d�23

d�
; N3 = G33

feedback control torques can be recovered from Equation (25) by takingGn0 = 0, Isnm = 0,
and eachGnm constant. Note that the linear terms here are considered as perturbations on
the nonlinear unperturbed system, in contrast to traditional perturbation approaches that treat
nonlinear terms as perturbations on a linear system.

4. Averaging Results

The averaged system (21) corresponding to Equation (25) is found to be

_
 = " �F
(
; k;N0; N2; N3); (27a)

_k = " �Fk(
; k;N0; N1; N2; N3); (27b)

_� = �(
; k; �) + " �G(k;G12; G21; s3�12); (27c)

where the values of the averages�F and �G are given in Table 3. The prime notation has been
dropped for convenience. The averaged system depends on only seven parameters (out of a
total of 18) with the slow-flow equations depending only on the four parameters denotedNn.
These four parameters determine the qualitative behavior of the motion – the other parameters
do not significantly affect the long-term motion. Note in particular that the off-diagonal
elementsIs

ij
do not appear in the averaged system.

Additionally, one sees that ifN0 = 0, the slow-flow equations themselves decouple with
Equation (27b) being a first order nonlinear differential equation ink and possibly� . The
motion for
 is then found from quadrature of Equation (27a).

4.1. INTERNAL MOTIONS

When the perturbation term consists only of internal motions (not external torques or thruster
firings), then the total angular momentum ofR+W is conserved. If, in addition, the internal
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motions do not generate any internal angular momentum, thenGn0 = 0 andL is conserved
both in Equation (3) and in the averaged system.

Equation (27b) becomes

_k = "
1
k

�
� k2E

K
+ �

�
1� k2� E

K

��
; (28)

where

� =
1
32

d32

d�
; � =

1
12

d12

d�
: (29)

To find an approximate solution, we first compute the equation forr1, i.e.,

_r1

r1
= "

�

k2

�
1� E

K

�
; (30)

and approximate the right-hand side by performing a Taylor series ink aboutk = 0. To lowest
order, the right-hand side becomes"�=2 making Equation (30) integrable. The solution to the
approximate equation is

r1 = r0
p
12 = r0

4

s
j1

j2
; (31)

wherer0 is an arbitrary constant. Approximate solutions for the remaining slowly-varying
quantities are given below:

r2 =
r0p
12

; (32a)

r3 =
q

1� r2
012 ; (32b)

k2 =
r2

03132

1� r2
012

; (32c)


 =
L

I3

q
1� r2

012 ; (32d)

T =
L2

2I3

�
1� r2

0(12� 32�13)
�
; (32e)

andRn = (Lrn=In). Thus, the averaging method provides anexplicit algebraicapproximation
to the motion of a vehicle with internal motions. This result was first developed for sufficiently
small coning motions in [15] using another technique.

Figure 1 compares the actual motion for Equation (3) with the averaged solution for the
case of a mass deploying along the end of a boom along thex3-axis. The moments of inertia
are given by

I1 = 10+ms2;

I2 = 11+ms2;

I3 = 20;
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Figure 1. Boom Deployment." = 0:1. (a) Plot ofk2 for both actual and averaged solution. (b) Relative %-error
between actual and averaged solution fork2. (c) Plot ofT for both actual and averaged solution. (d) Relative
%-error between actual and averaged solution forT . (e) Plot of actual� (in deg) and the averaged solutions for
�min and�max. (f) Plot of actual̀ 1 and the averaged solution forr1.

wherem = 0:04, _s = 0:25, s(0) = 0, and" = 0:1. The angular momentum isL = 40 and
the initial value ofk2 is 0.25. Values fork2,
, �, andr1 were computed for the actual motion
of Equation (3) by computingT andL from Equation (5) and using the formulas given in
Section 2.1. It is seen that the averaging solution is an excellent approximation to the actual
motion.
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Figure 2. Thruster firing." = 0:1. Beforet = 0 the thruster is off and the body is performing purely rigid
body motion. Att = 0, the thruster is turned on resulting in an increase of
 and decrease ofk. The oscillations
are the result of numerical integration of (3) while the lines are the predicted amplitudes based on the averaging
approximation.

4.2. THRUSTERFIRING

For the thruster firing example, the averaged system becomes

_
 = "
�

2K
N0; (33a)

_k = �" �k

2K

N0: (33b)

Only the torque about thex3-axis leads to any significant long-term motion. Equation (33) has
the integral of motionk
 that remains constant during the motion. Recalling Equation (10),
we see that torque does not change the amplitudes of!1 or!2. Using the constant of motion,
Equation (33b) becomes

_k = �" �N0

2k0
0

k2

K
; (34)

where(
0; k0) denote initial conditions. WhenN0 > 0, k = 0 is an attractive equilibrium:
the torque serves to reducek until a simple spin about thex3-axis is achieved; however, the
spin rate
 increases. WhenN0 < 0, k = 0 is an unstable equilibrium: the torque serves to
increase the nutation amplitude while reducing
. The coning increases until the motion nears
the separatrix (atk = 1) at which point the averaging solution is no longer valid.

Figure 2 compares the motion of Equation (3) with the averaged solution based on Equa-
tion (34) for the case whereI1 = 3, I2 = 4, I3 = 5, " = 0:1,G30 6= 0, and all otherGmn are
zero. Fort < 0,G30 = 0 and the motion is purely rigid body motion described byk = 0:6
and
 = 1:0. At t = 0 the thruster is turned on withG30 = 0:8. As predicted, the amplitude
of w1 remains fixed while the amplitude ofw3 grows. Note also that the period of oscillation
decreases.



306 V. T. Coppola

4.3. LIMIT CYCLES PRODUCED BYFEEDBACK

In the linear feedback example, all inertias are constant andG30 = 0, so that the slow-flow
equation (27b) is given by Equation (28) where�

4

= N2 � N3 and�
4

= N2 � N1 are both
constant parameters. A nontrivial equilibrium̂k of Equation (28) exists if

� =
k̂2Ê

Ê � (1� k̂2)K̂
�; (35)

whereÊ = E(k̂) andK̂ = K(k̂). This condition is bounded by the lines� = � and� = 2�
in the(�; �) parameter plane. The equilibrium is stable if� > 0 and unstable if� < 0.

Considering now the implications for the momentum sphere, we conclude that the nontrivial
equilibriumk = k̂ corresponds to alimit cycleon the momentum sphere with the same stability
properties. The limit cycle exists independent of
: in fact,
 may increase or decrease with
no change in the limit cycle shape.

The limit cycle bifurcates from a particular unperturbed trajectory (depending onk̂) as"
passes through zero. The bifurcation is comparable to the well-known birth of a limit cycle in
the van der Pol oscillator wherein a particular unperturbed trajectory becomes a limit cycle as
""0. (The bifurcation is sometimes called an Andronov bifurcation.) The limit cycle trajectory,
then, is very nearly a particular coning motion of thex3-axis ofR of the unperturbed motion.
Thus,
 only affects the rate at which the limit cycle is traversed (i.e., the spin rate of the
motion).

The solution for
 can be found from quadrature, once the solution to Equation (28) is
determined. Note, however, that even on the limit cycle described byk = k̂,
 need not remain
constant. In fact,d
=dt = 0 only when

N2 =

 
Ê � (1� k̂2)K̂

Ê � K̂

!
N1; (36a)

N3 =

 
Ê � (1� k̂2)K̂

Ê

!
N1: (36b)

Even when Equation (36) is satisfied, a constant value of
 is not obtained until the motion for
k(t) reachesk = k̂. The final value of
 cannot be found without performing the quadrature
(which in turn depends on the initial value ofk). Hence, Equation (36) does not imply the
existence of a limit cycle in!-space. Moreover, since the analysis is really for the primed
(averaged) variables, Equation (36) really implies that d
=dt = O("2), not 0, resulting in a
slowly-varying (rather than constant) value of
.

Figure 3 compares the motion of Equation (3) with that predicted by averaged solution
at k = k̂ for the case whereI1 = 3, I2 = 4, I3 = 5, G11 = �1:35614,G22 = 1:26209,
G33 = �0:187738,!1(0) = 0:5, !2(0) = 0:5, and!3(0) = 1:0. These values give" = 0:1,
k̂ = 0:25,� = 1:44982, and� = 2:61822 so that Equation (36) is satisfied. Figures 3a and
3b show the limit cycle that the averaging method predicts.

Values fork2, 
, �, and r1 were computed for the actual motion of Equation (3) by
computingT andL from Equation (5) and using the formulas given in Section 2.1. It is
seen that as time increases the actual motion consists of small oscillations about the constant
solution determined fromk = k̂. These oscillations can be determined by computing the
transformation functionsW andV in Equation (20) but was not done here.
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Figure 3. Limit Cycle. " = 0:1. (a) Limit cycle on the momentum sphere. (b) Projection onto`1`2 plane (axes
shown black); gray axes align with symmetry lines of limit cycle that are rotated w.r.t axes. (c) Plot of actual
k2 and the linek2 = k̂2. (d) Plot showing actual
 increasing slowly. (e) Plot of actual� (in deg) and the lines
� = �min(k̂), � = �max(k̂). (f) Plot of actualr1 and the liner1 = r1(k̂).

5. Conclusions

The method of averaging has been applied to the strongly nonlinear system of Euler’s equations
for rotational motion. The formulation uses the elliptic function solution that appears from the
torque-free asymmetric rigid body equations. The averaging procedure averages the influence
of perturbation terms over nominal rigid body motion – motion that includes nutation and
possibly large coning motions. This generalizes the weakly nonlinear cases described by a
nearly axi-symmetric spacecraft or by a small coning motion assumption.

An averaged system has been computed for a perturbation involving linear terms in the
angular velocity components. The averaged system shows that the long-term motion is deter-
mined by only four parameters out of a total of 18. The reduction of the number of parameters
greatly simplifies a qualitative investigation.
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Three examples concerning internal motion, thrust torques, and feedback control have been
investigated. In each case, the predictions made using the averaged system compare very well
with the actual motion, both quantitatively and qualitatively.
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